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Abstract—A vibration estimation method for synthetic aper-
ture radar (SAR) is presented based on a novel application of
the discrete fractional Fourier transform (DFRFT). Small vibra-
tions of ground targets introduce phase modulation in the SAR
returned signals. With standard preprocessing of the returned
signals, followed by the application of the DFRFT, the time-
varying accelerations, frequencies, and displacements associated
with vibrating objects can be extracted by successively estimating
the quasi-instantaneous chirp rate in the phase-modulated signal
in each subaperture. The performance of the proposed method
is investigated quantitatively, and the measurable vibration fre-
quencies and displacements are determined. Simulation results
show that the proposed method can successfully estimate a two-
component vibration at practical signal-to-noise levels. Two air-
borne experiments were also conducted using the Lynx SAR
system in conjunction with vibrating ground test targets. The
experiments demonstrated the correct estimation of a 1-Hz vibra-
tion with an amplitude of 1.5 cm and a 5-Hz vibration with an
amplitude of 1.5 mm.

Index Terms—Fractional Fourier transform, joint time–
frequency analysis (JTFA), micro-Doppler effect, subaperture,
synthetic aperture radar (SAR), vibration.

I. INTRODUCTION

V IBRATION signatures associated with objects such as
active structures (e.g., bridges and buildings) and vehicles

can bear vital information about the type and integrity of
these objects. The ability to remotely sense minute structural
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vibrations persistently and with high accuracy is extremely
important for a number of reasons. First, it avoids the cost of
acquiring and installing accelerometers on remote structures.
Second, it alleviates the high cost of maintaining these sensors,
and third, it enables sensing vibrations of structures that are
not easily accessible to engineers and maintenance personnel
(e.g., pedestrian and train bridges over canyons, structures and
vehicles in a hostile land, etc.). While light detection and
ranging (LIDAR) technology has been proposed and used for
remote sensing of vibrations, it has failed to overcome a number
of persisting challenges. First, due to the short wavelength of
the standard illumination in LIDAR, loss and aberration due to
laser propagation through air and vapor make LIDAR vibration
sensing highly dependent on weather conditions. This makes it
particularly problematic when it is desirable to probe vibrating
object at a large distance (tens of kilometers or more). Second,
LIDAR systems are not typically easily mounted on small
moving platforms due to the complexity of the system.

Synthetic aperture radar (SAR) is a well-established tech-
nique for high-resolution imaging of the Earth’s surface through
measurement of its electromagnetic reflectivity [1]–[3]. The
relatively long wavelengths, compared with those of optical
sensors, make SAR systems capable of remote imaging over
thousands of kilometers regardless of weather conditions. In
addition, small vibrations in the imaged surfaces introduce
phase modulation in the reflected SAR signals, a phenomenon
often referred to as the micro-Doppler effect [4]–[9]. As such,
in addition to imaging, SAR can also have the added benefit of
enabling us to remotely measure surface vibrations by estimat-
ing the corresponding micro-Doppler effect.

In standard SAR imaging, vibrations from strong scatterers
result in “ghost targets” around the scatterers in the SAR
image (in the azimuth direction) that are generally difficult to
distinguish from images of static scatterers [10]. This ghosting
is due to the fact that the returned SAR signals, even after
they are preprocessed (range compressed and autofocused), still
bear the vibration-induced time-varying phase, and the standard
Fourier-transform-based analysis used in SAR processing is in-
adequate to resolve such nonstationary signals. Indeed, the SAR
returned echo from a vibrating scatterer after preprocessing is
a nonstationary signal whose instantaneous frequency (IF) is
linearly proportional to the vibration velocity [11]. To address
this limitation of standard SAR, joint time–frequency analysis
(JTFA) has been proposed to analyze the micro-Doppler effect
[4]. Different time–frequency transforms have been used, in-
cluding the short-time Fourier transform [12], Cohen’s class
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transform [13], and the adaptive time–frequency transform
[14]. More comprehensive reviews on time–frequency methods
are available in the literature; see, for example, [4]. Nonethe-
less, the JTFA merely provides a qualitative illustration of the
vibration-induced frequency modulation in the time–frequency
representation, and it does not provide an estimation of the
vibration amplitude and frequency. Additional estimation pro-
cedures, such as retrieving the IF track from the time–frequency
representation, are needed in order to estimate the vibration.
This step is not trivial when the signal-to-noise ratio (SNR) is
low. Moreover, because the existing JTFA stops at the analysis
stage, the capability and performance of the SAR-based vibra-
tion estimation are left uninvestigated.

In this paper, a vibration estimation method using SAR is
presented based on a novel application of the discrete fractional
Fourier transform (DFRFT). The proposed method provides
a complete estimation of the vibration signature by offering
the history of the instantaneous acceleration and the spectrum
of the vibrating object. In this method, the conventional SAR
processing procedure is performed to obtain a nonstationary
signal from the vibrating target. First, the returned SAR signals
are demodulated, and the polar-to-rectangular resampling is
applied to the SAR phase history to correct the range cell migra-
tion. Second, “autofocus” is performed, and range compression
is applied to the reformatted SAR phase history. Next, the signal
from a vibrating target is focused on a range line, and it is the
aforementioned nonstationary signal. After the preprocessing,
the nonstationary signal is approximated by a chirp signal in a
small time window, called the subaperture. The DFRFT is then
applied to estimate the vibration acceleration in sliding subaper-
tures. The performance of the proposed method is quantified in
terms of the measurable frequencies and displacements, and the
efficacy of the approach is demonstrated by experiments using
the Lynx SAR system built by General Atomics Aeronautical
Systems, Inc. (GA-ASI) [15].

The remainder of this paper is organized as follows. In
Section II, we provide a theoretical analysis of the vibration-
induced frequency modulation. In Section III, the DFRFT-
based vibration estimation method is introduced, follow by per-
formance analysis in Section IV. Simulations and experiments
are provided in Sections V and VI, respectively. Section VII
contains our conclusions.

II. MODEL

A. Motion Model

Fig. 1 shows a 3-D SAR flight geometry, with a vibrating
target located at the origin. The nominal line-of-sight distance
from the target to the radar sensor is r0, with the radar sensor
located at polar angles ψ and θ to the target. Let rd(t) denote the
projection of the vibration displacement onto the line of sight
from the target to the SAR sensor; the range of the vibrating
target becomes

r(t) ≈ r0 − rd(t). (1)

Due to the change of aspect angle of the target during the SAR
data-collection process, the range r0 changes a little. However,

Fig. 1. Three-dimensional SAR flight geometry. The vibrating target is lo-
cated at the origin, and the radar sensor is located at (r0, ψ, θ).

modern SAR compensates for the change via proper modeling
and post-signal-processing technique [1]–[3]. The projection
rd(t) is also modulated by the change of aspect angle. For
broadside SAR, the project can be approximated by

rd(t) ≈ rd0 cos θ(t) (2)

where rd0 represents the projection of the vibration displace-
ment for θ = 0. The change of aspect angle θ(t) due to the SAR
geometry is known; therefore, we can estimate rd0(t) from
rd(t). For spotlight-mode SAR, the change of aspect angle is
usually small [3]. In this case, we have rd(t) ≈ rd0(t). In this
paper, we consider the case of broadside spotlight-mode SAR
for which the aforementioned approximation is valid.

B. Signal Model

The small range perturbation of the vibrating target mod-
ulates the collected SAR phase history. Consider a spotlight-
mode SAR whose sent pulse is a chirp signal, with carrier
frequency fc and chirp rate K. Each returned SAR pulse
is demodulated by the sent pulse delayed appropriately by
the round-trip time to the center of the illuminated patch. A
demodulated pulse can be written as [3, Ch. 1]

r(t) =
∑
i

σi exp

[
−j

4π(ri − rc)

c

(
fc +K

(
t− 2rc

c

))]
(3)

where σi is the reflectivity of the ith scatterer, c is the propa-
gation speed of the pulse, and rc is the distance from the patch
center to the antenna. The polar-to-rectangular resampling is
then applied to the SAR phase history [3, Sec. 3.5] to correct
for range cell migration. The autofocus is also performed at
this stage. For small vibrations, the vibration-induced phase
modulation in range direction is very small [4], [5], [16];
therefore, it is ignored. Range compression is applied to the
phase history to separate the scatterers in range. Fig. 2 shows
the magnitude of the range-compressed SAR phase history
containing one static point target and one vibrating point target.
Assuming that all scatterers at a specific range are static, the
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Fig. 2. Magnitude of the range-compressed SAR phase history containing
one static point target and one vibrating point target. The two point targets are
separated in range after range compression.

range-compressed phase history at this specific range can be
written as

x[n] =
∑
i

σi[n] exp

[
j

(
fyyin− 4πfc

c
ri + φi

)]
+ w[n]

(4)
for 0 ≤ n < NI , where n is the index of the collected returned
pulses, NI represents the total number of collected returned
pulses, yi is the cross-range position of the ith target, and φi

represents all additional (constant) phase terms. The imaging
factor fy is known and used to estimate the cross-range of the
target. For spotlight-mode SAR, fy can be written as [2], [3]

fy =
4πfc
c

V

R0fprf
(5)

where V is the nominal speed of the SAR antenna, R0 is the
distance from the patch center to the midaperture, and fprf is
the pulse-repetition frequency (PRF). The SAR integration time
is given by TI = fprfNI , and w[n] is additive noise.

The signal x[n] in (4) is a stationary signal if all scatterers
are static. The azimuth compression, accomplished by applying
the discrete Fourier transform (DFT) to x[n], will focus the
static scatterers on the correct cross-range positions. However,
when a vibrating scatterer is present, x[n] has a nonstationary
component because ri is now a function of n for the vibrating
scatterer. The cross-range yi is also changing for the vibrating
scatterer. However, because R0 is very large (tens of kilo-
meters), fy is usually much smaller than 4πfc/c; therefore,
the phase modulation induced by time-varying yi is ignored
[4], [5]. As such, we use ȳi to denote the average cross-
range position of the vibrating scatterer. For the same reason,
a small change in ri causes a relatively large fluctuation to
the Doppler frequency fyyi. We would like to emphasize that
azimuth compression cannot focus the vibrating scatterer on the
correct cross-range position because the DFT spectrum of the
nonstationary component usually has significant sidelobes [10].
Fig. 3 shows the reconstructed SAR image by applying azimuth
compression to the phase history as shown in Fig. 2. The
sidelobes near the vibration target are commonly referred to as
the ghost targets [10]. The vibration-induced phase modulation

Fig. 3. Reconstructed SAR image using the SAR phase history in Fig. 2.
Target vibration introduces ghost targets along the azimuth direction.

is referred to as the micro-Doppler effect [4]. Analysis tools
other than the DFT are required to estimate vibrations and
nonstationary targets in general.

We define the signal of interest (SoI) as the range line in the
range-compressed phase history containing vibrating targets.
An example is shown in Fig. 2. In this paper, we consider cases
for which the vibrating scatterer is well separated from other
scatterers in range (e.g., this may be possible by choosing a
proper data-collection orientation). In this case, the SoI can be
written as

x[n] = σ[n] exp

[
j

(
fy ȳn− 4πfc

c
rd[n] + φ

)]
+w[n] (6)

for 0 ≤ n < N . In the next section, the DFRFT-based method
is described and used to estimate the vibration rd[n] from x[n].

III. ALGORITHM DEVELOPMENT

For its key role in our estimation process, we will first
review germane aspects of the DFRFT drawing freely from the
literature [17], [18]. The vibration estimation method is then
developed.

A. Review of the DFRFT

The continuous-time fractional Fourier transform, first intro-
duced by Namias in 1980 [19], is a powerful time–frequency
analysis tool for nonstationary signals and has been found to
have several applications in optics and signal processing [20].
Santhanam and McClellan [21] were the first to introduce a
formulation of the DFRFT. Other formulations of the DFRFT
are described in the excellent review paper by Pei and Ding
[22]. The DFRFT formation used in this paper is specifically
referred to as the multiangle centered DFRFT (MA-CDFRFT)
in the literature [17]. More details can be found in [17] and [18].
Without ambiguity, we refer to the MA-CDFRFT as the DFRFT
throughout the remainder of this paper.

Let W denote the transformation matrix of the centered DFT.
The fractional power of W is defined as Wα = VGΛ

2α/πVT
G,

where VG is the matrix of Grünbaum eigenvectors of W
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Fig. 4. Three-dimensional angle–frequency spectrum of the signal using the
DFRFT. The chirp component and the sinusoidal component are corresponding
to different peaks in the spectrum. No cross-term is introduced due to linearity
of the DFRFT.

and Λ2α/π is a diagonal matrix with the fractional powers of
the eigenvalues of W. Assume that x[n] is a sequence of N
samples. The DFRFT of x[n] is the DFT of an intermediate
signal x̂k[p] for each index k, i.e.,

Xk[r] =

N−1∑
p=0

x̂k[p] exp

(
−j

2π

N
pr

)
(7)

where r = 0, 1, . . . , N − 1 is the angular index and the corre-
sponding α is equal to 2πr/N . The intermediate signal x̂k[p] is
calculated by

x̂k[p] = v(k)p

N−1∑
n=0

x[n]v(n)p (8)

where v
(k)
p is the kth element of vp and vp is the pth column

vector of VG.
It has been shown [17], [18], [23] that the DFRFT has the

ability to concentrate a linear chirp into a few coefficients and
that we obtain an impulselike transform analogous to what
the DFT produces for a sinusoid. Fig. 4 shows the DFRFT
of a complex signal containing two components: a pure 150-
Hz sinusoid and a chirp signal with a center frequency of
200 Hz and a chirp rate of 400 Hz/s. The frequency axis is
the same as the one of the DFT. The DFRFT introduces a
new angular parameter α to describe the linear time–frequency
relation of the signal. For α = π/2, the result of the DFRFT is
the same as that of the DFT. The two peaks that corresponded
to the sinusoid and the chirp are well separated, which indicates
that the two components have different center frequencies and
chirp rates. Fig. 5 shows the 2-D view of the angle–frequency
spectrum generated by the DFRFT.

B. Vibration Estimation Method

The SoI described in Section II-B is an example of nonsta-
tionary signals. They can be analyzed by means of using sliding
short-time windows. In a short-time window starting at m, a

Fig. 5. Vertical view of the angle–frequency spectrum shown in Fig. 4. Black
and white correspond to the highest and lowest amplitudes, respectively.

second-order approximation can be applied to the vibration
displacement rd, and the SoI in (6) becomes

x[n] ≈ σ exp

[
j

(
φ− 4πfc

c
rd[m] +

(
fy ȳ −

4πfcvd[m]

cfprf

)
n

−2πfcad[m]

cf2
prf

n2

)]
+w[n],m≤n<m+Nw (9)

where Nw is the size of the window. We assume that the
reflectivity of the target σ does not change within the time
window. The length of the time window is Tw = fprfNw. When
Tw is much less than the duration of the vibration, the second-
order approximation in (9) is fairly accurate. According to (9),
x[n] in a short-time window is approximately a chirp signal,
and its chirp rate is linearly proportional to the instantaneous
vibration acceleration ad[m]. By estimating the chirp rates of
x[n] in successive sliding short-time windows, the vibration-
acceleration history is estimated. The DFRFT is used to esti-
mate the chirp rates, and the details are shown as follows.

Incorporating the CZT: Because the vibration-induced chirp
rates are usually very small, a resolution enhancement algo-
rithm, called the the chirp z-transform (CZT) algorithm, is
incorporated into the DFRFT. With the CZT, a more finely
spaced interpolation of the spectrum of interest can be ob-
tained than that offered by the DFT [12], [24]. As shown in
Section III-A, the final step of the DFRFT can be interpreted
as the DFT of x̂k[p] in (8) for each frequency index k in
(7). Therefore, we can implement the CZT algorithm in the
final step of the DFRFT in order to obtain more exact peak
locations with respect to angle α [25]. Fig. 6 shows the CZT-
incorporated DFRFT of the signal with a zoom-in factor of two.
The resolution of the peak position with respect to the angle α
is improved.

Estimating Chirp Rates: There is a one-to-one mapping
from the angular position of the peak in the DFRFT plane to
the chirp rate of the signal [17]. This mapping is dependent
on the size of the DFRFT and the zoom-in factor of the CZT.
Currently, there is no analytic form to describe the mapping.
Fig. 7 shows a mapping from the peak location to the chirp
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Fig. 6. CZT-incorporated DFRFT of the signal with a zoom-in factor of two.
By incorporating the CZT, the resolution of the peak position with respect to
angle α is improved.

rate where the DFRFT size is 160 and the zoom-in factor is
10. The mapping is generated by first using the DFRFT to
estimate signals with different chirp rates and then interpolating
the estimation results with the spline function. In practice, the
mapping is generated with a parameter set that works best for
the particular application and is stored for later use in estimating
chirp rates. Once the chirp rate is estimated by the DFRFT, the
estimated vibration acceleration is calculated via

âd[m] = −
cf2

prf

2πfc
ĉr[m] (10)

where ĉr[m] is the estimated chirp rate. By estimating the
acceleration in sliding short-time windows, the history of the
vibration acceleration is estimated. The estimated vibration
spectrum can be obtained by applying the DFT to the estimated-
vibration-acceleration history. The DFRFT-based vibration es-
timation method is summarized in Algorithm 1. Usually, the
DFRFT-based method is applied to the SoI with several differ-
ent window sizes to achieve the best performance.

Algorithm 1 Procedure for the proposed vibration-
estimation method

1) demodulate and reformat the SAR phase history, perform
autofocus;

2) apply range compression to the SAR phase history, iden-
tify the SoI;

3) choose a proper window size Nw

4) for all m = 0 to m = N −Nw + 1 do
5) apply the DFRFT to the SoI in each time window and

estimate the chirp rate ĉr[m];
6) end for
7) calculate the estimated instantaneous vibration accelera-

tion via âd[m] = −(cf2
prf/2πfc)ĉr[m];

8) reconstruct the history of the vibration acceleration and
calculate its DFT

9) spectrum;
10) repeat steps 2–8 for different window sizes.

Fig. 7. One-to-one mapping from the peak location in the angle–frequency
spectrum to the chirp rate using the DFRFT. The DFRFT size is 160, and the
zoom-in factor is 10.

IV. PERFORMANCE ANALYSIS

In real-world applications, the performance of the proposed
method is affected by the presence of noise. In the extreme
case, when the SoI is highly corrupted by noise, the estimated
vibration acceleration would not be reliable. Thus, we are inter-
ested in knowing the SNR threshold above which the estimation
error is acceptable. To this end, we have used Monte Carlo
simulations to evaluate the performance of the proposed method
in estimating the chirp rate under different SNR levels. The SoI
in the presence of noise in a given time window starting at m
can be written as

s[n] = σ exp
[
j
(
φ+ ωcn+ crn

2
)]

+ w[n] (11)

for m ≤ n < m+Nw. The noise term w[n] is modeled as a
zero-mean complex-valued white Gaussian noise. The SNR is
define as

SNR = 10 log
σ

σw
(12)

where σ2
w is the variance of the additive noise. Because the

DFRFT is evaluated on discrete angular values, the step size
in angle α is limited to

ρ =
2π

ηND
(13)

where ND is the size of the DFRFT and η is the zoom-in factor.
This also yields a finite resolution for chirp rate estimates.

A. SNR Requirements

We have evaluated the performance of the estimator shown
in Fig. 7. The estimator is used to estimate chirp rates within
the range from −0.002 to 0.002 rad/samples2. This estimator
roughly yields a resolution of 7.85× 10−5 rad/samples2 in
estimating the chirp rate. The normalized root mean square
errors (NRMSEs) for five chirp rates are plotted in Fig. 8. The
five chirp rates are 0.00011, 0.00021, 0.00031, 0.00041, and
0.00051. When the SNR increases to 20 dB, the NRMSEs of
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Fig. 8. Normalized mean-squared error in estimating five different chirp rates
using the DFRFT-based estimator shown in Fig. 7.

most of the chirp rates (except for cr = 0.00011) drop to an
acceptable level (roughly 0.05). However, the errors plateau
as the SNR increases. The residual errors are mainly from
the quantization error due to the limited resolution. When the
estimated chirp rate is on the same order of the resolution limit,
a small estimation error causes large NRMSE. This is seen
by observing the NRMSE of the chirp rate of 0.00011. When
the SNR is 30 dB, the NRMSE in estimating the chirp rate of
0.00011 is still about 10%.

Note that it is important to choose a proper setting for the
estimator in terms of the DRFT size ND and the zoom-in factor
η. The size of the DFRFT ND is usually determined by other
factors that will be explained later in this section, and it can be
larger than Nw in some cases. By using a large zoom-in factor,
the resolution of the estimator is enhanced, and the residual
error is reduced. Based on the prior information of the SAR
system in use, a DFRFT size and a relatively small zoom-in
factor are chosen to build the first estimator. If the estimator
does not fit with the chirp rates induced by the vibration,
then the zoom-in factor is increased accordingly. We avoid
using a very high resolution estimator (by choosing a large
zoom-in factor) in the very beginning due to the following two
reasons. First, if the estimator becomes too sensitive, then high-
frequency noise will be introduced to the estimated vibration
frequency. Second, the vibration-induced chirp rates may be
beyond the range of the estimator.

In the remainder of this section, we assume that we work
under acceptable SNRs and discuss other aspects of the perfor-
mance of the proposed method.

B. Resolution and Range of Estimated Vibration Frequencies

Let us assume that the SNR requirement of the SoI is met in
N samples. We have N ≤ NI , where NI is the total number
of the returned pulses in the SAR phase history. We define
the effective observation time as T = fprfN . The vibration
is estimated over the effective observation time. Therefore,
the resolution with respect to vibration frequency is given by
1/(fprfN) that is lower bounded by 1/(fprfNI).

Next, the maximum measurable vibration frequency
(MMVF) is defined to be the maximum frequency that a SAR
system can estimate without any aliasing. Theoretically, the
Nyquist–Shannon sampling theorem dictates that the MMVF
is upper bounded by fprf/2. However, such an upper bound
cannot be reached using the proposed method. The length
of the time window should be much less than the period of
the vibration in order to reduce the error introduced by the
second-order approximation. On the other hand, a certain
number of samples in the time window are required to estimate
the chirp rate robustly. Although it is expensive or sometimes
impractical to increase the PRF, the SoI can be up sampled in
order to estimate high vibration frequencies. As a remedy, we
can up sample the SoI prior to applying the DFRFT to it. With
up-sampling the SoI, the DFRFT size ND is enlarged larger
than the window size Nw. According to our experience, the
length of the time window has to be at least half the period
of the vibration, and Nw is at least 20. This yields a practical
MMVF that is approximately equal to fprf/40.

C. MMVA and MMVD

The minimum measurable vibration acceleration (MMVA)
can be calculated from the specified parameters. When the chirp
rate is small, the chirp rate can be obtained via [18]

cr =
π

ND
(αp − π/2) (14)

where αp is the angular position of the peak in the DFRFT
spectrum. The minimum angular difference in α that can be
differentiated by the DFRFT is 2π/(ηND). Therefore, the
MMVA is given by

a
(min)
d =

πcf2
prf

ηN2
Dfc

. (15)

In the special case when the vibration is a single-component
harmonic oscillation, the minimum measurable vibration dis-
placement (MMVD) can be derived in a straightforward fash-
ion. In this case, we know that ad = −4π2f2

v rd, where rd is
the vibration displacement. The vibration frequency can be
estimated from the calculated DFT spectrum of the estimated
vibration acceleration, and it is denoted by f̂v. Therefore, the
MMVD in this case is given by

r
(min)
d =

cf2
prf

2πηN2
Df̂2

v fc
. (16)

Finally, the performance limits of the proposed method are
summarized in Table I.

V. SIMULATION-BASED CASE STUDY

A simulated example is provided to demonstrate the capa-
bility of the proposed method in estimating a multicomponent
harmonic vibration under realistic SNRs (e.g., 20 dB). The
simulated SAR is a spotlight-mode SAR working in the Ku-
band. Table II lists all the key system parameters associated
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TABLE I
PERFORMANCE LIMITS OF THE DFRFT-BASED SAR

VIBRATION ESTIMATION METHOD

TABLE II
SAR SYSTEM PARAMETERS USED IN THE SIMULATION

Fig. 9. Reconstructed image from simulated SAR data. The vibrating scatterer
is at the center of the image. Note that vibrations introduce many ghost targets
in the azimuth direction near the vibrating scatterer. One static scatterer is above
the vibrating scatterer, and the other is below the vibrating scatterer.

with the simulation. Fig. 9 shows the reconstructed SAR im-
age generated by using the algorithm described in [3]. There
are three scatterers in the images: The one in the middle is
the vibrating scatterer, and the rest are static scatterers. The
vibration has two components: a 1.0-Hz oscillation with an
amplitude of 1 cm and a 3.0-Hz oscillation with an amplitude
of 2 mm. Several vibration-induced ghost targets appear around
the vibration scatterer. The SoI is identified as the range line
in the range-compressed phase history where the range is
corresponding to that of the vibrating target. The real part
of the SoI is plotted in Fig. 10. When the proposed method
was applied to the simulated data, the method produced the

Fig. 10. Real part of the SoI from simulated data. The SoI is a nonstationary
signal, and its IF is modulated by the vibration.

Fig. 11. DFRFT spectra of the SoI, from simulated data, in four different time
windows. The peak locations are measured and used to estimate the vibration
accelerations.

best result when the window size Nw was set to 20 with
an up-sampling factor of four. The CZT was incorporated in
the DFRFT, and a zoom-in factor of eight was used. Fig. 11
shows the DFRFT of the SoI in four different time windows.
Note that the positions of the peaks are slightly different from
window to window, which confirms a time-varying vibration
acceleration. The estimated vibration acceleration in the sliding
time windows and its spectrum are shown in Figs. 12 and
13, respectively. The proposed method successfully estimated
the two vibrating components with a frequency resolution of
roughly 0.3 Hz.

Comparison to a JTFA Method

As described in Section I, the JTFA methods use
time–frequency distributions to provide an analysis of the
micro-Doppler effect. For its well-accepted performance [4],
we use the smoothed pseudo Wigner–Ville distribution (SP-
WVD) as a representative JTFA method in the simulated exam-
ple described before. To this end, we implemented the SPWVD
by utilizing the widely used time–frequency toolbox [26]. The
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Fig. 12. Estimated acceleration history of the vibration from simulated data
and by using the DFRFT-based method.

Fig. 13. Estimated spectrum of the vibration using the DFRFT-based method
using simulated data. The proposed method successfully estimates two vibra-
tion components: 1.0 and 3.0 Hz.

SPWVD of the SoI is shown in Fig. 14. The time–frequency
representation in Fig. 14 roughly reveals 1- and 3-Hz vibration
components. However, this is only a qualitatively deduced
observation. To obtain precise estimates of the instantaneous
acceleration from the time–frequency representation, further
estimation procedures are required. On the other hand, the
proposed method provides direct quantitative estimates of the
history of the vibration acceleration and the vibration fre-
quency, and no further procedure is required.

VI. EXPERIMENTAL CASE STUDIES

Through an ongoing collaboration with GA-ASI, we con-
ducted two experiments with the Lynx airborne Ku-band SAR
system. The system parameters of the Lynx match those used
in our simulations in Section V. Using flight test data from the
Lynx system, the proposed method successfully estimated two
vibrations from two different targets: a 1.5-cm 1.0-Hz vibration
and a 1.5-mm 5.0-Hz vibration. The details of these case studies
are provided next.

Fig. 14. Time–frequency representation of the SoI using the SPWVD
approach.

Fig. 15. Experiment I: Vibrating target on the test ground near Julian, CA.
The target is an aluminum triangular trihedral with a lateral length of 21 in. The
vibration frequency and amplitude were 1.0 Hz and 1.5 cm, respectively.

A. Experiment I

In the first experiment, the vibrating target was an aluminum
triangular trihedral with a lateral length of 21 in, as shown
in Fig. 15. The motion of the target was a single-frequency
harmonic motion, driven by a dc motor attached to a crank
and a piston. The vibration amplitude was 1.5 cm, and the
frequency was 1.0 Hz. The target was positioned such that the
harmonic motion is in the range direction. Fig. 16 shows the
reconstructed SAR image that contains the vibrating target. The
nominal resolution of the reconstructed SAR image is 0.3 m
in each direction. The vibrating target is located at the bottom
right portion of the image, and it appears as a horizontal line
of the target echo and ghost targets. The vibration causes the
ghost targets along the azimuth direction in the reconstructed
image of the target. Note that there are also several well-
separated static targets extending from the center of the image
to the top right corner which are not subject to our analysis.
In this experiment, the carrier frequency was 15 GHz, and the
PRF was 306 Hz. Due to seemingly limited SNR (the exact
value is unknown), we selected the total observation time T
of this target to be 2.6 s centered at the time closest to target
broadside. The length of each time window was 0.26 s. Fig. 17
shows the DFRFT spectra of the SoI in four different time
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Fig. 16. Experiment I: Reconstructed SAR image provided by the GA-ASI
Lynx system. The vibrating test target is in the lower right portion of this image.
There are a few static targets extending from the center of the image to the top
right corner which are not subject to our analysis.

Fig. 17. Experiment I: The DFRFT spectra of the SoI in four different time
windows.

Fig. 18. Experiment I: Estimated-vibration-acceleration history over 2.6 s
using the proposed method.

windows. The proposed method is applied to the SoI, and the
estimated-vibration-acceleration history and the corresponding
vibration spectrum are shown in Figs. 18 and 19, respectively.

Fig. 19. Experiment I: Estimated vibration spectrum using the proposed
method. The estimated vibration frequency is 0.9 Hz; the actual value of the
vibration frequency was 1 Hz.

Fig. 20. Experiment II: Vibrating target on the test ground near Julian, CA.
The target is an aluminum triangular trihedral with a lateral length of 15 in. The
actual vibration frequency and amplitude were 5.0 Hz and 1.5 mm, respectively.

The estimated vibration frequency is 0.9 Hz, which is very close
to the actual vibration frequency of 1.0 Hz.

B. Experiment II

In the second experiment, the vibrating target was an alu-
minum triangular trihedral with a lateral length of 15 in, as
shown in Fig. 20. Compared to the first experiment, the size
of the trihedral is reduced by 40%. Accordingly, the SNR was
reduced substantially. In contrast to the first target that had a
pure harmonic oscillation, the vibrations in the second were
induced by the rotation of an unbalanced mass that was driven
by a motor. The vibration’s actual amplitude and frequency
were 1.5 mm and 5 Hz, respectively. Fig. 21 shows the SAR
image that contains the vibrating target. The nominal resolution
of the reconstructed SAR image is 0.3 m in each direction. The
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Fig. 21. Experiment II: The reconstructed SAR image provided by the GA-
ASI Lynx system. The vibrating target is in the lower right portion of this image.

Fig. 22. Experiment II: DFRFT spectra of the SoI in four different time
windows.

vibrating target is at the bottom right portion of the image. The
region near the vibrating target is magnified and displayed in the
inset below the SAR image. Several ghost targets appear along
the azimuth direction. In this experiment, the carrier frequency
was 15 GHz, and the PRF was 270 Hz. Due to limited SNR,
we selected the total observation time of this target to be 1 s,
centered at the time closest to target broadside. The length of
each time window was chosen to be 0.1 s.

Fig. 22 shows the DFRFT spectra of the SoI in four differ-
ent time windows. The proposed method was applied to the
SoI, and the estimated-vibration-acceleration history and the
corresponding vibration spectrum are shown in Figs. 23 and
24, respectively. The estimated vibration frequency is 5.2 Hz,
which is close to the actual vibration frequency of 5.0 Hz.

Fig. 23. Experiment II: Estimated-vibration-acceleration history over 1 s
using the proposed method.

Fig. 24. Experiment II: Estimated vibration spectrum using the proposed
method. The estimated vibration frequency is 5.2 Hz; the actual value was
5 Hz.

VII. CONCLUSION

In this paper, a DFRFT-based method has been devised
to estimate low-level vibrations of ground targets using the
SAR platform. Unlike the JTFA, which merely provides a
qualitative illustration of the micro-Doppler effect, the pro-
posed method provides quantitative estimates of the vibration
signature directly from the SAR phase history, thereby produc-
ing the history of the instantaneous acceleration and the spec-
trum of the vibration. The performance of the proposed method
has been characterized quantitatively in terms of measurable
vibration frequency and displacement, as well as the signals’
SNR (in the SAR phase history) and observation window. In
experiments utilizing the GA-ASI Lynx system, the proposed
method successfully retrieved two low-level vibrations from
two different targets (with different SNRs).

The proposed SAR-based vibration estimation method adds
a new capability to modern SAR imaging systems. As such, it
enhances the diversity and utility of SAR in applications such
as target feature extraction and object recognition and classifi-
cation. In our future work, the effects of clutter and multiple
scatterers will be carefully examined. Modeling of real-world
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vibrating objects, such as buildings and vehicles, could also
enable a better understanding of the micro-Doppler effects in
the SAR phase history and could improve the performance of
the proposed method in specific applications.
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