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Abstract—This work introduces a novel approach to deter-
mine the fundamental frequency or pitch of a person’s voice.
Using two Deep Long Short-Term Memory Recurrent Neural
Networks. The first network is used to perform voiced/unvoiced
classifications in a noisy environment. The noisy environments
include other speakers in typical settings such as restaurants
and large crowds. The second network is used as a time series
prediction of the fundamental frequency to enforce the continuity
constraint between speech frames. This method will be compared
with existing algorithms (Pitch Estimation Filter with Amplitude
Compression) and a similar Deep Belief Network trained using
the same noisy environment data. We found that the new
approach is more robust in -10dB environments than either of
the other methods used and had comparable performance in low
noise environments.

Index Terms—Speech Processing, Recurrent Neural Networks,
Machine Learning, Fundamental Frequency Tracking.

I. INTRODUCTION

Fundamental frequency tracking has been explored as a tool
for discerning emotion from speech features in psychology
especially related to anxiety and fear. Others have explored
using it to examine when a person is experiencing physical
stress.

The process of tracking the fundamental frequency is com-
posed of three elements: voice activity/segmentation function;
feature extraction (spectral analysis); and a continuity tracking
function. The continuity tracking function compensates for
errors in the feature extraction processes by imposing a
continuity constraint on the estimated frequency values.

The three main novelties of this paper are as follows.

The first one addresses segmenting the speech recording
into voiced/unvoiced segments. It is the voiced segments that
exhibit resonance that reflect the fundamental frequency or the
pitch. Most pitch tracking algorithms compute a probability
that the Short Time Fourier Transform (STFT) of a sampled
signal is speech or back ground using various robust measures.
Hughes and Mierle [1] and Graves, Abdel-rahman and Hinton
[2], [3] proposed using deep Bidirectional Recurrent Neural
Network’s with for phoneme/word recognition. Dissen [4]
proposed and implemented a similar approach in tracking
formants. Sak et. al. [5] has shown that Long Short-Term
Memory (LSTM) [6] RNNs are more effective than Deep
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Neural Networks and conventional RNNs for acoustic mod-
eling. They concluded that a two-layer deep LSTM RNN can
exceed state-of-the-art speech recognition performance. They
attributed this to the LSTM being able to not only consider
the current feature set but also learn trends across previous
speech frames. We use a deep Bidirectional Long Short-Term
Memory (BLSTM) RNN to identify voiced and unvoiced
segments of recording. Our use of the LSTM is tested with
noise sources that contain other speech signals. Ee are using a
longer frame interval of 40ms to enhance the autocorrelation
between frames. With formant tracking the frames are usually
around 20ms in length to promote stationarity.

The second novelty involves using Expectation Maximiza-
tion to fit a multimodal distribution to a Relative Power Spec-
trum. The distributions are composed of kernels composed
of normal and students-t distributions. With noise present the
Short Time Spectral Transform (STFT) has many lesser peaks
than the primary resonant peaks. These peaks tend to show
up in a peak finding algorithms making it hard to separate
them out. The expectation maximization algorithm fits the
more prominent peaks.

The fitting process is performed using a STFT of 40ms
window. This makes resonant features easier to “see” and work
with. The larger window reinforces the correlation between
frames and tends to average out the impact of the noise. A
set of standardized noise environments are used to reflect the
types of environments (airports, train/bus stations, checkout
lines, restaurants) where the processing will occur in.

The last novelty involves using a second deep LSTM RNN
to impose a continuity constraint on the observed pitch values.
This constraint is a result of the natural processes of speech
where the transitions between formants is a smooth process
as the larynx and articulators’ transition between sounds. The
observation process does not always track this due to the noise
environments, so it is necessary to constrain an observation in
a reasonable manner. In this manner, the speech estimates can
viewed as a time series and we wish to predict the next value
based on the previous observations and the current estimate.

The key advantage to using an RNN for both the voiced/
unvoiced and the continuity constraint is that networks can be
retrained or updated with each new use, which makes them
adaptive, i.e. an application will self-adjust to a user over time.
[7].

In the following discussion we, quickly present the details
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of the methodologies and provide the results of a study com-
paring the results with existing approaches Pitch Estimation
Filter with Amplitude Compression (PEFAC) [8] and Deep
Belief Networks. The use of a Deep Belief Network for Voice
Activity Detection [9], [10] to make the unvoiced/voicing
decision. All these methods are used in an off-line manner
as is our method.

II. METHODOLOGY

1) Relative Power Spectrums: In this study, each resonant
peak was modeled as a composite kernel [11], [12] containing
a Normal, a Laplace, and a Students t-Location-Scale distri-
bution. A Students t-Location-Scale distribution is a students-
t distribution centered on the data’s mean. Each distribution
exhibited varying degrees of ability to represent the exponen-
tial decay. The Normal dominates the middle region of the
kernel mixture model. The Normal distribution contributed
to the shoulders of the kernel and helped support bandwidth
modeling. Finally, the Students-t distribution’s contribution
was used to make the tails thicker. This tail effect is important
in modeling the noise floor as discussed in the next section.

These kernels were fitted using the Expectation Maximiza-
tion technique [13]. The parameter set consisted of a common
mean [, a variance o,, for the Gaussian distributions, and the
degree of freedom v, for the Students-t distribution.

The contribution vector, 71 = [rn.,,77.,], represent the
responsibility of each member function to the shape of nt"
kernel:

Ko (f | Va)=riD(f | Vi) (1)

where D (f | V,,) is a vector representing the values of the
compound distributions using parameter set V,, at frequency

f.

N(f|MN,n7 UN,n)

D (f | ‘/774) = T(f|/j/T,n,0'T,nav)

2

A second set of weights ( wl = [wy ., wr,]) are used to
represent each kernel’s contribution to the overall multimodal
distribution.

pf) = w'K(f|Va) 3)

A. Long Short-Term Memory - Recurrent Neural Networks

Long Short-Term Memory - Recurrent Neural Networks
(LSTM-RNN) were used to determine which segments are
voiced and unvoiced, and to track the frequency with a
continuity constraint. Tracking the Fy began with identifying
those segments of the recorded speech that are voiced. It
is important to note that unvoiced segments do not have
harmonic content. The continuity constraint ensured that the
Fy estimates represent the physical processes of speech. The
speech varies continuously over time.

The LSTM node contains special units called memory
blocks in the recurrent hidden layer. The first LSTM block
uses the initial state of the network and the initial sequence

values to compute the first output and the updated cell state.
At time step t, the block uses the current state of the network
(ct—1,h:—1) and the next time step of the sequence to compute
the output and the updated cell state c;.

The layer’s state is composed of an output state and a cell
state. The output state at any instant in time contains the output
of the LSTM layer. The cell state contains information learned
from the previous states. With each new iteration, the layer
adds information to or removes information from the cell state.
The layer controls these updates using gates. [14]

The learnable weights of an LSTM layer are the input
weights W, the recurrent weights R, and the bias b. The
matrices W, R, and vector b are concatenations of the
input weights, the recurrent weights, and the bias of each
component, respectively. These matrices are concatenated as
follows:

_ Wy _ | By _ by
w, R, be

where i, f, g, and o denote the input gate, forget gate, cell
candidate gate, and output gate, respectively.
The cell state at time step ¢ is given by

ci=fiOc1+iiOg @)

where © denotes the Hadamard product (element-wise
multiplication of vectors).
The hidden state at time step ¢ is given by

ht = O O) Oc (Ct) (6)

where 0. denotes the state activation function. The LSTM
layer function, by default, uses the hyperbolic tangent function
(tanh) to compute the state activation function.

The following formulas describe the components at time
step t.

ip =0, (Wix, + Rihy_1 +b;), (7N
fy =0y (Wyxi + Rphy 1 +by), ®)
gt = O'g (ngt + Rghtfl + bg) 5 (9)

O = Og (Woxt + Roht—l + bo) (10)

In these calculations, o, denotes the gate activation func-
tion. The LSTM layer function, by default, uses the sigmoid
function given by o(z) = (1 4+ e~ ") — 1 to compute the gate
activation function [14].

1) The voiced/unvoiced Segments Network Structure: We
created a Matlab script that uses the pitch tracking data
base’s (PTDB) [15], [16] audio recordings (MIC files) and the
supplied ground truth (REF files) developed from applying the
RAPT algorithm tuned to process PTDB’s glottal recordings.
We also chose a diverse set of noise sources recovered from the
NOIZEUS data set [17] developed at the University of Texas,
Dallas using spectral subtraction. The environments include
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Babble (crowd of people); Car; Exhibition Hall; Restaurant;
Street; Airport; and Train Station.

The network architecture used two bidirectional long short-
term memory (BLSTM) networks. The first layer had 256
nodes and the second layer used 128 nodes. Between two
layers, we used a dropout layer with a 20% probability of
randomly setting an input element to zero. This dropout
technique minimized the chance the network will be over
trained. The BLSTM layers feed into a fully connected layer.
The final two layers consist of a softmax and classification
layer. The classification layer outputs the probability that the
frame being processed is either a voiced or unvoiced frame.

The input vector consisted of 24 features of the 40ms
frame: spectral centroid; spectral crest; spectral entropy; spec-
tral Flux; spectral kurtosis; spectral rolloff point; spectral
skewness; spectral slope; and harmonic ratio. A gammatone
[18] filter bank with 15 cepstral coefficients was also used.

The network was trained with the Adaptive Moment estima-
tion (ADAM) [19] algorithm using 20 epochs with a minibatch
size of 20. The ADAM algorithm computed adaptive learning
rates for the parameters using a running average of the first
and second moments of the gradient of the stochastic. [19].
The unbiased moments (m; and ¥, respectively) are defined
as follows:

hy = By + (1—61)gid/ (1-57),
V= [52‘7%—1 + (1 —pa) ng] / (1 - 55)

where g, gradients respect to the stochastic objective at time
step t; g7 is defined as g; © g; ; 1 and 3y are exponential
decay rates for the moment estimates (31, 3 € [0, 1), typically
set to 0.9 and 0.999 respectively. The parameters 6, are
updated using equation

0, = 0,1 —a mt/(\/%+e)

where « is set to 0.001.

2) Continuity Constraint Network Structure: The continuity
constraints network uses individual speech file segments and
it was trained using 2 separate data sets, the first using
conventional data values and one using the RES.

The Fp tracking network architecture used two LSTM
networks layers of 512, and 256 nodes respectively, with a
dropout layer with a 20% probability of zeroing an input
between the LSTM layers. The regression statistics resulted
from using a fully connected layer of 256 down to a single
node with linear activation. The final regression layer produced
an estimated F{; value based on previous F{, estimates and
spectral data.

The STFT input vector consisted of the spectrum frequency
bins from 50 to 300; estimated Fy using the maximum
peak in desired band; gammatone cepstral coefficients for the
frequencies [62, 97, 135, 177, 225, 278, 337] Hz; Spectral
Centroid; and the harmonic ratio for a frame.

The relative power input features consisted of the first 12
relative power bin values, and the estimated F using the

Y
12)

13)

Relative Power Spectrum. The Fy estimate was formed using
the mode of the differences between peaks in the RPS or the
relative power Fp estimate. The Specrtral Centroid was also
computed using the relative energy index.

The network was trained with the Stochastic Gradient
Descend with Momentum (SGDM). The SGDM update is

9t+1 = 9t —a VE (015) + (et — Ht,l) (14)

where t is the iteration number, &« > 0 is the learning
rate, 6 is the parameter vector, E () is the loss function and
v determines the contribution of the previous gradient step
to the current iteration. This last parameter is actually the
momentum parameter of the algorithm. By contrast, at each
iteration the stochastic gradient descent algorithm evaluates the
gradient and updates the parameters according to this gradient.
It can oscillate along the path of steepest descent towards the
optimum. Adding a momentum term to the parameter update
is one way to reduce this oscillation [13].

B. Deep Belief Network

A Restricted Boltzmann Machine (RBM) is a pairwise
Markov Random Field [20] with layers of hidden nodes
h € R and visible nodes v € R% [21] restricted so that
nodes within the layer are not connected. In this manner, a
joint probability distribution of the states of each node can be
factored, and then the learning task is tractable [22], [23].

The most used configuration of the posterior probability
distribution p(h;|v) or p(v;|h) of a node given the rest is a
Bernoulli distribution, which assumes that the states of the
nodes are binary. In the context of this work, the hidden
nodes are fed with feature vector of the noise, which has been
normalized, so that their components are between 0 and 1.
The visible nodes are interpreted as the probability that their
state is 1. The relationship between the hidden and the visible
layers can be written as.

v=Wh+b
h=W'v+ec

15)
(16)

where the matrix W € R4 *dr is called the generative
matrix, and its transpose is the recognition matrix, and where b
and c are bias terms. Thus, the vector of posterior probabilities
can be approximated by p(vlh) = sigm(Wh + b) and
p(h|v) = sigm(W Th + c) where sigm is a sigmoid function.
The training method proposed by Hinton [23], [24] consists
of reducing the so-called contrastive divergence between both
distributions. Roughly speaking, this can be interpreted as
the difference between the cross-correlation matrix of the
actual values of the visible and hidden nodes and the cross-
correlation matrix of values randomly sampled from their
probability distributions. Assuming a set of normalized input
patterns v;, 1 < < N, the training consists of computing
values h; for each input v;. Then, a set of random values
v, and h} are sampled from distribution p(h|v;) and p(v|h;)
and the update at iteration k is computed as

1433

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 16,2023 at 17:53:28 UTC from IEEE Xplore. Restrictions apply.



Aw, =E(vh'|v;) —E(vh') ~ Z vih; " Z v;h;T
Can
Wi = Wi_1 + plAw, (18)

The operation for b and c is analogous. Our implementation
includes the use of two stacked RBMs, which can be trained
in a sequential way [25].

1) RBM Feature Set: As in the case of the RNN networks,
we used the PTDB [15] audio recordings (MIC files). The
noise sources recovered from the NOIZEUS data set [17] to
represent the background noise sources. The voice signal was
processed in 10ms frames as suggested by Van Segbroeck [10].

The feature set consisted of processing the 64 channel
Gammatone filter bank emulating human hearing, spectral
characterizations of the STFT frames to include centroid,
entropy, flux, kurtosis, rolloff point, skewness, and slope as
implemented in MATLAB, Long Term Spectral Variablity
(LTSV), and an estimate of voiced probability of a denoised
signal. The LTSV [26] is a measure of the variance of the
entropy measured over all frequency bins of the normalized
short-time Gammatone filtered time-frequency representation
of the speech spectrum. It is intended to identify variations
resulting from phoneme production.The final stage is then
passed through a sigmoid function to enforce the probability
constraint (all values lying in the interval from 0 to 1)
[10]. The estimation of the voiced probability was developed
using an algorithm developed by Van Segbroeck [10] that
sequentially removes voicing information from the signal; uses
the devoiced signal to estimate the noise; and then subtracts
the noise from the signal. The denoised signal is then used to
estimate the probability of voice being present in the frame.

III. EXPERIMENTATION

Our experimentation is recorded in Table I shows that the
algorithms perform consistently in a low noise environment.
In high noise environments, the PEFAC and the STFT-RNN
were the only algorithms capable of detecting voiced segments
in a high noise environment.

TABLE I
AVERAGE OPTIMAL POINT

SNR 100dB SNR —10dB
Method TPR FPR EER ‘ TPR FPR EER
PEFAC 0.85 0.14 025 | 072 023 030
STFT-RNN 0.89 0.12 023 | 0.72 025 030
Deep Belief Network | 0.87 0.13 025 | 060 039 041
Gated Recurrent Unit | 0.90 0.09 0.22 | 0.83 0.15 0.25

It should be noted that for an SNR of 100dB show signifi-
cant differences between the receiver operation curves (ROC)
and DET curve values. The values are more consistent between
the two methods.
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Fig. 1. Comparison of Voiced-Unvoiced DET Curves - The DET curve
plots are for the Restaurant noise source at an SNR of -10dB. The blue line
represents the performance of the PEFAC algorithm; the red line represents
the performance of the STFT-RNN classifier, the magenta line is the Deep
Belief Network. The gray dashed line is the equal error rate line.

A. Fundamental Frequency Tracking

The next stage of the study is to combine the use of the
voiced/unvoiced decisions models for voiced/unvoiced deci-
sions and the Fy tracking RNN model.

The Fj tracking data treats speech recording as separate
time-series samples. Again, the leading and trailing silences
were removed from each sample and then each one was
corrupted with the noise environment and SNR value. The
resulting sets were sorted based on the length of each sample.
This was done to improve the training performance.

We used the following evaluation metrics [27] to quantify
the performance of two STFT and RPS RNN models in 6
noise environments at two SNR values (100dB, and -10dB).

e Gross Pitch Error (GPE): the proportion of frames —
considered voiced by both pitch tracker and ground truth
— where the relative pitch error is higher than 20%.

¢ Fine Pitch Error (FPE): the standard deviation of the
distribution of relative error values (in Hertz) from the
frames that do not have gross pitch errors.

o Voicing Decision Error (VDE): the proportion of frames
for which an incorrect voiced/unvoiced decision is made.

e FO Frame Error (FFE): the proportion of frames for
which an error (either according to the GPE or the
VDE criterion) is made. FFE can be considered a single
measure of overall performance.

Examination of Table II shows that both the STFT and RPS
based RNN models provide equivalent performance in the low
noise environment. This validates that the RNN algorithms
perform consistently with the accepted PEFAC and the RAPT
generated ground truth.
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The RNN approaches shows significant improvements in the
percent gross Fy error metric. The RES-RNN approach also
shows a significant decrease in the standard deviation or fine
Fy errors. (see Table III).

TABLE 11
AVERAGE FREQUENCY TRACKING MEASUREMENTS, SNR 100DB

DET

STFT

RNN
3.6
5.93
15.6
19.2
81.3

ROC

STFT

RNN
3.7
6.04
15.9
19.6
81.1

RPS
RNN
3.8
5.79
16.4
20.2
81.2

PEFAC
3.7
4.54
13.2
16.9
78.1

Environment

GP E(percent)

FPE (Hz)

VDE (percent)
FFE (percent)
VDE/FFE (percent)

TABLE III
AVERAGE FREQUENCY TRACKING MEASUREMENTS, SNR -10DB)

DET

STFT
RNN

7.0

9.17
30.1
37.0
81.4

ROC

STFT
RNN

6.8

9.35
40.4
47.7
84.7

RPS
RNN
5.7
7.13
39.8
455
87.5

PEFAC
26.1
11.85
385
64.6
59.6

Environment

GPE (percent)
FPE (Hz)

VDE (percent)
FFE (percent)
VDE/FFE (percent)

The RNN and PEFAC make roughly the same percentage
of voice decision errors confirm the observations made when
analyzing the voiced/unvoiced decision performance (Table
IIT). When comparing the ratio of the Voicing Decision Error
to the total Frame Error, the RNN method ratios show that
the overall contribution of the Voicing Decision Error is
84% (STFT) and 87% (RES). The ratio for PEFAC is 59%
indicating the tracking contribution is significantly higher.
These ratios clearly show the RNN methodologies perform
better at tracking the fundamental frequency and highlight
that the VDE is the more important factor in tracking the
Fundamental Frequency.

Our future work will expand to examine the use of Gated
Recurrent Units. Some of our initial studies that need verifi-
cation indicate that we may be ale to get comparable results
to the LSTMs studied here. We are also planning to look
at applying a similar study methodology to speech synthesis
approaches.
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