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Abstract—The non-linear, second-order, Teager-Kaiser energy
operator (TKEO) finds applications in numerous areas such as
speech processing, image processing, communications, biomedical
problems, and abrupt event detection. In quantum mechanics, the
Hamiltonian is considered the energy operator whose eigenvalue
is the scalar energy. In this work, we provide a matrix framework
for the Teager-Kaiser operator and several of its generalizations,
interpreting the eigenvalues of the presented energy matrices as
the square-root of the TKEO or its generalization.
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I. INTRODUCTION

The classical Teager-Kaiser energy operator in the continu-
ous and discrete cases is defined via [1], [2]:
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Originally used to describe nonlinear phenomena in speech
production, the operator has found numerous applications
in abrupt event detection [12], image texture analysis [11],
communications [14], time-frequency analysis [4], and speech
processing [8], [4], and several other areas. The operator
derives its name from the fact that it computes the energy
of a classical harmonic oscillator normalized by half unit
mass. The output of the operator further tracks the energy of
a frequency and/or amplitude modulated waveform and the
TKEO constitutes the key ingredient of the related energy
separation algorithm [7].

Prior efforts at generalization of this operator by Kumaresan
et. al. into a matrix framework have focussed on interpreting
the TKEO as the determinant of a Toeplitz matrix containing
the signal and its derivatives [3], [5]:

(© _ ( &(t) x(t)
A= (5 i) ”

or in the discrete case, as the determinant of the signal matrix:
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Higher-order extensions of the TKEO were developed in
[9] and measure the higher-order energies of the classical
harmonic oscillator:
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For example for k = 2, these reduce to the TKEO in both
the continuous and discrete cases. For £ = 3, the output of
the higher-order energy operator has dimensions of energy-
velocity. These higher-order energy operators have been used
to extend the energy separation and demodulation approach to
two-component AM—FM signals in [17].

II. QUANTUM MECHANICAL ENERGY OPERATOR

The notion of an energy operator arising in quantum
mechanics and the quantum oscillator revolves around the
Hamiltonian operator H whose eigenvalue is the scalar energy
of oscillator [6]:
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where F denotes the “observable” scalar energy eigenvalue,
and ¢ denotes the eigenfunctions of the Hamiltonian. The
Hamiltonian is for most physical problems, a self-adjoint
operator, and consequently the eigenvalues F, corresponding
to the energy, are purely real. For the specific case of the
quantum harmonic oscillator, the Hamiltonian takes the form:
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where K denotes the spring constant, m is the mass associated
with the quantum oscillator, and 7% denotes the normalized
Plank’s constant. In finite dimensions, the Hamiltonian reduces
to a Hermitian symmetric matrix [15].

In quantum mechanics [6] the measured quantities such as
the position, momentum, and energy are the eigenvalues of
their corresponding linear Hermitian operators. The TKEO, is
a nonlinear operator from classical mechanics, that however,
also claims to be a energy operator. The goal of this paper
is to provide a matrix framework for the TKEO, interpreting
its output as the “measured” energy corresponding to the
eigenvalue of its underlying energy matrix.

III. ON A MATRIX FRAMEWORK FOR THE TKEO

The eigenvalues of the Toeplitz signal matrices A&C’d)
defined in the previous section in the continuous and discrete-
cases are given by:
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Note that these are not directly connected to the energy
operator and are in general not lowpass or slowly time-varying
quantities. Instead we consider three classes of signal matrices



in the continuous and discrete cases. The first group, class I,
is defined via:
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Now let us consider class II of energy matrices that are defined
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Class IIT of energy matrices are defined via:
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The three classes presented correspond to the three different
off-diagonal combinations of terms that produce the second
term of the energy operator, i.e., x(t)Z(t) or xz[n + 1]z[n —
1]. The diagonal terms of these matrices provide for the first
term of the energy operator: [#(t)]? or 22[n]. Due to the fact
that class III results in complex arithmetic, we will limit our
discussions to class I and II.

It can be easily seen that the eigenvalues of the energy
matrices in all the classes are given by:
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In either case, the TKEO can be expressed as:
9(@) = 508 +28) = Ak, (12)

The corresponding matrix of eigenvectors in the discrete case
for class I is given by:
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IV. PROPERTIES OF ENERGY OPERATOR MATRICES
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A. Trace and Determinant

At this point it is instructive to study some of the properties
of the signal matrices ¥, 4(x). As a first point of observation,
note that signal matrices described before are traceless with
determinant given by:
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In the case, where the signal is a monocomponent AM-FM
signal, this property results in the eigenvalues being the square
root of the TKEO. As a second point of observation, the energy
matrices in all three classes satisfy a second-order involution
property:
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B. Non-uniqueness

An important consequence of the trace and determinant
property of the energy operator matrices is that in both the
continuous and discrete cases, the signal matrices and their
transpose are also energy operator matrices:
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If fact, the energy matrices W in each of the three classes are
arbitrary up to a similarity or unitary transformation M. This

follows from the fact that a similarity or unitary transformation
would not change the characteristic polynomial:

det( A\ — &) = det(A\I - MPIM 1) = 0.
C. Conditional Positivity
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Another consequence of the energy matrix framework is that
Teager-Kaiser energy operator is only conditionally positive
since the eigenvalues of the energy matrix ¥, A; o could
be either: (a) purely real (opposite sign), or (b) complex
conjugates of each other (purely complex):
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Fig. (1)(a-d) illustrate this connection between the conditional
positivity of the output of the TKEO and the imaginary part
of the eigenvalues of the TKEO matrix. This conditional pos-
itivity is a consequence of the energy matrices not being self-
adjoint, and consistent with the work in [10], where conditions
for the positivity of the TKEO were explored. Positivity of the
energy operator output is further, a explicit requirement for the
applicability of the energy separation algorithm (ESA) and
its discrete version, the DESA, for monocomponent AM-FM
demodulation [7], [8].

V. OTHER TKEO GENERALIZATIONS

Lastly, of the three classes of energy matrices, class II
corresponds better with the extension of the energy operator
to complex-valued signals [13]. For a complex-valued signal,
xz(t) = x,(t) + jz;(t), and a complex sequence z[n| =
xr[n] + jx;[n], the energy matrices would generalize as:
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It can be verified here that the eigenvalues of the energy
matrices listed above are given by:
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where 1. q(x) here denotes the complex version of the energy
operator [13]:
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Note that in the specific case, where the input signal is
purely real, the framework reduces to the real TKEO matrix
framework described before.

Other generalizations of the TKEO such as the variable
length energy operator (VTEO) [16] can also be put into the
same matrix framework:
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It is easy to verify that the eigenvalues of VTEO matrix are
given by:
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where the VTEO of the modulated sequence z[n] is given by:
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The higher-order energy operators introduced in Eq. (4) can
be formulated in this framework as:
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It is again easily verified that for both these matrices, the
eigenvalues of the these matrices are:
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Note that unlike the scalars 1. q(x) and ;(z), that are in
general positive, the higher-order energy operators can in
general be negative. Consequently, using the matrix framework
we will only be able to extract the magnitude of the operator
from the eigenvalues for odd orders according to:
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VI. ENERGY SEPARATION ALGORITHMS

Now that a matrix framework has been established for the
TKEO, we can now formulate the related energy separation
algorithms in terms of the eigenvalues of the underlying energy
matrices. For the ESA in continuous-time, we can formulate
the instantaneous frequency and envelope estimates as:
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In discrete-time, specifically for the DESA-1 algorithm we can
formulate the instantaneous frequency and envelope estimates
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for y[n] = z[n] — z[n — 1] and z[n] = z[n + 1] — z[n] as:
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where the underlying energy matrices could be of either type
that was described earlier.

VII. CONCLUSION

In this paper, we have explored a matrix framework for the
popular Teager-Kaiser energy operator as the square root of the
eigenvalues of traceless energy matrices in both the continuous
and discrete cases. Conditions regarding the positivity of the
energy operator were translated to the condition that the
eigenvalues of the underlying energy matrices be real.

This matrix construct for the TKEO provides a framework,
where the “measured” energy of the TKEO can be related to
the square of the eigenvalue of its underlying energy matrix, a
notion analogous to that seen in quantum mechanics. Several
other generalizations of the energy operator such as the higher-
order energy operators, the energy operator for complex-
valued signals, and the variable length energy operator were
also incorporated into this matrix framework. Finally, the
energy separation algorithms that are based on the energy
operator, were also cast into the developed matrix framework.
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Conditional positivity of TKEO: (a) monocomponent AM—FM signal, (b) instantaneous frequency and amplitude of the AM-FM signal depicting an

envelope that becomes negative, (c) real and imaginary part of the eigenvalues of the TKEO matrix indicating complex eigenvalues, (d) output of the TKEO,
further depicting the several instants where the imaginary part of the eigenvalues are non-zero and the exactly at same instants where the energy operator
output becomes negative, and (e) ESA IF and IA estimates depicting singularities at the points where the TKEO output is negative.
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