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Existing image demodulation approaches based on the two-dimensional (2D) multicomponent AM—FM model
assume narrowband components that can be demodulated using energy operators, Hilbert transforms, or the

monogenic image approaches. However, if the FM components are wideband, then these demodulation

approaches incur significant errors. Recent work by the authors extended wideband FM demodulation in one

dimension to accommodate large conversion factors using multirate frequency transformations. In this paper, we

extend the multirate frequency transformations technique developed for one-dimensional signals to 2D and

images in conjunction with a recently proposed 2D higher-order energy demodulation approach. This extension

is applied to both synthetic and real images to demonstrate the efficacy of the approach.
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1. INTRODUCTION
The amplitude-modulation frequency-modulation (AM-FM)

representation model has found various applications with im-
ages, recently including image analysis, texture processing [1],
and fingerprint classification [2]. According to earlier work
[3,4] by Havlicek e al., non-stationary images can be modeled
as superpositions of multiple AM—FM components,

I(xy) =Y ai(x ) cos(h(x9)). (1)
i=1

The multi-component AM—FM image is first decomposed
by employing a set of bandpass filters such as Garbor filterbanks
or via the use of the bi-dimensional empirical mode decompostion
(BEMD) [5]. Each resulting monocomponent AM—FM image
is further demodulated into the corresponding instantaneous
amplitude (IA) 4(x, y) and instantaneous frequency vector (IF),

T
Vi) = |2 BN @
X oy

In particular, the IA depicts the contrast present in the image,
while the IF reveals the locally emergent frequency variation.
Conventional image demodulation approaches involve two-
dimensional (2D) extension of the analytic signal (AS) [6] and
multidimensional energy separation algorithm (ESA) [7] with
additional processing techniques such as dominant component
analysis (DCA) [8,9]. Recently, a monogenic image approach
using the Riesz—Laplace wavelet [10—12] was also proposed.
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However, in most of these approaches, narrowband assump-
tions were imposed on each AM—FM component of the image.
For example, most literature inexplicitly assumes the AM—FM
image to be globally wideband, yet each of its components to
be locally narrowband. In general, both the IA 4(x, y) and the
IF V¢(x, y) of a single component are assumed to be slowly
varying; otherwise, the approximations inherent in most
demodulation approaches are no longer valid and incur signifi-
cant errors, especially under the wideband scenario.

In this paper, we propose a novel approach called the
bi-dimensional multirate frequency transformations (BMFT) that
can be combined with a variety of demodulation techniques to
enhance their demodulation performance, traditionally limited
by the narrowband constraint on the frequency modulation
part of the monocomponent AM—FM image.

2. WIDEBAND FREQUENCY MODULATED
IMAGE

The wideband FM signal in one dimension (1D) is usually
characterized by a set of parameters, such as the modulation
index, carrier-to-information-bandwidth ratio (CR/IB), and
carrier-to-deviation ratio (CR/FD), as defined in Ref. [13].
For example, a sinusoidal FM signal is of the form

x(¢) = a(t) cos ([r [0, + @, cos(wsT + 6)]dr>. (3)

[s9)
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The set of parameters are then given by

5 / CR  w, CR w,
= [OFN _—=—, _— =
WP B T e FD

, @4
where f# denotes the modulation index. When f# > 1 is satis-
fied, such an FM signal is classified as wideband according to
the literature of FM communication systems. Additionally, the
performance of any demodulation algorithm is also affected by
the CR/IB and the CR/FD parameters. Specifically, according
to Potamianos and Maragos [14], the demodulation perfor-
mance of the Hilbert transform is invariant to CR/IB, while
the ESA performs better at a higher CR/IB. As for the CR/FD,
most demodulation algorithms are only valid when the CR/FD
is high, in which case, the deviation is small compared to the
carrier frequency. Though these parameters are well defined
in 1D, we cannot directly extend their definitions to 2D, since
FM images are not globally separable. For instance, we are not
able to define the corresponding modulation index along any
specific direction for 2D images in a global sense.

However, as proposed by Pattichis and Bovik [15], the com-
plex FM image can be locally approximated by the product of
two 1D FM signals. The corresponding 1D signals are defined
along the directions of the eigenvectors of the instantancous
Srequency gradient tensor IFGT), which is simply the Hessian
of the phase. Let z = [z, 2,] denote the representation under
the eigenvector coordinate system, ¢h(z) denote the phase of the
FM image, and F denote the IFGT. According to Ref. [15],
around a given point Zy = [4;, ] of the image, the local phase
is approximated using a Taylor series expansion by

(@) ~ Pplay, 1) + $1(21) + Pa(22), (5)

where
:(z) :%(41)42)(Zi_4i) +M(2z—ﬂi)z; i=12
6)

Note that A; and 4, are the eigenvalues of F. The complex
FM image is then locally approximated by the product of
two 1D FM functions defined with respect to the eigenvector
coordinate directions:

explig(z1, 22)] & explig; (z1)] expljep, (22)] )
As a result, FM images can be viewed as locally separable,
and we can define the wideband FM images locally by deriving
the corresponding parameters along the eigenvector coordinate
directions. For example, if the modulation index along the di-
rections of the IFGT eigenvectors are sufficiently large around
the reference point, the image can be expected to exhibit a sim-
ilar wideband pattern locally analogous to the 1D case. Assume
the modulation indexes along both directions of the eigenvec-
tors are denoted by 3, and f3,,, respectively. To locally indicate
whether an FM image is wideband or not in the sense similar to
the literature in FM communication systems, we can define a
local modulation index f; via

Br= (B, + P22 @)

If p, is sufficiently large, then the corresponding FM image
exhibits a wideband pattern locally. This definition of the local
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modulation index f; is especially effective for the sinusoidal FM
images with IF components specified along the horizontal and
vertical directions. In this case, the modulation index for each
eigenvector direction can be well defined according to the origi-
nal formulation in the 1D context.

3. PARTIAL HILBERT TRANSFORM
DEMODULATION

The partial or directional Hilbert transform based on the
analytic image as summarized in Ref. [16] by Havlicek
et al. is widely used for monocomponent AM—FM image
demodulation.

For a one-dimensional real-valued signal s(z):R — R, we
associate with it an complex-valued signal z(x) = s(x) +
jq(x), where the imaginary part ¢(z) is defined via

10 =l =0 2= [ Fae
nt r &

Note that g(#) is the Hilbert transform (HT) of 5(), and the
complex-valued signal z(#) is called the analytic signal. Assume
that s(z) is a real-valued AM—FM signal given by

s(¢) = a(t) cos(w,t + P(2)), (10)
where a(z) is the IA, w, is the carrier frequency, and ¢ (%) is the
phase for the IF ¢'(#). According to the basic property of
the Hilbert transform and Bedrosian’s theorem, ¢(t) is a natural

approximation to the product of the IA 4(¢) and the quadrature
of cos(w.r + ¢(z)) given by

q(t) = Hs(®)] ~ a(?) sin(w .t + ¢(2)). (11)

However, this approximation is valid only if the following

conditions hold: (1) 4(#) is a narrowband low-pass signal that

varies slowly with time, and (2) the carrier frequency w, is
sufficiently large such that

w, > ¢' (). (12)

If these narrowband conditions are met, then the corre-
sponding analytic signal is an accurate approximation to the
desired complex signal given by

z(2) = s(t) + jq(t) = a(?) explj(w.z + ()] (13)
Hence, the IA 4(#) and the IF ¢'(¢) are approximated,
respectively, by

a(r) ~ |lz(2)l, (14)
. 0 S(z(2))
¢ (1)~ % (arctan .‘R(z(t))) -w,. (15)

Such a process can be extended to 2D via the partial Hilbert
transform. Let f(x):R” — R and e; denote the unit vector
in the x; direction. The partial Hilbert transform along the
direction of e; is then defined by

ol = [ L5 (16)

Note that the partial Hilbert transform defined here is
specified along the horizontal and vertical directions. Thus, it
is particularly suitable for demodulating images with frequency
modulation patterns emerging along the same directions.
Assume that /(x, y) is a monocomponent AM—FM image with
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frequency modulation patterns emerging along both the hori-
zontal and vertical directions given by

I(x,y) = A(x, y) cos(Qx + Qyy + ¢(x, y)), (17)

where Q. and Q, denote the carrier (mean) frequencies along
the x and y directions, respectively. (According to Refs. [4,17],
we interpret the IF as a variation about the mean frequency.
Q, and Q, can be explained as the carrier frequencies of the
visual information. Based on this consideration, the uniqueness
problem of the IF and IA can be resolved under certain con-
ditions.) Under this assumption, according to Eq. (11), we are
able to approximate the partial Hilbert transform along the
x-axis by fixing variable y via

HI( )] = A ) sin(Qux + (2 + 0(x, ). (18)

This approximation holds only under certain conditions
similar to the 1D case. First of all, the AM part A(x, y) should
be slow varying and narrowband. Analogous to Eq. (12), Q, is
required to be sufficiently large such that

9p(x, y) '

X

Q. >

X

(19)

A similar condition applies to the y-axis as well. As a result,
we can easily obtain the approximations for the IA and the
IF components with respect to both directions, according to
the 2D extensions of Eqgs. (14) and (15).

In Section 7, synthetic examples are provided to illustrate
the efficacy of the proposed approach. Since the synthetic im-
ages we present are predefined, with their frequency modula-
tion patterns along the horizontal and vertical directions, the
partial Hilbert transform is preferred over the monogenic image
approach to serve as the comparison technique to the proposed
approach due to the following reasons: (1) the demodulation
performance of the partial Hilbert transform is as competitive
as the Riez transform when the image displays frequency modu-
lation patterns along the same specified directions, and (2) the
partial Hilbert transform can be implemented easily via the 1D
Hilbert transform.

4. HIGHER-ORDER ENERGY OPERATOR

A variety of methods based on the multidimensional energy
operator [7] proposed by Maragos and Bovik are also widely
used for AM—FM image demodulation. An image demodula-
tion algorithm based on higher-order Teager—Kaiser operators
is proposed in the recent work [18-20] by Salzenstein and co-
workers. They have been reported to provide better perfor-
mance for narrowband AM-FM images than the classical
2D ESA [7].

The /k-order differential energy operator (DEO) [21,22] in
1D for any given signal s(z) is defined by

0s(z) 0¥ '5(z) 0*s(z)
- s(2) ,

ot 0! otk
where W, refers to the commonly used Teager—Kaiser energy
operator. For a given image /(k, /), the discrete-time higher-
order demodulation algorithm (DHODA) [18-20] can be

summarized via

Wils()] = (20)
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[1(/6,1)=%[[(/€+1,/)—[(k—1,/)], (21)
I,(k 1) Z%[I(/e,[-i- 1) -I(k[-1)] (22)

Ik 1) = %[lz(le + 1,0 -1(k-1,0)] (23)

W1 (k, )] = {211 (k, D? - 1(k -1, D)I(k+ 1,1)
Iy L = 1) (ky L+ 1)} + 2[1,(k, D)1, (k, 1)
—I(k, )15 (k, D)), (24)

Ik 1) = %[112(/6 + L) -1In(k-1,0]  (29)

b =3k 1+ 1) ~ Ttk 1- 1) (26)

27

W%M=<%M%M%mwm>@

WolI1,(k, 1) + 17, (k, )]

. 1/2
|Q (k1) = arcsin((%) ); (28)

- \P . k, [ 1/2
|Q, (k, )| = arcsin < <%) >, (29)

where %(k, 1) is the IA estimation, while Q, (£, /) and Q, (&, /)
are the IF estimations along the spatial axis of the image. Note
that the IF estimations are obtained through the inverse sine
function, indicating that the demodulation approaches based
on the ESA can only estimate IF components that range be-
tween 0 and 7, or in other words, up to one-fourth of the sam-
pling frequency. Moreover, the demodulation approaches based
on the ESA also suffer from the narrowband constraint like the
Hilbert transform. Both the IA and the IF waveforms may not
vary too fast or too greatly in value.

5. BI-DIMENSIONAL MULTIRATE FREQUENCY
TRANSFORMATIONS

The multirate frequency transformations (MFT) approach that
performs wideband-to-narrowband conversion of an FM signal
was proposed in a prior work [23]. The MFT primarily in-
creases the CR/IB and CR/ED ratios of the original signal to
improve upon the demodulation performance of the conven-
tional demodulation approaches. The BMFT is derived by gen-
eralizing the underlying idea to 2D. For simplicity, assume
that the input is a monocomponent wideband FM image of
the form

J(xy) = A cos(¢(x, y)). (30)

It is first compressed in the frequency domain by the appro-
priate factors R = diag[R,, R, ], which correspond to the spatial
expansion given by
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/mmw==Acm<¢(;,g)>. (31)
X J

Then, we heterodyne the resultant image by a frequency
[Q,, Q)] via

J1(x, y) cos(€2.x) cos(€2,)

A Xy
= cos (Qxx + ¢ (Fx, —y)) cos(€2,y)
A

translation vector Q =

Jaley) =

I
e
[}

2
A/~
{O
X
+
{O
\<
+
S
A~
%|x
go|\<
~_
~_

N N
| =

gaciP
= D=
N—
N———

| <

A
-I-Z cos (Qxx—ny gb(

J) e

After the heterodyning, a 2D bandpass filter is applied to
extract the desired high-frequency term through

J(oy) = J2(x9) * hgp(x,y)

A xJ
N4 cos (Qx—i—Qy—i—qb(Rx,Ry))
=2 cos@s ) (33)

Assume that the support of the original image spectrum
J (@, @;) is within the range w; € [-Q;, Q;], i = 1,2. The
2D bandpass filter should be carefully designed, with its pass-
band range given by

Q
lw,| € [QX,Q + Rl} |w,| €

X

Q,
Q,Q + Rj. (34)

On one hand, the carrier (or mean) frequencies of the
modulation in both dimensions are increased via the frequency
translation vector Q = [Q,, Q] On the other hand, the band-
width of the modulating image is reduced by the appropriate
conversion factors R = diag[R,, R]. These two benefits
derived via the BMFT are crucial to improving the IF demodu-
lation due to the following reasons: (1) a majority of demodu-
lation approaches require the input to have high CR/IB in
both dimensions, and (2) the CR/FD of the input must be
sufficiently large in both dimensions such that the deviations
of the IF components can be tolerated in accordance with the
narrowband assumption of the input.

Then, we can recover the IF of the input image from the
IF estimation of the transformed image /(x, y) via the inverse
BMFT. Assume that the IF components of /(x, y) and J(x, )
are given by

%mwzwgﬁ, (35)

Qu(xy) = 00D,
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2-D Heterodyning

cos(Q:m)cos(Q:n)

v

J(m,n)
I:’r\ 2-D Interpolation by a—l\ X H 2-D Bandpass filter
/ factors (Ry, R,) /\ Hppr(o1,02)

Demodulation with action
in iy, direction

e

| P "
/ 2-D Decimation by |/
« ‘ factors (Ry, R,) J—I

Fig. 1. Block diagram of the BMFT.

Qy(xy) =

Q(xy) = (36)

() o y)
ox oy ’
The IF estimation for the input image is recovered through

the inverse BMFT relation (see Fig. 1) via

Q,(xy) = R(Q(Rx Ry) - Q,), (37)

Qy09) = R(G(RER)-Q), (@8
where §~21(Rxx, Ryy) and §~22(Rxx, R,y) represent the spatial
compression (or frequency expansion) of the IF estimation
for the transformed image /(x, y).

In order to implement the BMFT in discrete time, we re-
place compression and expansion in frequency domain by their
discrete equivalences. Note that compression in the frequency
domain corresponds to interpolation, while the expansion
corresponds to decimation. As a result, the block diagram of
the BMFT demodulation approach is depicted in Fig. I.
The BMFT is implemented through discrete-time operations
of interpolation, heterodyning, and bandpass filtering. The
transformed FM image is then demodulated via a mono-
component demodulation approach, and the original IF
components are recovered from the IF estimation of the
transformed image via the inverse BMFT. However, discrete-
time operations in 2D may not be extended in a straightforward
way from their 1D counterpart. It depends primarily on
whether the input image is separable or not. If the image is
separable, each operation of the BMFT can be implemented
by simply cascading its 1D equivalence with action along each
dimension. If this is not the case, we need to pay attention to a
few issues associated with the non-separable nature of the im-
age, which are often intractable. Therefore, deriving 2D oper-
ations directly from their 1D realizations is favored in terms of
its simplicity for practical implementation.

In particular, the frequency upshift in heterodyning is not
uniquely defined in 2D. This can be realized either through the
product of two separable cosine terms cos(€2;72) cos(Q,7)
in each dimension as in Fig. 1 or via just one cosine term
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cos(Qm + €, 7) in the diagonal direction. These two different
realizations will lead to different designs of the 2D bandpass
filters. For the first case, we only need to bandpass filter
the outermost quarter of the frequency spectrum in each quad-
rant to extract the desired high-frequency term expressed in
Eq. (33). This is simply achieved using a separable 2D bandpass
filter by cascading two 1D bandpass filters with action in each
dimension. For the latter case, where the frequency upshift
is diagonal, it is much more complicated to achieve the same
objective with a realizable design of the 2D bandpass filter. The
issue is that the 2D frequency upshift in the diagonal direction
results in only two copies of the original spectrum in the first
and third quadrants. However, the design of a 2D bandpass
filter whose passband is only present in two quadrants and also
capable of extracting the desired term in Eq. (33) is computa-
tionally complex.

In addition, the BMFT framework can be directly applied
on a monocomponent AM—FM image, provided that the IA
of the given image is slowly varying, which is inherently as-
sumed by most image demodulation algorithms. Under this
constraint, the IA can be approximated via the inverse BMFT
relation by

A(x,9) = A(R.x, Ryp), (39)

where g(x, y) denotes the demodulated IA of the transformed
image /(x, ). Numerical results are given later in the paper to
support this claim.

6. DISCUSSION OF THE BMFT COMPATIBILITY
WITH THE HT AND ESA APPROACHES

In general, the BMFT framework can be combined with most
demodulation approaches to enhance their performance in the
wideband scenario. But the gain achieved by using the BMFT
framework varies with the demodulation algorithm employed.
For a given demodulation scheme, the gain in error reduction
via the BMFT approach depends mainly on its inherent sensi-
tivity to CR/IB, CR/FD, and the modulation index of the
image. Here we refer to the comparison results of the HT ap-
proaches and ESA approaches in 1D [14] for intuitive under-
standing of this issue in 2D.

The HT demodulation approaches are usually not very sen-
sitive to the CR/IB of the signal. In general, the demodulation
performance of the Hilbert transform is invariant to the CR/IB
of the signal. As shown in the work [14] by Potamianos and
Maragos, the error versus the CR/IB response of the Hilbert
transform is almost flat, suggesting that by increasing the
CR/IB via the BMFT, the gain we achieve through error re-
duction is very limited. On the other hand, the ESA is shown
to be very sensitive to the CR/IB of the signal, where the error
decreases sharply as the CR/IB of the signal increases. Hence,
the gain attained by increasing the CR/IB via the BMFT with
demodulation schemes based on the ESA is expected to be
more significant than demodulation schemes using the HT
approaches.

As for the CR/FD, both the HT and ESA demodulation
methods suffer from large deviation compared with the carrier
frequency. Hence, the BMFT becomes beneficial to both of
them via an increase in the CR/FD of the input.
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Since the modulation index is jointly determined by both
the CR/IB and CR/FD, its influence on the demodulation per-
formance is not straightforward. However, the modulation in-
dex of the FM signal cannot be too large such that the spectrum
of the side lobes around the origin are significant and begin to
incur significant demodulation error. The theoretical analysis
for this phenomenon is provided in Appendix A, where we
analyze the demodulation error associated with the Hilbert
transform for illustration. The error incurred due to a large
modulation index is unavoidable for any demodulation algo-
rithm. It imposes a lower bound on the demodulation error.
Even the BMFT framework cannot reduce the error signifi-
cantly in this extreme wideband scenario.

In conclusion, the proposed BMFT approach is more suit-
able for the ESA demodulation schemes. Moreover, the BMFT
framework helps to overcome the estimation range constraint
inherent in the ESA demodulation schemes. By compressing
and shifting the original input in the frequency domain, we
can always choose appropriate conversion factors and transla-
tion frequencies to convert its frequency components into
the range between 0 and 7. This is another advantage for com-
bining the BMFT framework with the ESA demodulation
schemes. Therefore, in the numerical experiments, we mainly
focus on the BMFT and the DHODA combination to explore
the benefit attained via the proposed framework and use the
partial Hilbert transform as a comparison tool.

In addition, the BMFT framework can be extended in
an immediately obvious separable way into multi-dimensional
space and combined with the multi-dimensional higher-order
differential operators recently proposed by Salzenstein and co-
workers [24,25] for further study.

7. EXPERIMENTS AND SIMULATION

In this section, we present the numerical results for the pro-
posed BMFT-energy approach. We begin with an example of
a synthetic sinusoidal AM—FM image, as illustrated in Fig. 2.
The expression of this synthetic image and its corresponding
IF components are given by

180 = = - ey e
20 40 60 80 100 120 140 160 180

Fig. 2. Synthetic sinusoidal AM-FM image with wideband FM
components of the form f(m n) = [l + 0.5 cos({5m + 551)]
cos(zm +5n+ 6 sin(Zm+3%) + 5 sin(f5n).
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Fig. 3. Perspective plot of the demodulation results for the wideband sinusoidal example via the DHODA and via the BMFT-DHODA with
conversion factors R = diag[8, 8]. (a) Estimation of the IA via the DHODA, (b) estimation of the IA via the BMFT-DHODA, (c) estimation of the
IF component along the horizontal direction via the DHODA, (d) estimation of the IF component along the vertical direction via the DHODA,
(e) estimation of the IF component along the horizontal direction via the BMFT-DHODA, and (f) estimation of the IF component along the
vertical direction via the BMFT-DHODA.
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Table 1. Comparison of the Demodulation Errors
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var (59 MSE (4,2)  var (%5 var (%)  MSE ( Q)  MSE (2,,Q,) RMSE (%)
DHODA 4.7876 0.8910 2.6688 8.0073 0.6948 12.9626 1.83
BMFT-DHODA-8 0.2934 0.0649 0.3554 0.1281 0.0427 0.1310 0.25
BMFT-DHODA-16  0.1677 0.0412 0.5608 0.0813 0.0419 0.0701 0.18
HTDA 0.5125 0.0942 0.3715 0.0683 0.1276 0.0430 0.23
BMFT-HTDA-8 0.2930 0.0646 0.1228 0.0796 0.0235 0.0716 0.20

which are sufficiently large. We can also easily check that the
CR/IB and the CR/FD are small along both directions for this
wideband sinusoidal example.

The demodulation results via the DHODA combined with
the proposed BMFT framework using conversion factors of
R = diag[8, 8] are given by Fig. 3. It is compared with the
demodulation via the DHODA alone. Note that the demodu-
lated IF with respect to either the horizontal or the vertical
direction exhibits a sinusoidal pattern along that direction,
which can be inferred from Eq. (40). We can easily observe that
both the IA and the IF obtained via the BMFT-DHODA
are smoother than that via the DHODA alone. The mean
square error for the IA is reduced from 0.8910 to 0.0649,
and the roor mean square error (RMSE) for the IF is reduced
significantly from 1.83% to 0.25% through the BMFT frame-
work. Here we define the RMSE as the /, norm of the differ-
ence between the true IF Vg(x,y) and the estimated IF
V¢p(x, y) against the /, norm of the true IF itself via

IVe(x,y) - Vo)l
IV (e I,

In fact, the demodulation error can be further reduced
if larger multirate conversion factors are applied. As shown
in Table 1, the demodulation errors of the proposed BMFT
framework using DHODA with conversion factors of
R = diag[8, 8] (BMFT-DHODA-8) and with conversion
factors of R = diag[16, 16] (BMFT-DHODA-16) are com-
pared with the DHODA alone. The RMSE can be further
reduced to 0.18% via the BMFT with conversion factors
R = diag[16.16], achieving an error reduction of 10 times
compared with the DHODA alone. The use of larger factors
results in a much narrower passband for digital filters that are
difficult to realize in practice due to a sharper transition band.
To implement such FIR filters, a very large filter order is re-
quired, which may not be acceptable in terms of the desired
system complexity. Therefore, the choice of multirate conver-
sion factors should be determined by weighing between the
tolerance for demodulation error and that of the system com-
plexity. Recently, the BMFT structure using large conversion
factors has been implemented via an equivalent structure that
alleviates the complexity of practical realization, as proposed
in Ref. [26]. Aided by this equivalent structure, we may fur-
ther reduce the demodulation error by exploring even larger
factors.

The demodulation results via the partial Hilbert transform
alone (HTDA) and the BMFT and the partial Hilbert trans-
form combination with conversion factors R = diag[8, 8]
(BMFT-HTDA-8) are also illustrated in Table 1. We can see

RMSE = x100%.  (43)

that the error reduction via the BMFT framework for the HT
demodulation is not as obvious as for the ESA demodulation,
which justifies our discussion in the previous section.

In the second experiment, we test the BMFT and the
DHODA combination on a wideband sinusoidal FM image
whose IF components are out of the range [0,7], which is
the estimation range constraint for demodulation approaches
based on the ESA. As shown in Fig. 4, the synthetic image
for this example and its corresponding IF components are
given by

2 2
f(mmn) =05 cos(?ﬂm—l—gn%—G sin (S%M+g)

. b4
+ 5 sin (3—0 n)), (44)

op(m, n 2 3rx n T
Q(mn) = 445; ) _ 5 T35 s (5—0m+5>) (45)
op(m, n 2r  w T
Qz(m) ﬂ) = % = ? + E Ccos (3—0 ﬂ) (46)

Note that the carrier frequency along each direction is 2.
Hence, the IF components of the image are out of the range

[0,%]. The demodulation results for the DHODA and the

180

Fig. 4. Wideband sinusoidal FM image with IF components
outside the range of ESA constraint [0F] in the form f(m, n) =
0.5 cos(%”m + ZT”n + 6 sin(fm + %) + 5 sin(f57)).
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Fig.5. Perspective plot of the IF estimation for the wideband sinusoidal example where IF components are out of the range [0, 5] via the DHODA
and via the BMFT-DHODA with conversion factors R = diag[8, 8]. (a) Estimation of the IF component along the horizontal direction via the
DHODA, (b) estimation of the IF component along the vertical direction via the DHODA, (c) estimation of the IF component along the horizontal
direction via the BMFT-DHODA, and (d) estimation of the IF component along the vertical direction via the BMFT-DHODA. Note that the
IF estimation via the DHODA is seriously distorted in both its amplitude and phase.

BMFT-DHODA are illustrated in Fig. 5. As we can observe,
the demodulated IF components via the DHODA are
seriously distorted in both amplitudes and phases, whereas
the demodulated IF components via the BMFT-DHODA
are smooth and valid. The RMSE for the DHODA is as large
as 56.74%, while the RMSE for the BMFT-DHODA is merely
0.9113%. Hence, our claim that the BMFT helps overcome
the range constraint of demodulation algorithms based on ESA
is justified.

In the third experiment, we justify the efficacy of the
proposed BMFT approach on real images. The real image of
an oak ring (photo by H. D. Grissino-Mayer from http://
web.utk.edu/-~grissino/index.htm) is shown in Fig. 6(a). The
demodulation results associated with this real oak ring image
are compared in Fig. 6. The estimated IF components via the
DHODA, as shown in Figs. 6(b) and 6(c), have singular points
with significantly large values. The estimated IF components
via the BMFT-DHODA, as shown in Figs 6(d) and 6(e), are
much smoother and do not have any singular point with a sig-
nificantly large value. As a result, the estimated IF needle plot
of the DHODA [Fig. 6(f)] is seriously distorted by those sin-
gular points, whereas the estimated IF needle plot of the

BMFT-DHODA [Fig. 6(g)] reveals the ring pattern corre-
sponding to the real oak ring image. Note that the A estimated
via the DHODA [Fig. 6(h)] suffers from the same issue,
whereas the IA estimated via the BMFT-DHODA [Fig. 6(i)]
does not. Based on the observation, we see that ESA demodu-
lation such as that employed by the DHODA prohibits its di-
rect application to wideband real images due to the narrowband
and estimation range constraints, while the proposed BMFT
framework overcomes such constraints and allows for direct
application of ESA demodulation to wideband real images.

8. CONCLUSION

In this paper, we have formally defined the notion of locally
wideband FM images and the corresponding local modulation
index. We extended the 1D approach combining multirate fre-
quency transformations and energy demodulation to 2D and
images by using their separable counterparts. The proposed
algorithm was applied to both synthetic and real images and
shown to produce significant reduction in the demodulation
errors. The proposed approach was shown to be effective in
cases where the existing algorithms are limited in terms of their
estimation range.
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Fig. 6. Demodulation of the oak ring image (photo by H. D. Grissino-Mayer). (a) Real image of the oak ring, (b) estimation of the IF component
along the horizontal direction via the DHODA, (c) estimation of the IF component along the vertical direction via the DHODA, (d) estimation of
the IF component along the horizontal direction via the BMFT-DHODA, (e) estimation of the IF component along the vertical direction via the
BMFT-DHODA, and (f) estimation of the IF needle plot via the DHODA. (g) Estimation of the IF needle plot via the BMFT-DHODA.
(h) Estimation of the IA via the DHODA. (i) Estimation of the IA via the BMFT-DHODA. Note that the conversion factors of the BMFT-
DHODA here are R = diag[16, 16].

APPENDIX A: ERROR ANALYSIS FOR separable combination of the 1D Hilbert transforms, conse-
EXTREMELY WIDEBAND FM SIGNAL quently, this analysis is valid for the proposed 2D approach
Here we present the error analysis for wideband sinusoidal FM as well.) According to the handbook of mathematic formula

demodulation in 1D. (Since the partial Hilbert transform is a and basic trigonometric identities, we have
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cos(f sin ) = Jo(B) + 2 i]zk(ﬂ) cos(2£40),
k=1

sin(f sin 0) =2 Jop41(B) sin((2k + 1)0),

k=0
1
cos(u) cos(v) = E[Cos(u -v) + cos(u + v)],
1
sin(#) sin(v) = E[Cos(u - v) - cos(u + v)],
where /() denotes the Bessel function of the first kind.
Using the above equations, the sinusoidal FM can be ex-
panded as

cos(w,t + p sin(w,,t)

= cos(w,t) cos(f sin(w,,t)) - sin(w, ¢) sin(f sin(w,,t))

cos(w.t)/o(f) + 2 i]%(/}) cos(2kw,,t) cos(w,t)
k=1

=23 Joksr (B)sin((2k + Dw,,0) sin(,)
k=0

cos(@.£)/o(B) + 2> Jou(p) cos(@, + 2kw,,)1)
k=1

+2) Jo(B) cos((@, - 2kw,,)1)

k=1

+2 zoo:]zm(ﬂ) cos((w.z + (2k + Dw,,)?)
k=0

=2 a1 (B) cos((@, - 2k + Dav,,)2).
k=0

Its quadrature part we desire for demodulation can also be
expanded similarly given by

sin(w.t + f sin(w,,t))

— (@) cos(f sin(@,e)) + cos(@,) sin(B sin(@n))
— in@.0/ol) + 23 Jos(B) cos(2k, 0 sin(e,)
Z
+2 ;Jml () sin(24 + Do, 1) cos(@, )
— sin(@.)olf) +2 gm(ﬂ) sin((o, + 2k, )
2 k;il/z;e(ﬂ) (sin(o, - 2k, )1

+2 Lo (P sin((@ + 2k + Do,,)1)
k=0

=2 Ty B sin((@, - 2k + D)),
k=0

Note that the Hilbert transform of the corresponding sinus-
oidal FM can be easily obtained by performing the Hilbert
transform at each of its harmonics as
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Hlcos(w,t + f sin(w,,2))]

= sin(0,)/o(B) + 2 _ J4(B) sin(w, + 2kw,,)z)
k=1
+2 Z./Z/e(ﬂ) Sin(|a)c - 2’éwmlt)
k=1
+23 i (Bsin(@, + 2k + Dw,,)?)
k=0

-2 Lk (Brsin(|o, - 2k + D, |1).
k=0

By comparing the quadrature and the Hilbert transform
of the corresponding sinusoidal FM, we observe that when
w, < nw,,

H[cos((w, - nw,,)t)] = sin(nw,, - ®,.)t,

whereas the corresponding term in the quadrature part is of
opposite sign sin(w, - nw,,)t. For narrowband sinusoidal FM,
the Bessel coefficients /,,(f) associated with these correspond-
ing side lobes are very small, and the demodulation error in-
curred by the Hilbert transform due to these opposite sign
terms can be neglected. Hence, the Hilbert transform provides
almost perfect reconstruction of the quadrature part we desire
for demodulation using the analytic signal for sinusoidal FM in
the narrowband case. For extremely wideband sinusoidal FM,
however, due to its large modulation index f, the Bessel coef-
ficients associated with these side lobes cannot be neglected
anymore. As a result, the error incurred by the Hilbert trans-
form is much more significant. In general, this unavoidable
error imposes a lower bound on the error performance for HT
and energy operator in the extremely wideband scenario.

Funding. Air Force Research Laboratory (AFRL) (FA9453-
14-1-0234).
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