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ABSTRACT

The nonlinear energy operator ¥(z) = [3]* — zF and
its discrete-time counterpart have found numer-
ous applications including development of the en-
ergy separation algorithm (ESA) for demodulat-
ing AM-FM signals, tracking speech modulations,
and detecting various events in nonstationary sig-
nals. In this paper we first present some improve-
ments on the energy operator and ESA when ap-
plied to demodulating speech resonances and using
the extracted information signals for speech pro-
cessing applications. Then we introduce some new
nonlinear operators (differential in continuous time
and quadratic in discrete time) that can provide
higher-order energy measurements with applica-
tions to co-channel demodulation and separation
of AM-FM signal mixtures. Finally, we present a
cross-coupled ESA for co-channel demodulation.

The nonlinear continuous-time energy operator
W(a)(t) = [H(OF - 2(0)i (1)
and 1its discrete-time counterpart
U(z)[n] = 2°[n] — e[n — 1z[n + 1]

were developed by Teager in his work on nonlinear speech
modeling [1] and were both introduced systematically by
Kaiser [2, 3]. Since its introduction, the energy opera-
tor has found numerous applications to demodulating AM
and/or FM signals, tracking speech modulations, detect-
ing various events in nonstationary signals and multiband
analysis [5, 6, 7, 8, 9]. For example, given an AM-FM
signal z(t) = a(t) cos(fotw(r)dr), by applying ¥ to both
the signal and its derivative and separating their ener-
gies into amplitude and frequency components, Maragos,
Kaiser and Quatieri [6, 8] have developed the following
energy separation algorithm (ESA)

w(t) R /U ()/ V() fa(t)] =V (2)/\/ V(&)

which can estimate the time-varying instantaneous fre-
quency w(t) and amplitude envelope |a(t)| at any time
instant, with negligible estimation error provided the am-
plitude and frequency signal do not vary too fast or too
much with respect to the carrier.

In this paper we report (i) some improvements on the
energy operator and ESA when applied to demodulat-
ing speech resonances and using the extracted informa-
tion signals for a vocoder and speech recognition; and
(ii) some new nonlinear operators (differential in contin-
uous time and quadratic in discrete time) that can pro-
vide higher-order energy measurements with applications
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to co-channel demodulation and separation of AM-FM sig-
nal mixtures. Finally, we present a cross-coupled ESA for
co-channel demodulation.

1. SPEECH PROCESSING APPLICATIONS

In [5, 8] an AM-FM modulation model is introduced, that
represents a speech resonance (formant) as an AM-FM
signal. Each resonance is demodulated into instantaneous
amplitude and frequency signals using the ESA. This mod-
eling/analysis approach has been recently applied to for-
mant tracking and speech coding [10], and, currently, to
speech recognition.

First we introduce the multiband demodulation for-
mant tracking algorithm. Filtering is performed by a bank
of Gabor bandpass filters to isolate each speech resonance
from the spectrum. Next, the amplitude envelope and in-
stantaneous frequency are estimated for each band using
the ESA. Short-time formant frequency and bandwidth
estimates are obtained from the instantaneous amplitude
and frequency signals. A simple decision algorithm deter-
mines the formant locations and bandwidths. Formant fre-
quency and bandwidth (error bars) tracks for the sentence
“Show me non-stop from Dallas to Atlanta” are shown in
Fig. 1.

The AM-FM modulation vocoder extracts three or four
time-varying formant bands from the spectrum by filtering
the speech signal along the formant tracks (obtained as de-
scribed above). The formant bands are demodulated into
amplitude envelope and instantaneous frequency, which
are decimated and coded. To synthesize the signal, the
formant bands are reconstructed from the amplitude and
phase signals, and added together.

Finally, one can obtain a non-parametric smooth spec-
tral envelope from a multi-band filtering scheme by apply-
ing the energy operator ¥ on each band and taking the
short-time average. This yields an energy spectrum, whose
features we have used for speech recognition.

2. HIGHER-ORDER ENERGY OPERATORS

Instantaneous differences in the relative change of rate
between two signals z,y can be measured via their Lie
bracket

Lly,z] =3y — =y
because L[y, z]/zy = (¢/z) — (§/y). Dots denote time
derivatives. If y = &, then L[y, z] becomes the continuous-
time Teager-Kaiser energy operator [2, 3]

U(z) = (¢)° — zd = L[, 2]

which has been used for tracking the energy of a source
producing an oscillation [3, 2] and for signal and speech
AM-FM demodulation [7, 8]. In the general case, if = and
y represent displacements in some generalized motions, the
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Figure 1: (a) Speech Signal (b) Formant tracks

quantity L[¢, ] = £9 — =§ has dimensions of energy (per
unit mass), and hence may be viewed as a ‘cross energy’
between  and y. This energy-like quantity ¢y — xy was
used in [3, 4] to analyze the output ¥(z + y) of the energy
operator applied to a sum of two signals.

In our work we use the cross energy between a signal
z and its higher-order derivatives to develop higher-order
energy measurements. Specifically, we define the k'"-order
differential energy operator (DEQ)

Tr(z) = L[x(k_l), z] = grF Y gy , k=0,%£1,%2, ...

as yielding the cross energy between a signal «(t) and its
(k —1)*™ derivative (or integral), where

d*z(t)/dt*, E>1
z(t), k=

(1) =
Jo e (),

>
I
—

denotes a signal derivative for positive order k or an inte-
gral for k negative. Of practical current interest are the
DEOs of positive orders. The second-order DEO T3, mea-
suring the energy of a harmonic oscillator producing a sig-
nal z, gives to T the name ‘energy’ since it is identical to
the standard energy operator ¥. The zeroth-order opera-
tor Yo(z) = & [ x—z” was recognized in [4] as the negative
of the energy of the signal integral. The first-order DEO
yields zero for any signal. T'wo new and useful energy mea-
surements are given by the third- and fourth-order DEOs:

Ta(z) = ¢d — cx® , YTa(z) = iz — gg®

Note that (as also observed in [4])
Ys(z) =d¥(x)/dt , Ti(z)=dYs(z)/dt — ¥(z)

Hence the third-order DEO T3 is an energy velocity oper-
ator, whereas the fourth-order DEO Y3 has dimensions of
energy acceleration. In general, the higher-order operators
can be generated by lower-order operators with a 2-step
recursion: Yi(z) =dYr_1(x)/dt — Tr_2(2).

When the energy operators T, are applied to a sine
wave, they yield products of powers of the amplitude and
frequency. This creates the energy recursion

Er=—w’Fr_s , Ex="Ti[Acos(wt+6)],

with initial conditions Fo = —A2 and E; = 0. Running
this recursive equation in both forward and backward order

index k yields

0, k=41,43 45, ...

Tr[A i+6)] =
k[ A cos(wt+8)] { (1) 5 A%WF k=0,42, 44, ..

If the amplitude A and/or frequency w are slowly time-
varying, i.e., if the input is an AM—FM signal, then the
above energy equations are approximately valid provided
that A = A(¢) and w = w(¢) do not vary too fast or too
much with respect to the carrier frequency. Further, be-
cause A%w* are low-pass signals, the above instantaneous
energy measures can be used for robust estimation of am-
plitude and frequency information in time-varying sinu-
soids.

An application of the fourth-order DEO T4, in con-
junction with the standard energy operator To = V¥, is to
estimate the amplitude and frequency of a (possibly time-
varying) sinusoid #(t) = Acos(wt + 6):

—Ta(z)/To(e) , |Al = Te(e)//=Ta(2)

This is an energy separation algorithm, slightly different
from the one in [8], which can also be used for AM-FM
demodulation.

An application of the third-order DEO T3 is to esti-
mate the energy dissipation rate in damped oscillations.
Namely, given a damped cosine, the damping factor can
be found using Y3 and the energy operator. Thus, if
z(t) = Ae " cos(wt + §), r > 0, then

r=—"a(z)/2T2(z) = — 0.5 d(log T2(z))/dt

w =

Applying the energy operators to sampled signals re-
quires replacing derivatives with differences. This leads to
a variety of discrete energy operators for each order k. The
simplest approach is to first discretize the cross signal op-
erator L[y, z] and then replace derivatives with time shifts.
Namely, replacing continuous-time signals z(t) with se-
quences ¢, = z(nT) of their samples, also denoted as z[n],
and first-order derivatives &(¢) with backward differences
Apz[n] = (z[n] — z[n — 1])/T converts the continuous-time
operator L[y, ](t) into the discrete-time operator

C(z[n], y[n]) = z[n]y[n — 1] — z[n — 1]y[n]

where we henceforth assume 7' = 1. (Using symmetric
differences A.z[n] = (z[n + 1] — z[n — 1])/2 to replace
time derivatives yields a symmetric discrete operator equal
to the average of C at two consecutive samples.) Using
y[r] = z[r + 1] makes C identical to the discrete Teager-
Kaiser energy operator [2]

U(z[n]) = 2°[n] — z[n — 1z[n + 1] = C(z[n], z[n + 1])

Generalizing the above result by using y[n] = z[n + k] in
C leads us to develop discrete-time higher-order energy
measurements for a signal z[n]. For example, we define
the k™-order discrete! energy operator

T (z[n]) C(z[n],z[n+k—-1]) , k=0,1,2,3, ..
= gnlzn+k—-2]—zn—1]zn+k—1]

For k = 1 we always get zero since Y1 = 0. For k = 2 we
obtain the standard discrete energy operator Yo = . For
k = 3, we obtain an asymmetric discrete energy velocity

operator
Tg(iﬁn) =TnTnt+l — Tpn—1Tn42

1For simplicity the same symbol is used for both the
continuous- and discrete-time operators T and W.



whereas k = 4 yields a discrete energy acceleration opera-
tor:
T4($n) =TnTnt2 — Tp—1Tn43

Important aspects of T are the length of its corresponding
index window and its time alignment (a)symmetry. Next
we investigate these issues for & = 3. Since T3 requires
a 4-sample moving window [r — 1,n + 2], its output at
the window’s center occurs at the continuous time instant
t = (n 4+ 0.5)7. One simple approach to eliminate this
time misalignment is to replace Tg(xn) with its average
over two consecutive samples and thus have a symmetric
third-order energy operator

Tou(n) = (Ta(2a) + Ts(2nm1)/2

with a 5-sample window [rn — 2, n + 2].

In [14] alternative approaches have been proposed to
discretizing YT, which require a small window and satisfy
recursive formulas of the same type as their continuous
counterparts. In general, the best type of discretization of
higher-order energies depends on the specific application.

Applying the operators Tj to discrete damped cosines
yields discrete energy equations

Tr[Ar" cos(n + 6)] = A%r®"TF 2 sin(Q) sin[(k — 1))

which are useful for parameter estimation in sinusoids. In
addition, these energy equations also hold approximately
when the cosine has time-varying amplitude and frequency
that do not vary too fast or too much with respect to the
carrier, i.e. when the input is a sampled AM-FM signal.
This then allows to find discrete AM—FM demodulation
algorithms by combining the above energy equations of
various orders. For example, by using T2, T3, and the
undamped cosine energy equations Yj[Acos(Qn + §)] =
A%sin(Q) sin[(k — 1)Q)] for k = 2,3, a discrete algorithm
was found in [12] for tracking instantaneous frequencies,
which is closely related to the discrete energy separation
algorithm in [8].

We conclude by noting that, all the above discrete
higher-order energy operators can be unified as special
cases of a class of quadratic energy operators Qum, or their
weighted linear combinations, where

Qim(z[n]) = z[n]z[n + k] — z[n — m]z[n + k + m]
for k =0,1,2,..., m = 1,2,.... These operators have also
been studied independently by Kaiser [11]. The class @
contains all the discrete higher-order energy operators YTy
since Qr1 = Ti42; €.8., Qo1 = VW and Q11 =7T3. Fork =0
the operators QJom, can also be viewed as special cases of
the class of quadratic detectors Y~ hmaz[n 4+ m]z[n — m]

proposed in [13]. The general operators Qg satisfy the
following energy equations:

Qrm[Ar" cos(Qn + 6)] = A%tk sin(m®Q) sin[(m + k)]

In addition, each @g,» can be generated recursively from
other similar operators of lower orders k, m.

3. CO-CHANNEL DEMODULATION

We present a nonlinear algorithm for the demodulation of
two-component AM—-FM signals of the form

z(t) = a1(t) cos(/ wi(T)dT) + az(t) cos(/ wa(T)dT)

using the generating equation of the mixture signal ()
and higher-order energy operators. First we exploit the
structural properties of a mixture of two sinusoidal signals

by treating the mixture signal as a solution to a generating
differential or difference equation (GDE) [16]. The coeffi-
cients of the GDE are then expressed in terms of higher-
order energy operators to facilitate simultaneous separa-
tion of a two-component AM—FM signal into components
and demodulation of the components into instantaneous
frequency and amplitude signals.
Consider a mixture of two sinusoidal signals

#(t) = a1 cos (w1t + 1) + az cos (wat + §2)
which satisfies the following fourth-order GDE
$(4) + i+ cr =0

where ¢1 = w} + w2 and c; = wiwi. Using the GDE
and its derivative and solving the resulting 2 x 2 linear
system of equations yields the following expressions for
the coefficients:

(1= ~To(0)/Tola) . e = Ya(i)/Ta(x)

and the following frequency estimation algorithm

W12 = \/05 [C1 :|: \/ C? — 4C2 ]

These frequency estimates are then used in conjunction
with 2nd-order energy operators to develop estimates for
the amplitude as follows:

2 :w;l (\If(x(g’)) — w%w%\lf(x)) — wgl (U(&) — w%w%\lf(x))

1,2
, Sfel(ef =)’

The proposed algorithm yields exact quantities for a mix-
ture of two cosines. If the signal z(¢) is an AM-FM mix-
ture where the message signals do not vary too fast or
too much with respect to the carriers, then the algorithm
yields efficient estimates for the instantaneous amplitude
and frequency signals of each component. We refer to the
above two-component instantaneous frequency and ampli-
tude estimation procedure as the Energy Demodulation of
Miztures (EDM).
In discrete-time a mixture of two sinusoids
Trn = a1 cos (n + 61) + az cos (Q2n + 62)
satisfies the fourth-order GDE
c1(Tn-1 4+ Tn-3) + 202 = —(Tn + Tn_d)
with ¢ = —2(cos Q1 + cosz), c2 = 4cos € cosQy + 2.
;From the GDE at time instants » and » + 1 we obtain
¢l = TS(CEn—S) - TS(mn—l)
1=
\If(xn_1) — \If(xn_Q)

\If(xn) — \If(mn_g) T4($n_2) — T4($n_3)
\If(xn_1) — \If(xn_Q) \If(xn_1) — \If(xn_Q)

and the discrete-time frequency estimation formula

Qo = cos 1(0.25 [—c1 £ /2 —der +8])

The instantaneous amplitude is obtained from the fre-
quency estimates as

o SL(U(AS D) = ST U(A)
v S183(53 = S7)2
| S5 (WA ) — S253U(x))
S185(55 = 57)?

Co =

where Sy, =sin (212) and A,z = AS(ASm_lx).

For a sum of two (slowly varying) AM-FM signals the
EDM algorithm produces efficient instantaneous ampli-
tude and frequency estimates; e.g., consider the sum of



two sinusoidally modulated and spectrally close AM-FM
signals 2

z[n] = Zai[n]cos(/nﬂi[m]dm)

=1
Qi[n] = Qei 4 Qumicos (Qrin + 6)
ai[n] 14+ kicos(Qain+6:) , =1, 2

INSTANTANEOUS FREQUENCY 1/ PI

with parameters

Q. = %, % + %, k; = 0.08,0.07, 6, =0,7
™ R R R O P
6125,0 Qaz—sz—sz— 150 °

In Fig. 2(a)-(d) we show the smoothed (5-pt median fol-
lowed by moving average filter) instantaneous amplitude
and frequency estimates and the actual quantities. The
coeflicients signals c¢1, ¢z are also median pre-filtered.

Overall, the EDM algorithm [15] is efficient because
it exploits the natural symmetry of the signal mixture
to estimate a minimal number of coefficients of the gen-
erating differential/difference equation and uses differen-
tial/quadratic energy operators that have a low complexity
and excellent time resolution. It also has lower complexity
and yields smaller estimation errors than the algorithm in
[17] which uses operators based on the determinant of 4 x 4
Toeplitz matrices.

For the separation and demodulation of two compo-
nent signals in additive white Gaussian noise (AWGN),
we first filter the noisy two component signal with a single
bandpass filter, with the center frequency set to the av-
erage carrier frequency and bandwidth set to the sum of
the component Carson bandwidths. The EDM algorithm
is then applied on this filtered signal to produce amplitude
and frequency estimates for each component.

An alternative scheme we developed for separation and
demodulation of two-component FM signals in AWGN is
the cross-coupled ESA: i.e., to use the ESA in a cross-
coupled configuration in an iterative fashion. Initial sig-
nal separation is accomplished by bandpass filtering the
multicomponent signal using two Gabor filters as in [9].
Separation for subsequent iterations is accomplished by
subtracting an estimate of the second component from the
mixture to obtain an estimate of the first component. The
demodulation is accomplished by applying the ESA to the
separated components. The instantaneous frequency and
amplitude estimates are then used to resynthesize the com-
ponents for the next iteration.
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