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ABSTRACT

As an extension of the conventional Fourier transform and as a

time-frequency signal analysis tool, the fractional Fourier transforms

(FRFT) are suitable for dealing with various types of non-stationary

signals. Computation of the discrete fractional Fourier transform

(DFRFT) and its chirp concentration properties are both dependent

on the basis of DFT eigenvectors used in the computation. Several

DFT-eigenvector bases have been proposed for the computation of

transform, and there is no common framework for comparing them.

In this paper, we compare several different approaches from a con-

ceptual viewpoint and review the differences between them.

We discuss five different approaches to find centered-DFT

(CDFT) commuting matrices and the various properties of these

commuting matrices. We study the properties of the eigenvalues and

eigenvectors of these commuting matrices to determine whether they

resemble those of corresponding continuous Gauss-Hermite opera-

tor. We also measure the performance of these five approaches in

terms of: mailobe-to-sidelobe ratio, 10-dB bandwidth, quality fac-

tor, linearity of eigenvalues, chirp parameter estimation error, and,

finally the peak-to-parameter mapping regions. We compare the

five approaches using these performance metrics and point out that

the modified QMFD approach produces the best results in terms of

bandwidth of the spectral peak for a chirp, invertibility of the peak-

parameter mapping, linearity of the eigenvalue spectrum and chirp

parameter estimation errors.

Index Terms— Discrete fractional Fourier transform, linear chirp

signal, chirp parameter estimation, parameter estimation error, peak-

to-parameter mapping, invertibilty region.

1. INTRODUCTION

Pei, Hsue and Ding used the error-norm parameter to compare the

eigenvectors of different DFT commuting matrices [1] to check

the similarity between the eigenvector and the continuous Gauss-

Hermite(G-H) function. Serbes and Durak-Ata also used the same

parameter for comparison in [2]. These analyses only determine how

close the eigenvectors are to sampled G-H functions. As described in

[3], the linearity of the eigenvalue spectrum is another important pa-

rameter used to determine the closeness of the generating matrix to

the G-H functions. [4] further introduced the valid mapping region

criteria for peak-to-parameter mapping estimation. In addition to the

above mentioned parameters, we employed a few other parameters

to determine the best among the various CDFT commuting matrix

approaches.

Using these seven parameters we seek to determine the best CDFT

commuting matrix among the five different commuting matrix meth-

ods. The eigenvectors of these commuting matrices are related to the

continuous G-H function. Therefore, after this comparison we will

be able to find the particular commuting matrix whose eigenvectors

and eigenvalues are closest to those of the continuous G-H operator.

In addition, the comparison will allow us to measure the quality of

the peak that contains information regarding the chirp rate and center

frequency parameters.

2. COMPUTING THE DFRFT

The Dickinson and Steiglitz (D-S) Method: Dickinson and Stei-

glitz defined a DFT commuting matrix [5], whose eigenvectors look

like G-H function, as

S =















2 1 0 . . . 1
1 2 cosω 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 2 cos(N − 1)ω















, (1)

where ω = 2π
N

.

This makes the matrix S commute with the DFT. If we change the

range of n from 0 ≤ n ≤ N − 1 to |n| ≤ N−1
2

, we will have a new

S-matrix which will commute with CDFT.

i.e. [W, Scen] = W ∗ Scen − Scen ∗ W = 0, (2)

where W is the Centered DFT and Scen is the Centered version of

S-matrix Santhanam and Vargas-Rubio focused their attention on the

centered version of the DFT matrix operator W [6].

Wmn =
1√
N

e
(−j 2π

N
(m−a)(n−a))

, (3)

where the shift parameter a = N−1
2

.

The Bilinear Transformation Method: Another approach to

generating a DFT commuting matrix is introduced by Serbes and

Durak-Ata in [2]. They defined a new DFT commuting matrix as;

B = B
−1
1 E2 + WB

−1
1 E2W

−1
, (4)

where

B1 =

















k 1 0 . . . . . . 0 1
1 k 1 . . . . . . 0 0

0 1 k . . . . . .
...

...
...

...
...

. . .
. . .

...
...

1 0 0 . . . . . . 1 k

















. (5)
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E2 =

















−2 1 0 . . . . . . 0 1
1 −2 1 . . . . . . 0 0

0 1 −2 . . . . . .
...

...
...

...
...

. . .
. . .

...
...

1 0 0 . . . . . . 1 −2

















. (6)

W = DFT matrix and k = 109 is used in this paper.

The Infinite Order Second Derivative Approximation

Method: Inspired by the work of Grunbaum [7], Pei, Hsue and

Ding proposed another DFT-commuting matrix in [1], whose

eigenvectors are even closer to the continuous G-H function than

those of the Dickinson-Steiglitz matrix. The matrix proposed by

them is given as;

M2k =

k
∑

m=1

(−1)m−1 2[(m− 1)!]2

(2m)!
D

m
, (7)

where

D =

















−2 1 0 . . . . . . 0 1
1 −2 1 . . . . . . 0 0

0 1 −2 . . . . . .
...

...
...

...
...

. . .
. . .

...
...

1 0 0 . . . . . . 1 −2

















∼ the second order symmetric difference matrix.

(8)

For the purpose of this paper, we have used k = 2:

M4 =
−1

12
D

2 + D. (9)

The DFT commuting matrix based on this analysis is;

S4 = M4 + WM4W
−1

. (10)

We refer to this matrix S4, which commutes with DFT, as a higher-

order S-matrix for the purpose of this paper.

The Grunbaum Method: Another approach to obtaining the

DFT eigenvectors uses the tri-diagonal commuting matrix intro-

duced by Grunbaum [7]. Mugler and Clary modified the Grun-

baum tri-diagonal incorporating a scaling factor, and the resultant

eigenvectors very closely resemble the G-H functions [8]. The tri-

diagonal commutor of Grunbaum is defined via its diagonal and off-

diagonal elements in [8] as;

Tmn =



























−2 cos (πNτ) sin (πµτ) sin (π (N − µ− 1) τ) ,

if m = n, 0 ≤ n ≤ N − 1

sin (πµτ) sin (π(N − µ)τ) ,

if m = n+ 1, n− 1, 1 ≤ n ≤ N − 1

0, otherwise

,

(11)

where 0 ≤ µ ≤ N − 1 and τ = 1
N

.

The QMFD Method: Santhanam et. al. defined a discrete ver-

sion of the G-H differential operator H [3] that furnishes the basis

for the centered version of the DFT matrix and simultaneously has

eigenvalues and eigenvectors that closely resemble those of the con-

tinuous G-H operator. The CDFT commuting matrix is defined as;

T = c1(P
2 + Q

2) + c2C
H
1 C1 + c3I, (12)

where

c1 = 1, c2 = −c3 = − π2

N2
, N is the size of DFT matrix, (13)

P = WQW
H
, C1 = QP − PQ (14)

Qrr = q[r] =

√

2π

N
r, −N − 1

2
≤ r ≤ N − 1

2
, (15)

and I is the identity matrix of dimension N.

We changed the range of r that normally spans r ∈
[

−N−1
2

, N−1
2

]

to the zero locations of the Nth order G-H function

to see improvement in terms of linearity of the eigenvalue spectrum

and the invertibility region in the peak-to-parameter mapping, and

we found slight improvement in both metrics. Therefore, we retain

the values of r as the zero location of the N th order G-H operator

throughout the paper, and we referred to this method as ’modified

QMFD’ or ’QMOD’.

3. RESULTS

While each of the methods produce a peak in the chirp rate versus

frequency plane for a chirp signal, the sharpness and the width of

the peak varies based on the basis used. In this section, we attempt

to quantify this ability by comparing the methods with respect to

following metrics. In the ideal case, a chirp would be transformed

into a Dirac impulse for a specified center frequency and chirp rate.

Mainlobe-to-Sidelobe Ratio: For the purpose of this paper, the

ratio of the peak value to the value of the second peak is defined as

the mainlobe-to-sidelobe ratio. We can see those peak values and

side-lobes in figure 1. In order to compute mainlobe-to-sidelobe ra-

tio we first took the absolute value of the row of MA-CDFRFT ma-

trix where the peak occurs. We then consider the highest peak as

mainlobe and the second peak as sidelobe. Finally, we took the ratio

of these two values as mainlobe-to sidelobe ratio (MLSLR). Figure

2 shows the MLSLR for different combinations of cr and wc.

From these figures, it is clear that the MLSLR increases as N in-

creases only in the case of the Grunbaum basis. Also, the QMOD

method has a better MLSLR in the case of zero central frequency

until N = 512, whereas the Grunbaum method has a better MLSLR

in the case of non-zero central frequency. Therefore, we can con-

clude that the QMOD method and the Grunbaum method are the

best choice among the five methods towards attaining a better ML-

SLR. We observed that the MLSLR decreases for some methods for

higher values of N.

10-dB Bandwidth: Figure 3 shows the 10-dB bandwidth com-

parison for different combinations of cr and wc. From these fig-

ures, we can see that the bandwidth continuously decreases only

for the QMOD basis in the case of zero central frequency. And for

non-zero central frequency, the bandwidth continuously decreases as

N increases. The bilinear transformation method and the S-matrix

method have the least bandwidth for non-zero central frequency.

Quality Factor: Quality factor, also known as Q-factor, is a di-

mensionless quantity which characterizes a signal’s bandwidth rela-

tive to its central frequency. It measures the quality of the peak in

relationship with central frequency. Mathematically, it is the ratio of

the central frequency to the bandwidth of the signal. i.e.

Q− factor =
wc

BW
, (16)

where wc = central frequency and BW = bandwidth of the signal.
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Fig. 1: Plot of slice of MA-CDFRFT at r = 68 for cr = 0.001, wc =
0 and N = 256 obtained from (a) Bilinear transformation method, (b)

Grunbaum method, (c) Higher order S-matrix method, (d) QMOD

method and (e) S-matrix method.
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Fig. 2: MLSLR comparison: (a) cr = 0.001 and wc = 0 and (b)

cr = 0.0005 and wc = π
4

.
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Fig. 3: 10-dB BW comparison for (a) cr = 0.001 and wc = 0
and (b) cr = 0.0005 and wc = π

4
. The QMOD method exhibits

a steady decrease in BW with increase in N for a chirp signal with

zero central frequency. For non-zero central frequency, all the five

methods exhibit a steady decrease in BW with increase in N, but

the S-matrix method and the bilinear trasnformation method produce

best result in terms of BW.
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Fig. 4: Q-factor comparison of peak obtained for a chirp with

cr = 0.0005 and wc = π
4

. The S-matrix method and the bilinear

trasnformation method produce the best results in terms of Q-factor.

We set the central frequency as π
4

and chirp rate as 0.0005 of a

chirp signal to find the Q-factor of the peaks for all the five methods.

Therefore the signal used to find Q-factor became;

x[n] = e
j(0.0005m2+π

4
n)
, 0 ≤ n ≤ 255, m = n− 255

2
. (17)

Figure 4 depicts the Q-factor comparison for cr = 0.0005 and

wc = π
4

. From this plot, it is clear that the Q-factor increases for

all the bases as N increases, which is obvious from the previous sec-

tion, because the lower bandwidth requirement for a fixed center fre-

quency is equivalent to a higher quality factor. We can see from

the figure that the bilinear transformation method and the S-matrix

method are the best choice in terms of Q-factor considerations.

Linearity of the Eigenvalue Spectrum: As described in San-

thanam et. al. in [9] the eigenvalues of the G-H opertor are linearly

spaced. Therefore the eigenvalues of the matrices obtained from all

the five different approaches, should be linear in spacing in order to

resemble the eigenvalues of the continuous G-H operator. We first

plotted the eigenvalues of the five different matrices, to determine
the extent of the linearity of eigenvalue trum.  spec

Then we calculated the percentage of number of points  where
the eigenvalues spread linearly for different values of N. Figure 5

shows the percentage of number of points where the eigenvalues are
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Fig. 5: Percentage of points where eigenvalue spacing is linear for

the various commuting matrix approaches.
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Fig. 6: Error-norm comparison for N = 64. The QMOD method

exhibits the least error norm for smaller values of zero-crossings.

as linear as that of the continuous G-H operator.

From figure 5, it is seen that the eigenvalue spectrum from the

QMOD method best resembles that of the continuous G-H operator.

Linearity extends to about 80% of the total points which is far better

than all other methods. Furthermore, this linearity steadily increases

with increase in N, a fact consistent with the asymptotic convergence

of the QMFD matrix to the continuous G-H operator 9[ ].

Error-norm of the Eigenvectors: The eigenvectors of the matri-

ces obtained from the different approaches resemble the correspond-

ing G-H function; however they are not exactly the same. Pei, Hsue

and Ding defined the error-norm of eigenvectors as the second norm

of the difference between the eigenvectors obtained from the G-H

like eigenvector and the samples of its corresponding continuous G-

H function [1]. Figure 6 depicts the error-norm comparison for N =

64 for all the methods we discussed.

From this figure, it is clear that the error-norm increases as the

number of zero crossings increases for all the methods, as we dis-

cussed in the previous chapter. We can also see that the QMOD

method results in a very low error-norm in comparison to the other

methods. Therefore, eigenvectors of the QMOD matrix better re-

semble the eigenvectors of the corresponding G-H operator in com-

parison to the other methods from the perspective of error-norm.

Chirp Parameter Estimation Error: Subspace decomposition

techniques have been investigated for use in conjunction with the

DFRFT with the aim of providing a robust and accurate estimation

in the presence of noise 0[1 ]. Peacock and Santhanam discussed
the chirp parameter estimation error using 2D peak picking [4]. We

used parameter estimaion error as one of the bases for comparison

of five proposed approaches. We measured the parameter estimation

error of those five approaches and compared them to the Cramer-Rao

lower bound and resolution bound. Figure 7 (c), (d) show the param-

eter estimation error using 2D peak picking for central frequency and

chirp rate, for N = 256.

From this figure, we can see that the estimation error for the

QMOD method attains the resolution bound for higher SNR for both

center frequency estimation and chirp rate estimation, and the error

for the Grunbaum method is close to that of the QMOD method.

However the other three methods result in significantly more param-

eter estimation error. This is attributable to the fact that the peak-to-

parameter mapping depicts multiple disconnected regions of chirp

parameters mapping to the same peak location. We can also ob-

serve that, both the center frequency estimation and chirp rate esti-

mation errors for the bilinear transformation method do not decrease

as gradually as in other methods. This is because of the fact that the

particular combination of center frequency and chirp rate, where the

mean square error goes up, does not lie within the invertible mapping

region. Figure 7 (a), (b) show the parameter estimation error cal-

culated using the cross-hair technique combined with the minimum-

norm-subspace technique. From this figure, we can see that the chirp

parameter estimation error for the QMOD method approaches the
Cramer-Rao lower bound for chirp parameter estimation 1[1 ].

Peak-to-Parameter Mapping Region: Application of the

DFRFT to chirp parameter estimation is not meaningful if a com-

plete analysis of the invertibility of mapping is ignored. Therefore

we looked at the peak-to-parameter mapping region in the α − ω

plane to see where the mappings satisfied the connectivity and adja-

cency conditions. The connectivity criteria is satisfied when the set

of all chirp parameters that map to a single location in the chirp-rate

versus center-frequency plane form a connected set, and adjacency

criteria is satisfied when locations which are adjacent in the trans-

form plane map to adjacent regions in the chirp parameter space.

We calculated the percentage of mapping pixels , where connectivity

and adjacency conditions were satisfied. This will enable determi-

nation of the method resulting in the best valid mapping region in

comparison to the expected mapping region shown in figure 8. Fig-

ure 9 depicts the percentage of pixels in α − ω plane where both

connectivity and adjacency criteria are fulfilled.

From these mapping regions, we can see that the connectivity and

adjacency conditions are not fulfilled for large regions in the case

of the bilinear transformation method, the S-matrix method and the

higher order S-matrix method. The regions in which these two con-

ditions are violated overlap in these three cases. In the case of the

Grunbaum method, we can see that, the two conditions are not sat-

isfied in two different regions. The connectivity criteria is almost

satisfied in the diamond region for the Grunbaum method, but the

adjacency criteria is not satisfied as expected in the diamond region.

Finally, both the criteria are satisfied in almost entire region of the

α− ω plane for the case of the QMOD method.

From this comparison, we can observe that the QMOD technique

is the only method where the percentage of mapping pixels satis-

fying both the connectivity and adjacency criteria, increases as N

increases. We saw in section 3 that the linearity of the eigenvalue

spectrum increases when N increases only in the case of the QMOD

basis. We also observed that the percentage of eigenvalue linearity

for the QMOD method is far above than that of all other methods.

From figure 9, we can see that the percentage of pixels reaches al-

most 90% for the QMOD method for N = 512, which is far better
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(a)

(b)

(c)

(d)

Fig. 7: MSE performance: (a,b):Cross-hair estimation error,

(c,d):2D parameter estimation error. The MSE was calculated at

each SNR using 1000 chirps of length N = 256, in the ’safe’ range

of |α|(N − 1) + |w| = IF < 0.85π. A transform of size NXN

was used, refined using minimum norm subspace decomposition and

FFT of size R = 4096.

(a) (b)

(c) (d)

(e) (f)

Fig. 8: Valid Mapping Regions for N = 256 obtained from (a) Bilin-

ear Transformation Method, (b) Grunbaum Method, (c) Higher order

S-matrix Method, (d) QMOD Method min-norm and (e) Dickinson-

Steiglitz Method (f) QMOD Method using MUSIC.

0 100 200 300 400 500
20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 o
f 

p
ix

e
ls

N

Mapping Percentage Comparision

Bilinear Estimation

Grunbaum Estimation

2nd derivative Estimation

QMOD Estimation

D−S Estimation

Fig. 9: Plot of percentage of pixels in α − ω plane where both con-

nectivity and adjacency criteria are fulfilled. The QMOD method

exhibits a steady increase in invertibility of the peak-to-parameter

mapping with increase in N.
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than all the other methods. This confirms the fact that the QMOD

basis produces the least estimation error because it has the largest

valid peak-to-parameter mapping region in the α−ω plane. We can

also say that the valid mapping region will cover the entire α − ω

plane if N is sufficiently large for the QMOD basis.

4. CONCLUSIONS

Among the five commuting matrix methods for furnishing a basis

of DFT eigenvectors, needed for computing the DFRFT, discussed

in this paper, the QMOD method, a method in which the diagonal

matrix Q takes its diagonal as the zero crossings of the Nth order

G-H function instead of taking its diagonal as equally spaced values

used in the conventional QMFD method, produces the sharpest peak

for single chirp application. This result was verified by using differ-

ent metrics such as mainlobe-to-sidelobe ratio, the 10-dB bandwidth,

and quality factor. Also, the QMOD method produces the most lin-

ear eigenvalue spectrum. The same method results in less error-norm

than the other methods, which confirms that the eigenvectors of the

QMOD matrix are closest to that of the continuous G-H operator.

As is evident from the previous section, the QMOD method pro-

duces the least parameter estimation error for both center frequency

estimation and chirp rate estimation. This estimation error is the

closest to the Camer-Rao lower bound when it is calculated for the

QMOD method in combination with the cross-hair estimation tech-

nique. As we saw in the previous section, the QMOD method has

an invertibility region of almost 90% of the α − ω plane, which

is far better than those of the other four methods. Therefore, we

can conclude that the deviation from a fully linear eigenvalue spec-

trum of the DFT commuting matrix produces a large proportion of

peak-to-parameter mapping pixels where the invertibility criteria are

violated, and loss of invertibility results in larger chirp parameter

estimation errors.
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