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Abstract—Existing approaches for wideband FM demodulation
are based on negative feedback, frequency tracking or multirate
signal processing and heterodyning. Prior work that utilizes mul-
tirate frequency transformations for wideband-FM demodulation
is impractical for large wideband to narrowband conversion
factors such as those needed in DRFM systems.

In this paper, we present a frequency transformation approach
to wideband FM demodulation, using multirate systems, that can
accommodate large conversion factors.

Index Terms—Wideband signal, frequency demodulation, mul-
tirate systems, heterodying, adaptive linear prediction

I. INTRODUCTION

Frequency modulation signals are time-varying sinusoids of

the form:

s (t) = A cos

(∫ t

−∞
ωi (τ) dτ + θ1

)
, (1)

where the instantaneous amplitude (IA) remains constant

while the instantaneous frequency (IF) is given by

ωi (t) = ωc + ωmqi(t), (2)

where qi(t) is the normalized baseband modulated signal, and

for sinusoidal FM it becomes

ωi (t) = ωc + ωmcos(ωf t+ θ2). (3)

Sinusoidal FM signals can be expressed via Bessel function

as

s (t) = A
+∞∑

n=−∞
Jn (β) cos (ωct+ nωmt) , (4)

where Jn is the nth order cylindrical Bessel function of the

first kind. The modulation index of sinusoidal FM is defined

as the ratio β = ωm/ωf and the associated carson’s bandwidth

is given by

B = 2(β + 1)ωf . (5)

If β � 1, then it corresponds to the traditional wideband

FM setting, where the carrier-to-information-bandwidth ratio
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(CR/IB) and the carrier-to-frequency deviation ratio (CR/FD)

are defined respectively as

CR

IB
=

ωc

ωf

CR

FD
=

ωc

ωm
. (6)

Signals in this category are widely used in applications

such as speech formant tracking and analysis [1], satellite

communication [2] and DRFM system [3]. However, most

conventional demodulation techniques only perform well un-

der the narrowband assumptions of the signal where the two

parameters CR/IB and CR/FD are usually large, and fail in the

wideband setting. For example, the Hilbert transform requires

a relatively large carrier frequency of the signal to form an

accurate analytic signal approximation. Larger ratios of CR/IB

and CR/FD are beneficial for the analytic approximation and

hence help to improve the demodulation. In this paper, a

general approach that involves multirate systems as well as

heterodyning is proposed for wideband FM demodulation that

usually has a: 1) β > 2; 2) large information bandwidth. The

adaptive linear predictive IF tracking technique as described

in [4] is chosen as the demodulation method for implementing

the proposed approach. In fact, it can be integrated with other

existing FM demodulation methods, such as the zero-crossing

approach according to [5], [6] and feedback demodulation as

mentioned in [7], serving as a general framework for dealing

with wideband FM. In this paper, we demonstrate that large

wideband to narrowband conversion factors are feasible using

the proposed system with designs that are realizable.

II. MULTIRATE AND HETERODYNING SYSTEM

The motivation for incorporating the multirate and heterody-

ing systems into the demodulation framework is to apply

multirate frequency transformations (MFT) that first compress

the spectrum of wideband FM signals and then shift them into

an optimal region with large CR/IB and CR/FD ratios, where

existing demodulation techniques perform well.

A. Prior Work
Using the scaling property of the Fourier transform, com-

pression in frequency domain is equivalent to expansion in the
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time domain expressed as

y(t) = x(at) ⇐⇒ Y (ω) = X
(ω
a

)
, (7)

where a = 1/R < 1 is the factor of frequency compression.

Then IF of the compressed signal becomes a scaled version

of the input IF by a factor R expressed as

ω̃i(t) =
ωi(t)

R
=

ωc

R
+

ωm

R
qi

(
t

R

)
. (8)

Note that for compressed signal, the carrier frequency is also

scaled by the same factor R, which is undesirable since the

ratios CR/FD and CR/IB that we wish to increase still remain

invariant. Hence the heterodying operator is cascaded right

after the compression process in order to upshift the carrier

frequency to a higher level where we can attain larger CR/FD

and CR/IB ratios. The output of the heterodyne module is

given by

yush(t) = [y (t) cos (ωdt)] ∗ hBPF (t) , (9)

where ∗ denotes the convolution, ωd refers to the amount

of frequency translation and hBPF (t) represents the impulse

response of the bandpass filter. Specific for the case of

sinusoidal FM, it can be further simplified as

yush(t) � 1

2
A cos

(
φ

(
t

R

))
, (10)

where φ(t) denotes the phase of the original FM signal. The

resultant signal that has a scaled information bandwidth with

a higher CR/IB then passes through the demodulation block

for IF extraction. Eventually, the IF estimate of the original

signal is evaluated by

ωout
i (t) = R (ω̃i (Rt)− ωd) , (11)

where ω̃i(t) is the IF of the compressed signal.

As for discrete-time signals, compression and expansion can

be substituted by the corresponding multirate operations of

interpolation and decimation as described in [8] with their

properties carried over to their discrete counterparts. The block

diagram of such a MFT framework in prior work [9] is

illustrated by Fig. 1.

Interpolating the input signal will result in the reduction

of both the frequency deviation and information bandwidth

by a factor of R. Similar to increasing the sampling rate,

the IF of the interpolated signal becomes slow-varying and

the assumption that the message signal remains constant over

the carrier period is more likely to hold, which will boost

the performances of conventional demodulation algorithms.

Meanwhile, heterodying serves the purpose of increasing the

ratios of CR/FD and CR/IB by compensating for the scaled

carrier frequency. By passing through the heterodying process,

the CR/FD and the CR/IB of yush(t) are given by[
CR

FD

]
out

=

[
CR

FD

]
in

+
Rωd

ωm
(12)

[
CR

IB

]
out

=

[
CR

IB

]
in

+
Rωd

ωf
. (13)

Fig. 1. Block diagram of the prior MFT framework in [9]. The wideband
signal is first sampled above the Nyquist rate, interpolated by a factor R
and then heterodyned via multiplying cos(ωdn), followed by a discrete FIR
bandpass filter with a scaling module based on (10) to achieve MFT. Then
it goes through a demodulation block to obtain the IF estimation of the
compressed heterodyned signal. To estimate IF of the original signal, the
compressed heterodyned IF is then shifted back by subtracting ωd, decimated
by R and scaled back approapriately according to (8), followed by the DAC
module.

B. Constraints of Prior MFT System

As we look further into this framework, an important ques-

tion regarding the selection of the conversion factor R arises.

Specifically prior work [9] only deals with small multirate

compression factors. However, larger factors over hundred or

thousand can be supported by current high-speed DSP with

large memory, as in the case of DRFM system design. It is

intuitive to expect a further reduction in the demodulation error

since the gain brought by frequency compression should be

extendable through the use of a larger factor. But for really

large factors R, the passband of the lowpass filter in the

multirate operation and that of the heterodyne-BPF operation

will be scaled by R. For example, if R = 1000, we require a

lowpass filter with cut-off frequency at π/1000 and a bandpass

filter with a passband edge less than or equal to of π/1000.

However, filters with such narrow passbands are unrealistic

for direct implementation by any structure1. Thus the design

of BPF within the previous MFT framework becomes the

bottleneck that constrains the use of a very large factor.

C. Proposed System

In order to reduce the burden placed on the practical

implementation of the bandpass filter, we first consider a

different MFT framework where the order of the interpolation

operator and the heterodyning operator are exchanged. Due to

the switch of interpolation and heterodying, the CR/FD and

CR/IB parameters under this MFT framework are given by[
CR

FD

]
out

=

[
CR

FD

]
in

+
ωd

ωm
(14)

[
CR

IB

]
out

=

[
CR

IB

]
in

+
ωd

ωf
. (15)

1Narrow passband implies clustered poles and zeros that result in sensitivity
and stability issues of digital filters as described in [10].
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By comparing these ratios with (12) and (13), note that the

upshift frequency ωd in this case needs to be large enough

such that the ratios of CR/FD and CR/IB still stay at high

level. However, ωd cannot be too large such that the resultant

carrier frequency after heterodying exceeds one half of the

sampling rate, we otherwise will need to interpolate the signal

first by an appropriate factor in order to perform discrete-time

bandpass filtering after heterodyning. Hence the practical im-

plementation of MFT framework for a large conversion factor

is not as simple as just exchanging the order of interpolation

and heterodyning. Actually, an interpolation operation is still

required prior to the heterodying with an appropriate factor

that depends on the upshift frequency ωd and the sampling

frequency of the original wideband FM signal. This implies

that the overall interpolation factor can be split into two with

the first one prior to the frequency translation and the other

one right after. Then upshifting by a frequency ωd that is not

too large would result in a relatively small factor for the first

interpolation, lessening the burden of the heterodyne-BPF.

(a)

(b)

Fig. 2. (a) Block diagram of the proposed MFT framework for large wideband
to narrowband conversion factors. The interpolation module of the prior
framework is separated into two with one in fornt of the heterodyning module
and the other one right after. The first interpolation module has a relatively
small upsampling rate of R1 which is appropriately chosen such that the
discrete BPF can be implemented within the range of half the sampling rate
after heterodyning the signal with a frequency translation of ωd. The relatively
small R1 would result in a wider passband for the discrete bandpass filter,
thus reducing the its design of complexity. (b) Multistage implementation for
interpolation modules in 2(a) based on Noble identity. Note that multistage
implementation for the corresponding decimation modules can be realized in
a similar fashion.

In this paper, we propose a MFT framework for large con-

version factors illustrated in Fig. 2(a) that achieves a practical

design of the heterodyne-BPF. As previously discussed, the

interpolation module of prior framework is separated into two

with one in fornt of the heterodyning module and the other one

right after in the proposed framework. The first interpolation

module has a relatively small upsampling rate of R1 which

is appropriately chosen such that the discrete BPF can be

implemented within the range of half the sampling rate after

heterodyning the signal with a frequency translation of ωd.

The relatively small R1 would result in a wider passband

for the discrete bandpass filter, thus reducing the its design

of complexity. In general, there is a sacrifice in terms of

achievable CR/IB and CR/FD ratios for the proposed MFT

framework, however, the system suggested in prior work does

not realize large conversion factors, due to the placement of

impractical constraints on the BPF design.

To further relax the constraint imposed on filter design, we

first note that the lowpass filters in the multirate structure can

be implemented efficiently using the multirate noble identities
mentioned in [8]. As shown by Fig. 2(b), the original one stage

multirate structure is equivalent to multistage implementation

with R factorized into smaller integer factor corresponding to

each stage. As a result, the lowpass filter corresponding to

each stage will have much larger cut-off frequency and thus a

wider passband. Therefore we can conclude that the use of a

large conversion factor is primarily constrained by unrealistic

requirements on the heterodyne-BPF, which can not be easily

relaxed as in the case of the lowpass filter within the multirate

structure.

The heterodyne-BPF also plays a crucial role when we take

noise into consideration. Since the spectrum of the wideband

FM have an infinite number of spectral components, the

passband for the heterodyne-BPF is required to cover the

scaled spectrum as much as possible in order to reduce the

distortion caused by loss of spectrum when the noise is in-

considerable. In the presense of observable noise, however, the

noise introduced by covering wider ranges may significantly

corrupt the IF estimate. Due to this fact, the passband width of

the heterodyne-BPF needs to be optimized around the Carson

bandwidth to appropriately trade-off harmonic distortion and

noise related distortion [11].

In addition, a binomial smoothing module is incorporated

into the proposed framework as shown in Fig. 2(a), to further

reduce the effects of noise. Even though the FM signal is

wideband, the IF waveform itself is not necessarily wideband

in nature. In many cases, the wideband FM is primarily

generated by a large modulation index while the IF still

remains in the narrowband range. Under this assumption, by

applying the binomial smoothing we can efficiently filter out

the high frequency noise in the corrupted IF estimation. When

the SNR is high, the improvement becomes extremely evident

as we shall see later. Usually we would expect a gain between

5 dB and 10 dB in the scenario of relatively high SNR.

III. ADAPTIVE LINEAR PREDICTIVE IF TRACKING

According to the Wiener-Hopf equations [12], the optimal

coeffcients of a linear predictor are given by

wopt = R−1
xx rdx, (16)

where wopt denotes the optimal tap weight vector, Rxx

denotes the input correlation matrix and rdx denotes the
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cross-correlation between input vector and desired signal. As

summarized in [4], the prediction error filter is given by:

E (z) = 1−
L∑

l=1

goptl z−l, (17)

where
{
goptl

}L

l=1
are the coefficients of the corresponding

optimal predictor. Conditioned on the small prediction error

assumption and the further assumption that the message signal

remains essentially invariant over the sampling range of the

linear prediction filter, we end up with the approximation in

[13] through (17) given by

L∑
l=1

gl (k) exp {−jl [wc +m (k)]} � 1, (18)

where gl(k) is the weight coefficient of tap l at time index k
and m(k) is the sample of the message signal at time index

k. Then the IF of the signal of interest can be estimated by

executing the following steps: 1) Compute the coefficients of

the prediction error filter; 2) Obtain the roots of the coefficient

polynomial; 3) Calculate the phase argument of the complex

conjugate pole location of the corresponding roots.

In the previous work of Asilomar [4], adaptive algorithms

such as AS-LMS and AF-RLS have been incorporated into

the structure of linear predictor and compared with each other

based on the demodulation error. However, for both algorithms

the step-size or the forgetting factor need to be truncated

to remain within certain range . In this paper, we choose

the generalized normalized gradient descent (GNGD) [14]

for coefficients update of the linear predictor, which avoids

truncation of the adaptively adjusted step-size. The algorithm

for this GNGD linear predictive filter is summrized via

e (k) = x (k + 1)−
L∑

l=1

gl (k)x (k − L+ 1) (19)

β (k) = β(k − 1)− ρα
e(k)e(k − 1)xT (k)x(k − 1)

(‖x(k)‖22 + β(k))2
(20)

η (k) =
α

‖x(k)‖22 + β(k)
(21)

g(k + 1) = g(k) + η(k)e(k)x(k), (22)

where x(k) and g(k) denote the vectors of input and tap

weights at time index k respectively, α is the step-size parame-

ter and ρ is the offset learning rate parameter. The merit of the

GNGD algorithm lies in that the adaptation of its learning rate

provides compensation for the assumptions in the derivation

of NLMS. Due to its robustness and stability, the GNGD is

well-suited for narrowband nonstationary signal environments.

IV. SIMULATION RESULTS

In this section, we present demodulation results using the

proposed and prior MFT frameworks respectively under both

noise free and noisy environments. Note that the demodulation

performance is judged by the normalized RMS IF demodula-
tion error (NRMSE) throughout this section.
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Fig. 3. Comparison between performances of both MFT frameworks under
noise free environments. (a) Performance of the prior MFT framework with
R specifying the multirate factor and L specifying the order of BPF. (b)
Performance of the proposed MFT framework with R specifying the multirate
factor and L specifying the order of BPF.

We first look at the example of a wideband sinusoidal FM

signal that has a modulation index of 10 and the CR/IB of

20. Under a noise free environment, the performance of the

prior MFT framework is illustrated by Fig. 3(a). Note that

the performance associated with R = 1, i.e, the origin of

the performance curve corresponds to direct demodulation

by GNGD without MFT, while ωd is the normalized upshift

radian frequency translation in the range of [0, π]. By applying

a large conversion factor of R = 128, a reduction of around 40

dB in the demodulation error over direct GNGD demodulation

is attained. The result of Fig. 3(a) confirms the claim that

a large conversion factor strengthens the effect achieved by

frequency compression thus leading to significant reduction

in the demodulation error. Moreover, it reflects the fact that

the use of a larger factor requires a very high order FIR

bandpass filter with a satisfactory frequency response. For

example, R = 128, demands the order of FIR bandpass filter

to be as high as 4096, which results in unrealistic parameters

for the narrow passband. This constraint seriously limits the

implementation in a practical system for large factors.
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Fig. 4. Comparison between the previous and proposed MFT frameworks in
terms of the requirements on the heterodyne-BPF with a conversion factor
R = 128. (a) Frequency response of BPF in the previous MFT framework
with order L = 4096. (b) Frequency response of BPF in the previous MFT
framework with order L = 512. Note that the proposed framework succesfully
reduced the complexity of the design of heterodyne-BPF.

To relax the constraint, an alternative method is to apply the

proposed MFT framework, whose performance is illustrated

by 3(b). In comparison to Fig. 3(a), it can be observed that the

required order for the FIR bandpass filter is effectively reduced

at the cost of sacrificing a small amount of improvement

2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)

100



in demodulation error. For instance, when R = 128, the

order for the FIR bandpass filter drops significantly from

4096 to 512 with just 4 dB loss in performance, suggesting

no observable difference in performance between both MFT

frameworks except for the dramatic reduction of the order for

the heterodyne-BPF. Note that the frequency response of the

heterodyne-BPF in the proposed MFT framework for the case

R = 128 is illustrated by Fig. 4(b), which has much wider

passband compared to the frequency response of the BPF in

the previous MFT framework shown in Fig. 4(a) and thus

practical for implementation.
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Fig. 5. Comparison between performances of both MFT frameworks in
environments corrupted by AGWN. (a) Performance of the prior MFT
framework with R specifying the multirate conversion factor. (b) Performance
of the proposed MFT framework.

For noisy environments, the performance of the prior MFT

framework is illustrated by Fig. 5(a) for the same sinusoidal

FM signal corrupted by additive white Gaussian noise of

different SNR. Based on the observation, improvement over

GNGD demodulation without MFT varies according to the

different SNRs. For example, when the SNR is 20 dB,

the improvement is only aournd 6 dB, and when the SNR

increases to 40 dB, improvement increases to around 20 dB.

In addtion, Fig. 5(b) summarizes the results of the proposed

MFT framework in the presense of noise, indicating better

performance due to postsmoothing of the IF. For the case of

20 dB SNR, the improvement increases to 15 dB compared

with prior system. Note that the NRMSE gradually becomes

saturated as R increases, due to LTI filtering induced harmonic

distortion of the FM signals2. In contrast, the proposed MFT

approach results in a better performance, and further provides

a more practical approach to the BPF design.
In order to analyze the performance achieved by each mod-

ule of the MFT framework, we can demodulate the output after

each module (interpolation, heterodyning and postfiltering)

sequentially and compare the corresponding error (see Fig.

6). To illustrate the point that the MFT framework can be

combined with other traditional demodualtion methods, here

we replace GNGD by Hilbert transform (HT) to demodulate

the IF. On one hand, the gain through interpolation module is

more apparent with high SNR due to its sensitivity to noise.

On the other hand, the heterodyning module produces a steady

increase in gain, particularly with low SNR. It is the filtering

process inherent in the heterodyning module that accounts for

2Since they are only approximate eigenfunctions as described in [15].
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Fig. 6. Performances of demodulation via Hilbert transform (HT) after direct
input, interpolation module, heterodying module, and postsmoothing module
respectively.

its robustness to noise. The postfiltering module significantly

reduce the error since the IF spectrum for sinusoidal FM is

exactly narrowband for this example.
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Fig. 7. Demodulation performances of both MFT frameworks with conversion
factor R = 128 and normalized radian frequency shift wd = 0.1π under the
extreme senario with modulation index β = 50. (a) IF estimates (dashed
line) of GNGD under the prior MFT framework with the heterodyne-BPF
order L = 4096, (dashed-dotted line) the GNGD, and (solid line) actual IF.
(b) IF estimates (dashed line) of GNGD under the proposed MFT framework
with the heterodyne-BPF order L = 512, (dashed-dotted line) the GNGD, and
(solid line) actual IF. Note that the GNGD alone fails under this large deviation
FM signal with a modulation index as large as 50 while the GNGD combined
with both MFT frameworks maintain tracking with similar performances.

We further investigate an extreme wideband scenario under

the noise free environment, where the modulation index β is as

large as 50 and the frequency deviation is equal to the carrier

frequency with the IF varying over the entire carrier range.

For the signal of interest, the IF estimates of both the prior

and proposed MFT frameworks are illustrated by Fig. 7(a)

and Fig. 7(b) respectively. It can be observed that the GNGD

demodulation alone fails in this extreme wideband scenario,

while both the prior and proposed frameworks that exploit

MFT maintain tracking. The observation implies that both

MFT frameworks guarantee the demodulation with acceptable

performance even in the worst senarios where conventional

algorithms would normally fail.

To quantify the performance of the porposed MFT ap-

proach, we explore another scenario where the signal is a

wideband linear chirp instead of a sinusoidal FM. The short-

time spectrum of the chirp signal is illustrated by Fig. 8(a).

To validate the performance of the proposed MFT approach

, we can compare the variance of error with respect to the

chirp rate estimate with its Cramér Rao lower bound
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Fig. 8. Performance of the proposed MFT framework with a multirate conversion factor of 128 in wideband linear chirp scenario. (a) Short-time spectrum
of the wideband linear chirp. (b) Comparison of the error variance with respect to the estimate of chirp rate. Note that there is only a small gap less than 20
dB between the error variance estimate of the proposed MFT and the corresponding Cramér Rao lower bound (CRLB).

(CRLB). The chirp rate can be obtained via demodulated IF

followed by a least square estimator. In the presence of noise

with different SNRs, the result is summarized in Fig. 8(b).

Improvement over the GNGD alone is more apprent with

respect to lower SNR, indicating satisfactory performance of

proposed MFT approach in noisy condition. Also note that

the gap between the error variance estimate of the proposed

MFT and the corresponding CRLB is nearly a constant, which

can be explained directly via the loss of spectrum incurred by

filtering the FM signal.

V. CONCLUSION

A system that combines multirate processing and hetero-

dyning to accomplish wideband FM demodulation for large

wideband to narrowband factors was proposed. Prior work

combining these systems was shown to produce impractical

designs for large factors, needing bandpass filters of very high

orders and very narrow passbands. Interchanging the order of

the heterodyne and multirate modules was shown to reduce

the computational burden placed on the bandpass filter for for

large conversion factors.
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