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ABSTRACT

The conventional spectrogram is a commonly employed, time-
frequency tool for stationary and sinusoidal signal analysis. How-
ever, it is unsuitable for general non-stationary signal analysis [1].
In recent work [2], a slanted spectrogram that is based on the
discrete Fractional Fourier transform was proposed for multicompo-
nent chirp analysis, when the components are harmonically related.
In this paper, we extend the slanted spectrogram framework to
non-harmonic chirp components using both piece-wise linear and
polynomial fitted methods. Simulation results on synthetic chirps,
SAR-related chirps, and natural signals such as the bat echolocation
and bird song signals, indicate that these generalized slanted spectro-
grams provide sharper features when the chirps are not harmonically
related.

Index Terms— Spectrogram, DFrFT, slanted spectrogram, non-
harmonic chirps.

1. INTRODUCTION

The conventional spectrogram is based on the discrete Fourier trans-
form, which has sinusoids as basis functions, therefore it is unsuit-
able for signals having non-stationary component. The discrete Frac-
tional Fourier transform (DFrFT) shows promise for the analysis of
signals frequency chirping (i.e. linearly changing) [3], such as radar,
speech, bat echolation and bird songs.

The slanted spectrogram was proposed as a DFrFT based spec-
trogram in [2]. This spectrogram provides sharper features in com-
parison to the conventional spectrogram for non-stationary signals
with harmonically related chirps. The conventional spectrogram as-
sumes a multicomponent sinusoidal model over the analysis frame
while the slanted spectrogram replaces that sinusoidal assumption
with a multicomponent harmonically related chirp model. However,
most real data contains non-harmonically related chirps.

In this paper, two DFrFT based spectrograms are proposed using
polynomial fitted and piece-wise linear approaches, which provide
sharper features than the slanted spectrogram. Simulation results
for a non-harmonically related complex chirp signal, bat echolation,
bird song and radar data are presented to quantify the improvement
of the proposed spectrograms.

2. DISCRETE FRACTIONAL FOURIER TRANSFORM

The Fractional Fourier transform (FrFT) is a generalization of the
conventional Fourier transform. If time and frequency are consid-
ered as orthogonal axes, then the Fourier transform is a 90° rotation
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in this plane, while the FrFT can generate signal representations at
any angle of rotation in the plane [4]. The eigenfunctions of the FrFT
are Hermite-Gauss functions, which result in a kernel composed of
chirps. When The FrFT is applied on a chirp signal, an impulse in
the chirp rate-frequency plane is produced [5]. The coordinates of
this impulse gives us the center frequency and the chirp rate of the
signal.

Discrete versions of the Fractional Fourier transform (DFrFT)
have been developed by several researchers and the general form of
the transform is given by [3]:

2a 2a H
Xo=Wrx=VA~V'x )

where W is a DFT matrix, V is a matrix of DFT eigenvectors and
A is a diagonal matrix of DFT eigenvalues. The DFT matrix W has
repeated eigenvalues, so there is no unique set of eigenvectors for the
solution of this equation. In this paper, we use quantum mechanics
in finite dimensions (QMFD) basis because it provides the largest
valid interval in the sense of connectivity and adjacency [6]. The
DFrFT is computed using the fast algorithm described in [7], which
requires the transform size to be multiples of 4.
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Fig. 1. DFFT magnitude of a two component chirp signal whose con-
stituent components are non-harmonically related, the peak locations indi-
cate the chirp rates and the carrier frequencies. The peaks do not lie on the
same line with the zero chirp-rate, zero frequency coordinates (shown by blue
point) because of being non-harmonically related

The DFRFT has the ability to transform a linear chirp into a peak
in the chirp-rate, frequency plane. Signal model for linear chirps
shown at equation 2 where ¢, is chirp rates, wy, is the carrier fre-
quencies and M is the number of chirps.
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The conditions to be harmonically related are:

k> 2 3)

When these conditions are satisfied, it is possible to construct a
line that passes through all the peaks and the zero chirp-rate, zero fre-
quency coordinates of the DFrFT spectrums. However, this is not the
case for most of the time. When a signal has non-harmonically re-
lated chirps, the peaks do not lie on a single line that passes through
the zero chirp-rate, zero frequency coordinates. In order to better
understand this concept, we look at a simple example with a chirp
signal comprised of two non-harmonic components with chirp rates
c1,2 = [0.015,0.006] and carrier frequencies w12 = [1, 2] respec-
tively.
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Fig. 2. DFFT magnitude for the three component chirp signal whose con-
stituent components are non-harmonically related. The piece-wise linear
spectrogram (red) passes through all the peaks, the polynomial spectrogram
(yellow) passes on one peak and very close to the other two, the slanted
spectrogram (green) benefits only one peak and ignores the other two, the
conventional spectrogram (blue) ignores all the peaks. (Zoomed in angular
axis)

The motivation behind the proposed modified spectrograms is
that for a general multicomponent chirp signal, the line connecting
the zero chirp-rate, zero frequency coordinates to the largest peak
may not pass through all the spectral peaks. Therefore, a DFT based
spectrogram extracts spectrogram lines for each frame that do not
pass through all the peaks, thereby producing more shallow and
blurry results. The slanted spectrogram attains the benefit of pass-
ing all peaks only if the chirp are harmonically related so they lie on
the same line. The proposed spectrograms, the polynomial fitted and
the piece-wise linear methods take into accounts all the peaks and
attempt to benefit all the peaks to get sharper spectrogram without
requirement of harmonically related.

3. IMPROVED SPECTROGRAMS

3.1. Rewiew of Slanted Spectrogram

The slanted spectrogram uses the zero chirp-rate, zero frequency co-
ordinates and the highest peak coordinates on the DFrFT to calculate
a line equation. The points on this line populate the spectrogram for
that frame. The coordinates of the largest peak, [kp, rp], and the
zero chirp-rate, zero frequency coordinates, [(N — 1) /2, N/4], de-
fine the equation of a line that provides the value of the index r of the
slant line, rs in terms of index k.
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Fig. 3. An example of extracted spectrogram for a frame of the non-
harmonically related complex chirp signal. (a) is the conventional, (b) is
the slanted. The polynomial fitted (c) and the piece-wise linear (d) extract
peaks higher and sharper in comparison to (a) and (b).

By applying this procedure over each frame and finding the
largest peak and computing the equation of the line, a spectrogram
with sharper features than the conventional spectrogram is con-
structed [2]. This method works well if the chirp peaks lie on a
single line, i.e. if the chirps are harmonically related. However,
this is not always the case. When chirps rates are not harmoni-
cally related, the slanted spectrogram fails to produce sharp features
because it ignores certain peaks.
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Fig. 4. Spectrograms of the non-harmonically related complex chirp signal.
(a) is the conventional spectrograms and (b) is the slanted spectrogram. The
polynomial fitted (c) and the piece-wise linear (d) provide sharper features in
comparison to (a) and (b).

3.2. Piece-Wise Linear

As we mentioned before, chirps of the analysis signal manifest as
peaks in the DFrFT. When we have prior knowledge of the number
of chirps in the signal, we can use the location of all the peaks while
calculating the spectrogram rather than using only the largest peak.



This enables us to construct a sharp spectrogram even if the peaks
do not lie on the same line. The piece-wise linear spectrogram uses
the coordinates of the chirp peaks to calculate line segments. Let
[k;,, r;,] be the coordinates of peaks, M is the number of chirps and
N is size of DFrFT, piece-wise linear spectrogram for a frame, rp.,,
calculated as:
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Applying this method to each frame, we construct the piece-wise
linear spectrogram that is sharper than the slanted spectrogram. For
real signals, the DFrFT spectrum is mirrored, therefore we can only
have an even number of peaks, while for a complex signal we can
have either an even or odd number of peaks. In the special case, a
complex signal having only one chirp component, the line is calcu-
lated using the the zero chirp-rate, zero frequency coordinates, which
is exactly the same as the slanted spectrogram.
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Fig. 5. DFrFT magnitude of a frame of the bat echolation signal, blue is the
conventional, green is the slanted, yellow is the polynomial fitted and red is
the piece-wise linear spectrogram. The spectrogram lines are close to each
other because the chirps are almost harmonically related. (Zoomed in angular
axis)

3.3. Polynomial Fitted

For the polynomial fitted spectrogram, we calculate n** order poly-
nomial that fits best to the points of the chirp peaks in least square
sense. The polynomial that is found gives us the polynomial fit-
ted spectrogram segment for that frame. Applying the same pro-
cedure for each frame for different time instances, the polynomial
fitted spectrogram is constructed. The order of polynomial is a free
variable and the user can choose the order depending on the number
of chirps and the characteristics of the chirps.
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Fig. 6. An example of extracted spectrogram for a frame of the bat echola-
tion signal. Even though chirps are almost harmonically related, still the
peaks are higher and sharper for the polynomial fitted (c) and the piece-wise
linear (d) in comparison to the slanted (b) and the conventional (a) spectro-
grams.

4. SIMULATION EXAMPLES

In nature, there are many signals whose frequencies are changing
with time, e.g. chirping. Some common examples of these non-
stationary signals are bird chirps, bat echolocation signals, dolphin
sounds and speech. There are also artificial signals, like machine vi-
brations, radar waveforms, and continuous phase modulation wave-
forms.

4.1. Non-Harmonic Complex Chirp Signal

As a first simulation example, we generate a three components non-
harmonically related complex chirp signal according to the signal
model at Eq. 2. For carrier frequencies w; = 0.05, w2 = 1 and
w3 = 0.9 and chirp rates ¢.1 = 0.0039, ¢,2 = 0.003 and ¢,3 =
0.0029, respectively and for 0 < n < 355.
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Fig. 7. Spectrograms of the bat echolation signal. The conventional spec-
trogram (a) is very blurry, the slanted spectrogram (b) is sharper than the
conventional spectrogram but suffers from local blurring. The polynomial
fitted (c) and the piece-wise linear (d) provide sharper features and clearer
spectrograms.



For this signal, we calculated the conventional spectrogram, the
slanted spectrogram and the proposed polynomial fitted and piece-
wise linear spectrogram using 128 point DFrFT. For all cases, a 128
point Hanning window and an overlap of 127 is used. The order of
the polynomial is 1 for the simulation.

Figure 2 shows the calculated DFrFT for an frame. Because the
chirps are non-harmonic, the spectrum results in a series of peaks
that do not lie on a single line. The chirp peaks are marked with red
dots, the zero chirp-rate, zero frequency coordinates are shown with
a blue dot, and lines show the extracted spectrograms for this frame.
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Fig. 8. DFFT magnitude of a frame of the loon bird song data, blue is the
conventional, green is the slanted, yellow is the polynomial fitted and red is
the piece-wise linear spectrogram. (Zoomed in angular axis)

Figure 3 shows an example frame for the extracted features for
the conventional, the slanted and the proposed spectrograms. The
conventional spectrogram fails to separate the second and the third
peaks. The slanted spectrogram produces a single sharp peak, while
the polynomial fitted and the piece-wise linear were able to provide
sharper and higher peaks for all three components. This is due to
the fact that slanted spectrogram only accounts for the highest peak
whereas the polynomial fitted and the piece-wise linear take into ac-
count all of the peaks.

Figure 4 shows the conventional and the modified spectrograms
for a multicomponent complex chirp signal whose constituent com-
ponents are non-harmonically related. The polynomial fitted and the
piece-wise linear spectrograms have significantly sharper features in
comparison to the conventional spectrogram. The slanted spectro-
gram has a lot of irregularities and glitches, which is to be expected
because the chirps are not harmonically related, so the line of slanted
method does not pass through all the chirp peaks of the DFrFT. Over-
all, we can say the piece-wise linear method works best for this sig-
nal.

4.2. Bat Echolation

The bat echolation signal from the Rice University database' [8]
is a real world signal used frequently to show capabilities of time
frequency transforms. Bats find their way by sending these signals
and receiving them back. It was shown in [2] that the application
of the slanted spectrogram to this bat echolocation signal produces
sharper features than the conventional spectrogram.

IThe authors wish to thank Curtis Condon, Ken White, and Al Feng of
the Beckman Institute of the University of Illinois for the bat data and for
permission to use it in this work
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Fig. 9. An example of extracted spectrogram for a frame of the loon bird
song data. The modified spectrograms (b,c,d) have higher and sharper peaks
in comparison to the conventional spectrogram (a). The chirps are almost har-
monically related, so the improvement from the slanted (b) to the polynomial
(c) and the piece-wise (d) is not significant.

We calculated the conventional, the slanted, and the proposed
polynomial fitted and piece-wise linear spectrograms of the bat
echolation signal using 256 point DFrFT. For all cases, a 256 point
Hanning window is used and number of overlap is 255. The order
of the polynomial is 1 for the simulation.

Figure 6 depicts an example of extracted spectrogram slices.
The associated chirp rates are almost harmonically related, there-
fore the slanted spectrogram provides sharper peaks in comparison
to the conventional spectrogram. However, only one peak of the
slanted spectrogram is as sharp as the polynomial fitted and piece-
wise polynomial peaks. This is due to the fact that it utilizes only the
highest peak and ignores the other peaks.

Conventional Old Slanted
2000
1500
1000
500
{ 0
] 02 0.4 0.6 o 02 04 06
Time (sec) Tirne (sec)
Polynomial Piece Wise

[4 d
0 0.z 0.4 0B 0 0z 0.4 06

Time (sec) Time (sec)

Fig. 10. Spectrograms of the loon bird song data. The conventional spec-
trogram (a) is very blurry, the slanted spectrogram (b) is sharper than the
conventional spectrogram but has blurring over several time instances . The
polynomial fitted (c) and the piece-wise linear (d) provide sharper features
and clearer spectrograms.

The calculated spectrograms are shown at Fig. 7. The DFrFT
based spectrograms are significantly sharper than the conventional



spectrogram. The proposed methods produce clearer spectrograms
in comparison to the slanted spectrogram. The local blurring on
the slanted spectrogram is due to the fact that over several time in-
stances, the bat echolation signal fails to satisfy harmonically related
chirp assumption. The polynomial fitted and the piece-wise linear
results are quite similar for this signal.
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Fig. 11. DFrFT magnitude of a frame of the SAR signal, blue is the con-
ventional, green is the slanted, yellow is the polynomial fitted and red is the
piece-wise linear spectrogram. The line from the slanted spectrogram passes
through the zero chirp-rate, zero frequency coordinates and one peak, but
completely misses the second peak. (Zoomed in angular axis)

4.3. Bird Song Data

Bird songs are examples of natural signals with chirp content. We
applied the spectrograms to a bird song of loon from the Stony
Brook University database? [9]. We calculated the conventional, the
slanted, the polynomial fitted and the piece-wise linear spectrograms
of the bird song of loon using 256 point DFrFT. For all cases, a 256
point Hanning window is used and number of overlap is 255. The
order of the polynomial is 1 for the simulation.

When the chirp components are exactly harmonically related,
theoretically the slanted, the polynomial fitted with order 1 and the
piece-wise linear would give the same output, due to the fact that all
the peaks lie on the same line. The constituent chirps of the loon bird
song data are almost harmonically related, therefore we expect the
modified spectrograms to give similar results among themselves and
a sharper spectrogram in comparison to the conventional spectro-
gram. Figure 9 shows an example of the extracted slices for all spec-
trograms. The slanted spectrogram produces more or less the same
sharp features and spectral peaks as the proposed methods. This is
due to the almost harmonically related structure of the chirps.

The calculated spectrograms are shown on Fig. 10. The DFrFT
based spectrograms produces sharper features in comparison to the
conventional spectrogram. The piece-wise, the polynomial fitted and
the slanted spectrogram have similar performance. However, the
slanted spectrogram has some local blurring because the chirps of
the loon bird song data fail to satisfy to be harmonically related for
some time instances and this manifests as glithches in the slanted
spectrogram.

2The authors wish to thank Tony Phillips of Stony Brook Mathematics
Department and the Institute for Mathematical Sciences for the loon bird
song data and for permission to use it in this work
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Fig. 12. An example of extracted spectrogram for a frame of the SAR sig-
nal. The slanted spectrograms (b) has only one higher and sharper peak in
comparison to the conventional spectrogram (a). The polynomial fitted (c)
and the piece-wise linear (d) provide higher and sharper peaks for the other
two peaks.

4.4. Synthetic Aperture Radar

The last simulation example is a synthetic aperture radar signal. Re-
cently, it has been shown at [10] that the DFrFT can be a useful tool
to detect vibrations of an object via SAR. When ground targets have
small vibrations, they introduces phase modulation in returned sig-
nals of the SAR. After applying standard pre-processing of the return
signals, these small vibrations of the ground targets show themselves
on the SAR signal as the quasi-instantaneous chirp rates [10].

We use a SAR signal containing two vibrating objects with am-
plitudes of 1 cm and 2 mm at vibrating frequencies 2 Hz and 4 Hz,
respectively with system parameters described by [10] for the noise
free case. Even though the initial sampling frequency is 3.216 MHz,
a downsampling is applied on the data at preprocessing, the signal
that modified spectrograms are applied to has a sampling rate of 40
KHz. Again, we refer to the original work [10] for specifics on the
DFRFT technique and further inquiry about this application.
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Fig. 13. Spectrograms of the SAR signal. The conventional spectrogram (a)
and the slanted spectrogram (b) are very blurry. The polynomial fitted (c) and
the piece-wise linear (d) provide sharper features and clearer spectrograms.



We calculated the spectrograms of the SAR signal using 256
point DFrFT. For all cases, a 256 point Hanning window is used and
number of overlap is 255. The order of the polynomial is 1 for the
simulation.

The effectiveness of the modified spectrograms are described by
the simulation results. The radar signal is a complex signal with two
chirp rates. This is a special condition where the polynomial with
order 1 and the piece-wise spectrogram method produce the same
outputs, due to the fact that there is only one line passing through
two distinct points. Therefore, in this special case, the polynomial
fitted and the piece-wise linear gives the same results.

5. CONCLUSION

In this paper, we have presented two generalized spectrograms based
on polynomial and piece-wise linear fitting of the peaks of the dis-
crete Fractional Fourier transform. The proposed spectrograms are
able to accommodate all the peaks in the DFrFT spectrum, while
the slanted spectrogram incorporated just the largest peak. This is
appropriate when the components are harmonically related. How-
ever, when the chirps are non-harmonically related, the slanted
spectrogram suppresses the other peaks and produces local blurring.
The proposed modified spectrograms accommodate all the spectral
peaks and do not suffer from the blurring problem, thereby pro-
ducing sharper features. These generalized fractional spectrograms
were applied to a multicomponent non-harmonically related com-
plex chirp signal, a real bat echolation signal, a real bird song, and
synthetic aperture radar data with vibrating targets to quantify the
improvement.

6. REFERENCES

[1] R.J. McAulay and T. F. Quatieri, “Speech Analysis and Syn-
thesis based on a Sinusoidal Representation,” IEEE Trans.
ASSP, Vol. 34, No. 4, pp. 744-754, Aug. 1986.

[2] J. G. Vargas-Rubio and B. Santhanam, “An Improved Spec-
trogram Using The Multiangle Centered Discrete Fractional
Fourier Transform,” Proc. of ICASSP 2005, pp. 505-508.

[3] B. Santhanam and J. H. McClellan, “The discrete rotational
Fourier transform,” Sig. Process., Vol. 44, No. 4, pp. 994-998,
Apr., 1996.

[4] L. B. Almeida, “An introduction to the angular Fourier trans-
form,” Proc.of ICASSP—1993, Vol. 3, pp. 257-260, Apr., 1993.

[5] B. Santhanam and T. S. Santhanam, ‘On discrete Gauss-
Hermite functions and eigenvectors of the discrete Fourier
transform,” Sig. Process., Vol. 88, No. 11, pp. 2738-2746,
2008.

[6] D. J. Peacock and B. Santhanam, “Multicomponent subspace
chirp parameter estimation using discrete fractional Fourier
analysis,” Proc. of IASTED-2011, pp. 326-333, Dec., 2011.

[7] J. G. Vargas-Rubio and B. Santhanam, “On the multiangle cen-
tered discrete fractional Fourier transform,” IEEE Sig. Process.
Lett., Vol. 12, No. 4, pp. 273-276, 2005.

[8] C. Condon, K. White, and A. Feng, (2013, Apr), Bat
Echolocation Chirp. Rice University. [Online]. Available:
http://www.ece.rice.edu/dsp/software/bat.shtml.

[9] T. Phillips, (2013, Apr), Songs and calls of some New
York State birds. Stony Brook University. [Online]. Available:
http://www.math.sunysb.edu/ tony/birds/loons.htm.

[10] Q. Wang, M. Pepin, R. J. Beach, R. Dunkel, T. Atwood,
B. Santhanam, W. Gerstle, A. W. Doerry and M. M. Hayat,
“SAR-Based Vibration Estimation Using the Discrete Frac-
tional Fourier Transform,” IEEE Trans. on Geosc. and Rem.
Sens., Vol. 50, No. 10, pp. 4145-4156, Oct., 2012.



