Fig. 9. The searching tree after inputting the same task command for the second time (with the initial state the same as in the first time).

The desired node picked up by the explanation-based learning engine is node 28 and the generated searching template is superrior_order([next_to(_, _), on(_, _)]).

When the same task command was inputted for the second time (with the initial state the same as in the first time), the planned action sequence is the same as in the first time, yet the corresponding searching tree alters, as shown in Fig. 9, where nodes 1–4 and 25 simply correspond to nodes 1, 2, 16, 28, and 49 in Fig. 8, respectively. This time, however, the explanation-based learning engine fails to generate any other new searching template, because no desired node on the corresponding searching tree can be found, though there does be a successful leaf node.

It can be seen that the number of the nodes searched in the second time decreases almost a half than in the first time and no backtracking happens. The searching efficiency is greatly increased. The effect of explanation-based learning is significant.

V. SUMMARY

The main contributions of this paper are as follows:

1) Explanation-based learning has been accurately placed in the triangle of problem solving, i.e., with the angle of searching mechanism.

2) A problem formulation has been made for robot action planning (RAP), which gives in-depth comprehensibility of RAP, especially that of means-ends analysis searching mechanism.

3) A new learning-based method has been developed for RAP, i.e., robot action planning via explanation-based learning (RAPEL), which is aiming at computer-realized recognition and acquisition of domain-specific searching heuristics.

4) The overall scheme of RAPEL has been put forward and the principle of RAPEL has been established, and terms, notations, grammars and paradigms of Prolog language are directly employed for the purpose of strictness.

5) Configuration of node has been proposed, by which node growth can be visually illustrated.

6) Logic chart has been proposed, by which processes of synthesizing action sequences can be visually illustrated.

REFERENCES

Computational Complexity of Determining Resource Loops in Reentrant Flow Lines

F. L. Lewis, B. G. Horne, and C. T. Abdallah

Abstract—This paper presents a comparison study of the computational complexity of the general job shop protocol and the more structured flow line protocol in a flexible manufacturing system. It is shown that the representative problem of finding resource invariants is NP-complete in the case of the job shop, while in the flow line case it admits a closed form solution. The importance of correctly selecting part flow and job routing protocols in flexible manufacturing systems to reduce complexity is thereby conclusively demonstrated.

I. INTRODUCTION

In a general flexible manufacturing system (FMS) where resources are shared, a key role in part routing, job selection, and resource assignment is played by the FMS controller. Given the same resources of
complexity mining

The theory of \(\mathcal{NP} \)-completeness [5] potentially provides a comprehensive approach for analysis of computational complexity in FMS. This possibility has not been rigorously explored. Many traditional scheduling and sequencing problems have been found to be in \(\mathcal{NP} \), thus it has been necessary to develop heuristics or approximate methods for analysis and solution. It has been shown, for instance that, even for the flow line with two processors, scheduling while minimizing the maximum flow time is \(\mathcal{NP} \)-complete for both nonpreemptive and preemptive schedules [6]. For the general job shop protocol the situation is even worse (see, for example, [5, p. 242]). Branch and bound algorithms are generally used in this case. For the flow line, the lot-sizing problem is polynomial, while for the flow line with assembly it is exponential. The complexity of many problems, including the determination of the PN \(\pi \)-invariants, has not yet been determined. There is currently no comprehensive theory that provides a categorization of the complexity of analysis problems for the flow line, assembly line, and job shop. There is no formal theory describing how to impose structured flow and command protocols on an FMS to simplify its complexity.

Petri nets (PN) [13] have been extensively used in the analysis of manufacturing systems, with quite variable results. Though, ad hoc applications abound, PN have a body of theoretical results on liveness, boundedness, reachability, and so on that make them very useful in studies of FMS when seriously applied. Applications of PN are found in [2], [4], and [20]. PN approaches to the design of FMS sequencing/dispatching controllers are found in [7], [8], [14], and [19].

The PN incidence matrix \(W \) can be used to study structural properties of FMS, including determination of the siphons [1] and deadlock avoidance [11]. However, matrix applications in PN had not been fully exploited. A complete model matrix for FMS is given in [17]. In many papers [2], [7], [20], the problem of finding a binary basis for the nullspace of \(W \) is important, for such a basis defines a special class of siphons known as the \(\pi \)-invariants or resource loops. The \(\pi \)-invariants contain important structural information about an FMS, and may be used for conflict resolution in the dispatching of shared resources in such a fashion as to avoid deadlock [11]. In this paper we show that it is possible by judicious means to reveal a special structure of the PN incidence matrix in a very general class of reentrant flow lines (RFL) that can include assembly operations. This class includes the multipart flow lines discussed for instance in [9] and [12]. To reveal the importance of structure in the study of complexity for RFL, we select the representative problem of determining the \(\pi \)-invariants. It is shown that for unstructured job shop protocols this problem is \(\mathcal{NP} \)-complete, while for a general class of reentrant flow line protocols it is polynomial. For this class, an explicit matrix formula is given to compute the \(\pi \)-invariants. The importance of selecting suitable controller sequencing protocols to reduce complexity in FMS is thereby shown.

II. Complexity Theory Overview

Until recently, it was felt that decidable problems are practically solved and thus not very interesting. The introduction of computational complexity theory has since changed this misconception. Computational complexity theory is often used to establish the tractability or intractability of computational problems, and is concerned with the determination of the intrinsic computational difficulty of these problems [5].

The complexity class \(\mathcal{P} \) consists of all decision problems that can be decided in polynomial-time. In practice, such problems can be feasibly implemented on a real computer. The class \(\mathcal{NP} \) consists of those that can be decided in exponential-time. Such problems can only be run on a real computer if they are of very small dimension. The complexity class \(\mathcal{NP} \) lies in between, consisting of all decision problems that can be decided algorithmically in nondeterministic polynomial-time. An algorithm is nondeterministic if it is able to choose or guess a sequence of choices that will lead to a solution, without having to systematically explore all possibilities. This model of computation is not realizable, but it is of theoretical importance. In practice, problems in \(\mathcal{NP} \) are those for which a candidate solution can be verified to be a valid solution in polynomial-time, but the best known algorithms to find such a solution run in exponential time.

Many practical problems belong to \(\mathcal{NP} \) and it is as of yet unknown whether \(\mathcal{P} = \mathcal{NP} \). In other words, these two complexity classes form an important boundary between the tractable and intractable problems. A problem is said to be \(\mathcal{NP} \)-hard if it is as hard as any problem in \(\mathcal{NP} \). Thus, if \(\mathcal{P} \neq \mathcal{NP} \), the \(\mathcal{NP} \)-hard problems can only admit deterministic solutions which take an unreasonable (i.e., exponential) amount of time, and they require (unattainable) nondeterminism in order to achieve reasonable (i.e., polynomial) running times.

The central idea used to demonstrate \(\mathcal{NP} \)-hardness evolves around the \(\mathcal{NP} \)-complete problems. A problem is said to be \(\mathcal{NP} \)-complete if every decision problem in \(\mathcal{NP} \) is polynomial-time reducible to it. This means that the \(\mathcal{NP} \)-complete problems are as hard as any decision problem in \(\mathcal{NP} \). Given two decision problems \(\Pi_1 \) and \(\Pi_2 \), \(\Pi_1 \) is said to be polynomial-time reducible to \(\Pi_2 \) (written as \(\Pi_1 \leq_p \Pi_2 \)), if there exists a polynomial time algorithm \(R \) which transforms every input \(x \) for \(\Pi_1 \) into an equivalent input \(R(x) \) for \(\Pi_2 \). By equivalent we mean that the answer produced by \(\Pi_2 \) on input \(R(x) \) is always the same as the answer \(\Pi_1 \) on input \(x \). Thus, any algorithm which solves \(\Pi_2 \) in polynomial time can be used to solve \(\Pi_1 \) on input \(x \) in polynomial time by simply computing \(R(x) \), and then running \(\Pi_2 \). In order to show that a particular decision problem \(\Pi_2 \) is \(\mathcal{NP} \)-complete, one starts with a problem \(\Pi_1 \) which is known to be \(\mathcal{NP} \)-complete, and shows that \(\Pi_1 \leq_p \Pi_2 \). This proves that \(\Pi_2 \) is \(\mathcal{NP} \)-hard. To complete the proof that \(\Pi_2 \) is \(\mathcal{NP} \)-complete, it must be demonstrated that a candidate solution can be verified in polynomial time.

In this paper, we use the One-In-Three-SAT problem which is known to be \(\mathcal{NP} \)-complete [5] in order to show that solving a certain problem for the general job shop is \(\mathcal{NP} \)-complete. We then use the special structure of the reentrant flow line problem to show that the same problem can be efficiently obtained for the flow line. This highlights the importance of structure in flexible manufacturing systems. The One-In-Three-SAT problem is as follows:

One-In-Three-SAT:

Instance: Given a set \(U \) of variables, a collection \(C \) of clauses over \(U \) such that each \(c \in C \) has \(|c| = 3 \).

Question: Is there a truth assignment for \(U \) such that each clause in \(C \) has exactly one true literal?

Example 1: Let \(U = \{ a, b, c, d \} \) and \(C = \{ a \overline{b} c, \overline{a} \overline{b} d, \overline{c} \overline{d} \} \). Then a solution is \(a = b = \text{false} \) and \(c = d = \text{true} \).

III. Structure and Modeling of Reentrant Flow Lines (RFL)

In this section we discuss flexible manufacturing systems with several sorts of structures, including the reentrant flow line (RFL), the assembly line, and the job shop. The importance of structure and protocol in flexible manufacturing systems is highlighted. Some Petri net modeling techniques are introduced.
The result is that each part type visits the resources of jobs for each part type is fixed and the assignment of resources to the jobs is not fixed. The effect is that part routing decisions must be made during processing. In the general job shop protocol, a major issue is that the structure imposed by the controller should avoid or reduce complexity problems.

Formally, a manufacturing facility is a set \(R = \{ r_j \} \) of resources (e.g., machines, tools, fixtures, robots, transport devices, etc.) each of which has a distinct function. Each \(r_j \) can denote a pool of more than one machine that performs the same function. The resources operate on parts; parts of the \(j \)th type are denoted \(\pi_j \). A job sequence for part type \(\pi_j \) is a sequence of \(P_j \) jobs \(J_j = \{ J_{j1}, J_{j2}, \ldots, J_{jP_j}\} \) required to produce a finished product. The sequence of jobs may be determined from a task decomposition, bill of materials, assembly tree, or precedence matrix [16]. If each job is performed on a single part and delivers a single part there is said to be no assembly.

If a single resource is needed for each job, for instance, this corresponds to a pairing \((J_{kj}, r_j) \) of the \(k \)th job for part \(\pi_j \) with a resource \(r_j \). The ordering of the jobs for a given part type can be either fixed or variable. Likewise, the resources assigned to each job can be either fixed or variable.

In the general job shop the sequence of jobs is not fixed, or the assignment of resources to the jobs is not fixed. The effect is that part routing decisions must be made during processing. In the flow line the sequence of jobs for each part type is fixed and the assignment of resources to the jobs is fixed. The result is that each part type visits the resources in the same sequence, though different part types may have different sequences. The sequence in which part type \(\pi_j \) visits the resources in a flow line will be called the \(j \)th part path. Once the resources have been assigned to jobs, this resource sequence is defined by the job sequence \(J_j \), which is therefore used to denote the \(j \)th part path.

A flow line is said to reentrant if any part type revisits the same resource more than once in its job sequence [9], [12]. This occurs if the same resource is assigned to different jobs in the part’s sequence. A sample reentrant flow line is given in Fig. 1. In this figure, \(R1 \) and \(R2 \) could be transport robots, for instance, that move the parts between certain tasks; \(B1, B2 \) could be buffers; and \(M1-M4 \) could be machines. Thus, the resources may include machines, robots, buffers, transport devices, fixtures, tools, and so on.

B. Petri Net Representation of RFL

A Petri net (PN) is a bipartite (e.g., having two sorts of nodes) digraph described by \((P, T, I, O) \), where \(P \) is a set of places, \(T \) is a set of transitions, \(I \) is a set of (input) arcs from places to transitions, and \(O \) is a set of (output) arcs from transitions to places. In our application, the PN places represent manufacturing resources and jobs, and the transitions represent decisions or rules for resource assignment/release and starting jobs. The PN representation for the reentrant flow line in Fig. 1 is shown in Fig. 2, where the places are drawn as circles and the transitions as bars. The flow line structure is evident in the parallel part type paths, interconnected by shared resource places (e.g., \(B1, M2 \)) that service jobs for several part types. Note that along one part path, some resources (e.g., \(R1, R2 \)) are used more than once, so that this flow line is reentrant. Each part path in the figure has a set of pallets denoted by \(P.A1, P.A2 \); one pallet is needed to hold each part entering the cell. Places ending in \(P \), all on the job paths, correspond to jobs in progress. Places ending in \(A \) correspond to the availability
of resources. In the reentrant flow line, note that all transitions occur along path parts, and exactly one transition feeds into its succeeding job place.

It is common in PN theory to represent the sets of arcs I and O in the PN description (P, T, I, O) as matrices. Thus, element i_{ij} of matrix I is equal to 1 if place j is an input to transition i. Element O_{ij} of matrix O is equal to 1 if place j is an output of transition i. Otherwise the elements of I, O are set to 0. Matrix I is called the input incidence matrix, and O the output incidence matrix. Both matrices are considered as maps from P to T. Then, the PN incidence matrix is defined as

$$W = O - I.$$ \hspace{1cm} (1)

A column vector p indexed by the set of all places P is called the PN p-vector (place vector). The PN marking vector is the marking vector $m(p)$ defined as follows.

Definition 1—Marking and Support: Given a PN, the PN marking is the number of tokens in each place in the net. Given a place $p \in P$, the marking of p, $m(p)$, is the number of tokens in p. Given a vector of places $p = [p_1, p_2, \ldots, p_N]^T$, the marking $m(p)$ is the vector $m(p) = [m(p_1), m(p_2), \ldots, m(p_N)]^T$ of markings of the individual places. The support of a vector is the set of its elements having nonzero values.

It is common to simplify the notation so that $m(t)$ denotes the marking vector $m(p)$ at time t. Then, in terms of the PN incidence matrix, one can write the PN marking transition equation

$$m(t_2) = m(t_1) + W^{\top} \tau = m(t_1) + (O - I)^{\top} \tau \hspace{1cm} (2)$$

where $m(t)$ is the PN marking vector at time t, $t_1 < t_2$, and τ is a vector denoting which transitions have fired between times t_1 and t_2; element $\tau_i = n_i$ if the ith transition has fired n_i times in the interval.

Central to the study of resource allocation in RFL are the following notions.

Definition 2—p-Invariant and Resource Loop: A p-invariant is a place vector p having elements of zeros and ones that is in the nullspace of W, that is

$$Wp = 0. \hspace{1cm} (3)$$

The set of places corresponding to the support of p is known as a resource loop, also loosely called a p-invariant.

The importance of p-invariants may be understood by noting that, beginning with (2), for any p-invariant p one has

$$p^T m(t_2) = p^T m(t_1) + p^T W^{\top} \tau = p^T m(t_1). \hspace{1cm} (4)$$

Noting that premultiplication by p^T simply sums up the tokens in the positions of $m(\cdot)$ corresponding to the support of p, this is seen to be a statement that the total number of tokens in positions of $m(\cdot)$ corresponding to the support of p is conserved. That is the p-invariants define those loops in the PN within which the numbers of tokens are conserved. These conservative loops defined by the p-invariants are the resource loops.

The complete set of p-invariants of a PN, which defines the resource loops, gives a great deal of structural information in a RFL. They have been extensively studied in work by Desrochers [2], DiCesare et al. [7], Zhou et al. [20], and elsewhere. A common requirement in “well-defined” PN is that each job should be contained in a resource loop, i.e., the PN should be covered by p-invariants. They provide the basis for several FMS control techniques that involve dispatching of shared resources. In [11] it is shown that they provide the basis for deadlock avoidance algorithms. In [1] is given a complex algorithm for determining p-invariants. In Section V we shall give an explicit matrix formula for p-invariants for a large class of reentrant flow lines.

IV. COMPUTATIONAL COMPLEXITY OF FINDING THE p-IN VARIANTS IN THE JOB SHOP

To find the p-invariants it is necessary to solve (3), determining a basis for the nullspace of W that has only ones and zeros. In this section, we show that finding such a binary basis is an \mathcal{NP}-complete problem for the general job shop structure. Then, in Section V, it is shown that for the reentrant flow line, with or without assembly, an analytic solution can be given for the problem.

Theorem 1: The problem of finding a binary basis for W in the general job shop is \mathcal{NP}-complete.

Proof: In order to solve the general job shop problem, we need to find a basis of the nullspace of the incidence matrix W. Since W contains coefficients $w_{ij} \in \{-1, +1, 0\}$ and since a meaningful basis of its nullspace will have vectors p whose entries p_i also belong to $\{0, +1\}$, the problem is equivalent to finding p such that $\sum w_{ij}p_i = 0; \forall j$. Note however, that the zero vector $p_i = 0.$ $\forall i$ should be excluded. We shall then define the following problem:

Matrix Basis:

Instance: An $n \times 2n$ matrix $A \neq 0$ with entries in $\{-1, 0, 1\}$.

Fig. 3. Petri net of reentrant flow line with assembly.
Question: Does there exist a vector \(x \neq 0 \) with entries in \(\{0, 1\} \) such that \(Ax = 0 \) and prove that \(\text{MATRIZ BASIS} \) is \(\mathcal{NP} \)-complete by transformation from \(\text{ONE-IN-3SAT} \).

We begin with a proof for \(A \) of size \(n \times m \) and then later show how to augment the matrix to make it of size \(n \times 2n \).

Let \(n = |U| + |C| \) and \(m = 2|U| + 1 \), where \(U \) and \(C \) are the sets of variables and clauses in the instance of \(\text{ONE-IN-3SAT} \). The columns of \(A \) (and thus the components of the vector \(x \)) will correspond to complemented and uncomplemented assignments of the \(|U| \) literals and an auxiliary variable \(z \), i.e.,

\[
x = [x_1 \bar{x}_1 x_2 \bar{x}_2 \cdots x_n \bar{x}_n z]'.
\]

A valid solution vector will correspond to each component of \(x \) being equal to 0 or 1 depending on whether the corresponding literal is true or false. All nontrivial solutions will have \(z = 1 \).

The first \(|U| \) rows of \(A \) are used to insure that the solution vector is a valid truth assignment to the literals, i.e., so that value assigned to \(x_i \) will be the logical complement of the value assigned to \(\bar{x}_i \). Specifically, the first \(|U| \) rows are configured as,

\[
a_{i,j} = \begin{cases} 1, & j \in 2i - 1, 2i \\ -1, & j = 2|U| + 1 \\ 0, & \text{otherwise}. \end{cases}
\]

The remaining \(|C| \) rows are used to satisfy the requirement that exactly one literal in each clause is true. Specifically, denote a literal by \(\bar{x}_i \) (i.e., \(\bar{x}_i \in \{x_i, \bar{x}_i\} \)), and denote the \(i \)'th clause by \(c_i = \bar{x}_{p_i} \bar{x}_{q_i} \bar{x}_{r_i} \). Then set

\[
a_{i,j} = \begin{cases} 1, & j = 2s - 1 \quad \bar{x}_s = x_s \quad s \in \{p_i, q_i, r_i\} \\ 1, & j = 2s \quad \bar{x}_s = \bar{x}_s \quad s \in \{p_i, q_i, r_i\} \\ -1, & j = 2|U| + 1 \\ 0, & \text{otherwise}. \end{cases}
\]

Every solution besides the trivial solution must have \(z = 1 \) since if \(z = 0 \) then the first \(|U| \) rows of \(A \) will guarantee that every other entry will also be equal to zero. The same rows will guarantee that for nontrivial solutions exactly one of \(x_i \) and \(\bar{x}_i \) will be equal to one. The last \(|C| \) rows of \(A \) will only be satisfied by nontrivial solutions such that exactly one literal of each clause is true.

The first part of the proof shows that the theorem holds for a variety of values of \(n \) and \(m \). However, it is not directly applicable to the case where \(2n = m \) since this would imply that \(2(|U| + |C|) = 2|U| + 1 \), or \(2|C| = 1 \). Since this can never be achieved by direct transformation from \(\text{ONE-IN-3SAT} \), we modify \(A \) by adding one additional row and \(2|C| + 1 \) additional columns, i.e., construct the augmented matrix \(A' \)

\[
A' = \begin{bmatrix} A & B \\ C & D \end{bmatrix}
\]

where \(B \) and \(C \) are matrices of zeros of sizes \((|U| + |C|) \times (2|C| + 1) \) and \(1 \times (2|U| + 1) \), respectively, and \(D \) is a matrix of ones of size \(1 \times (2|C| + 1) \). The last row insures that the last \(2|C| + 1 \) components of the solution vector must be equal to zero, but these variables in no way interfere with the construction above. The augmented matrix is of size \(n \times 2n \) where \(n = |U| + |C| + 1 \).

The transformation is easily done in time linear in the size of the matrix, which is quadratic in \(|U| \) and \(|C| \). Therefore, we have shown that \(\text{MATRIZ BASIS} \) is \(\mathcal{NP} \)-hard. On the other hand, one can easily verify the existence of \(p_i \) as a member of the nullspace of \(W \) which then proves that the problem is \(\mathcal{NP} \)-complete.

V. COMPUTATIONAL COMPLEXITY OF FINDING THE \(p \)-INVARIANTS IN THE FLOW LINE

Though finding the \(p \)-invariants in a general job shop protocol is \(\mathcal{NP} \)-complete, in this section a special job shop protocol is imposed that allows one to give an analytical solution to this problem, so that the complexity is polynomial. This protocol corresponds to a large class of reentrant flow lines with or without assembly, including those with multiple part types. Included particularly are all the reentrant flow lines without assembly treated in references such as [9] and [12]. The importance of structure in an FMS is thereby shown in regards to computational complexity, so that care should be taken in selecting job sequencing and routing strategies in FMS.

A. Structure of the Reentrant Flow Line

In the reentrant flow line with or without assembly, e.g., Fig. 2, denote the set of jobs for part type \(j \) as \(J_j \), and the set of all the jobs as \(J = \bigcup_j J_j \). The set \(J_j \) will also be used to denote the \(j \)'th path. It is noted that the part input places \(PI \) and part output places \(PO \) are not included as jobs (they are not important for determining the structure of RFL). Places that occur off the part paths represent the availability of resources; denote by \(R \) the set of all such places. The set of PN places is given by \(P = J \cup R \), the set of resources plus the set of jobs. Note that all transitions occur along the part paths.

Partition the PN marking vector \(p \) as

\[
p = \begin{bmatrix} v \\ r \end{bmatrix}
\]

where \(v \) is the vector of places corresponding to the jobs \(J \) and \(r \) is the vector of places corresponding to the resources \(R \) [2], [17]. Then, referring to the \(p \)-invariant definition (3), the PN incidence matrix has the compatible structure

\[
W = [W_v, W_r] = [S^T - F = [S^T_v - F_v, S^T_r - F_r]]
\]

where \(S^T_v \), \(S^T_r \) are the output incidence matrices of the jobs and resources, respectively, and \(F_v, F_r \) are the input incidence matrices of the jobs and resources, respectively.

In the RFL, matrices \(F_v, F_r \) have rows corresponding to the transitions that are inputs to the succeeding job. Matrix \(F_v \) has columns corresponding to jobs while matrix \(F_r \) has columns corresponding to resources. Therefore, Matrix \(F_v \) is the well-known Steward sequencing matrix [16], assembly tree, or the bill of materials (BOM) [3] in manufacturing; it has element \((i, j) = 1 \) if job \(i \) is a prerequisite for job \(j \). Matrix \(F_r \) is the resource requirements matrix used in [10], it has element \((i, j) = 1 \) if resource \(j \) is required for job \(i \).

An example of these constructions is provided by the reentrant flow line in Fig. 3. This flowline has an assembly operation as two part paths join to form one at transition \(x_1 \), corresponding to the assembly of parts \(b \) and \(c \) to form subassembly \(d \). Define the job vector as \(v = [b, c, d, f]^T \), the resource vector as \(r = [B1A F1A B1A B2A B4A M1A]^T \), and the PN place vector as \(s \). Define the vector of transitions \(x \) as having components of \(x_i; i = 1, 7 \). Then, by inspection one determines the following matrices. The partitioning shown corresponds to the two part
paths, a partial path with two transitions and a complete path with five transitions
\[
S_v = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{bmatrix}
\]
\[
S_r = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]
\[
F_v = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{bmatrix}
\]
\[
F_r = \begin{bmatrix}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Using (6) one now has the PN incidence matrix in (9), shown at the bottom of the page, where the partitioning now distinguishes the job places from the resource places.

1) Definition of a General Class of Reentrant Flow Lines: The subsequent analysis deals with the broad class of reentrant flow lines now defined. This class is more general than the one in [4] as it allows assembly operations as well as the use of more than one resource per job (e.g., tool, fixture, and machine) as in [7]. Included also are all the reentrant flow lines without assembly treated in references such as [9] and [12]. Some preliminary definitions are needed.

Definition 3—Complete and Partial Part Paths: Given a reentrant flow line with assembly, define a complete part path as one that terminates in an output product (e.g., a PO place in the PN), and a partial part path as one that merges with another path in an assembly operation.

Note that each complete part path terminates in an extra transition that feeds the part output place and is required to release the pallets, if any are used in that corresponding part path.

It is important to order the job places correctly to obtain a lower triangular matrix. The following properties.

Note that each complete part path terminates in an extra transition that feeds the part output place and is required to release the pallets, if any are used in that corresponding part path. The class of reentrant flow lines with or without assembly is defined by two sub-classes that satisfy the following properties.

1) For all places \(p \in P \), one has \(\{p \cap \emptyset = \emptyset \) (the empty set. (No self-loops.)

2) For each part path \(J \), the first transition satisfies \(x_{j1} \cap R = \emptyset \) and, if the path is complete the last transition satisfies \(x_{ji} \cap R = \emptyset \). (Each part path has a well-defined beginning and end.)

3) For each resource \(r \in R_0 \), one has \(r \in \bigcap P \neq \emptyset \). (Every job requires at least one resource.)

\[
W = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 1
\end{bmatrix}
\]
2) Special Form of the Incidence Matrices: The reentrant flow line definition and lemma mean that the PN matrices in (6) have a particular form. Refer to (7)–(9) in the following discussion. Matrices F_ν, S_ν^T consist of possibly nonsquare diagonal blocks, one per path part. In S_ν^T these are identity matrices with, in the case of complete paths, an appended bottom row of zeros. In F_ν these are identity matrices with, in the case of complete paths, an appended top row of zeros. If there is assembly there will be some 1's in F_ν below the diagonal blocks, where a 1 in element (i, j) means that place j is the last place in a partial part path and joins transition i in another part path.

Matrices F_ν, S_ν^T are related as follows. If the ith transition is not the last transition in a partial part path, and there is an entry of 1 in position (i, j) of F_ν, meaning resource j is committed at transition i, then there is an entry of 1 in position $(i + 1, j)$ of S_ν^T, meaning that the resource is released at the next transition. If the ith transition is the last transition in a partial part path, and there is an entry of 1 in position (i, j) of F_ν, then there is an entry of 1 in position (k, j) of S_ν^T, meaning that the resource is released at the assembly transition k.

This structure results in a particularly convenient form of the PN incidence matrix $W = [S_\nu^T - F_\nu, S_\nu^T - F_\nu] \equiv [W_c, W_r]$. Block W_c has diagonal blocks having 1's on the diagonal and −1's on the subdiagonal, with some −1's below these blocks in the case of assembly operations. In each column, matrix W_c has a −1 immediately followed by a 1, except in the case of assembly where the occurrence of the following 1 is shifted down to the assembly transition. In the case of shared resources, there is more than one −1, 1 pair in the column. In columns corresponding to pallets, the 1 occurs at the beginning of the associated diagonal block of W_c and the −1 at its end.

B. Algorithm for Computation of the p-Invariants

For the reentrant flow line, an algorithm for determining all the p-invariants in a polynomial number of operations is given by the following theorem.

Theorem 2—Computation of a Set of Independent p-Invariants: Let there be given the PN matrices (6) for a flow line satisfying Definition 7, with places in the job vector v ordered in the causal ordering specified in Section V-A. Form matrices \hat{F}_ν, \hat{F}_ν, by deleting the rows of F_ν, F_ν corresponding to the extra terminating transitions in each complete part path. Form matrices \hat{S}_ν, \hat{S}_ν, by deleting the columns of S_ν, S_ν, corresponding to the extra terminating transitions in each complete part path. Then, the complete set of p-invariants (resource loops) is given by the columns of the matrix

$$P = \left[(\hat{S}_\nu - \hat{F}_\nu)^{-1}(\hat{S}_\nu - \hat{F}_\nu) \right]^{-1}$$

(11)

where I is the identity matrix.

Proof: The p-invariants are defined using (3) where W is given by (6) and, for the reentrant flow line, W_c, W_r have the special form noted in Section V-A2. This shows that the p-invariants are defined by

$$[W_c, W_r] \begin{bmatrix} v \\ r \end{bmatrix} = 0.$$

with v a vector of job places and r a vector of resource places, or $W_{c,r} = 0$.

To construct a special left inverse of W_c to solve this equation for v_r, delete the extra last transitions in the complete part path to define

$$W = S^T - F \equiv [S^T - F, S^T - F] \equiv [W_c, W_r].$$

This makes matrix W_c square. This is allowed as the deleted rows of W_c are in the row space of the remaining rows. Then, the p-invariants are defined by $W_c r = 0$, so that $v = W_{c,r}^{-1} W_r$ for any r. To obtain a basis for nullspace W, set $r = I$, the identity, resulting in (11).

It is required now to show that the resulting v is binary. According to the discussion in Section V-A2 on the special structure of the DE matrices, W_c, lower block triangular with blocks on the diagonal corresponding to each part path and having the form

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{bmatrix}$$

The inverse of such a block is

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}$$

which appears as the corresponding diagonal block of W_c^{-1}. In the case of assembly, there are some entries in W_c^{-1} below these diagonal blocks. Specifically, if there is a subdiagonal entry of −1 in position (i, j) of W_c, the meaning is that there is a partial part path J_i whose last place j feeds into an assembly transition i in a part path J_0. In this event, the lower off-diagonal block corresponding to the diagonal blocks J_i and J_0 is zero, but filled with 1’s on rows i and below.

Now one must turn to the structure of $-W_r$. Since resources are always committed prior to their release, and all jobs have unity duration, the entries in any column of $-W_r$ consist in the case of no assembly of 1’s followed immediately by −1’s. It is easy to see that such entries multiplied by blocks such as (a) always result in elements of 0 or 1 in v. In the case of an assembly with partial part path J_i, feeding into part path J_0, an entry of 1 on the row corresponding to the last transition of partial path J_i is followed in any column by a −1 in row i, where transition i is the assembly transition in path J_0. However, this corresponds to the beginning of the fill of 1’s in block (J_0, J_i) of W_r^{-1}, and hence $W_{c,r} W_r$ can be seen to yield only entries of 0 or 1 in v.

Using the formula in the theorem allows one to compute mathematically the resource loops for very large flow lines where it is very difficult to obtain any results by inspection.

VI. CONCLUSION

The resource loops or p-invariants of a reentrant flow line yield important information useful in job sequencing control and in assignment of shared resources to avoid deadlock. They are determined by finding a binary basis for the nullspace of a certain matrix. We have shown by reduction from the ONE-IN-3SAT problem that finding a binary basis for the nullspace of the p-invariant matrix is \mathcal{NP}-complete in the general job shop problem. For a large class of reentrant flow lines with assembly, however, we exhibited a closed-form solution for a binary basis. The importance of correctly selecting part flow and job routing protocols in flexible manufacturing systems is thereby conclusively demonstrated.

REFERENCES

