Estimation on Graphs from Relative Measurements

Distributed algorithms and fundamental limits

Prabir Barooah João P. Hespanha

Sensor networks are collections of interconnected nodes equipped with sensing and computing capability that are deployed in a geographic area to perform some form of monitoring tasks. Networks consisting of a large collection of such nodes are currently under development or envisioned for the near future [1, 2]. Usually a node can communicate with only a small subset of other nodes. These constraints on the communications define a graph whose vertices are the nodes and the edges are the communication links. In many such situations, nodes lack knowledge of certain global attributes, for example, their own positions in a global reference frame. However, nodes might be capable of measuring the relative values of such attributes with respect to nearby nodes. In such a scenario, it would be useful if the nodes could estimate their global attributes from these relative measurements. We describe three scenarios below that provide motivation for these problems.

Consider the problem of localization in sensor networks. A large number of sensors are deployed in a region of space such that the sensors do not know their positions in a global coordinate system. Every sensor can measure its relative position with respect to a set of nearby sensors. These measurements could be obtained, for example, from range and bearing (angle) data (see Figure 1). In particular, two nearby sensors \(u \) and \(v \) located in a plane at positions \(p_u \) and \(p_v \), respectively have access to the measurement

\[
\zeta_{u,v} = p_u - p_v + \epsilon_{u,v} \in \mathbb{R}^2,
\]

where \(\epsilon_{u,v} \) denotes some inevitable measurement error. The problem of interest is to estimate positions of all sensors in a common coordinate system based on this type of noisy relative
position measurements. One of the sensor is assumed to be at the origin to remove the ambiguity that arises out of all sensors having only measurements of relative positions.

In the second scenario, consider the time-synchronization problem. Imagine a group of sensing nodes that are part of a multi-hop communication network. Each node has a local clock but the times measured by the clocks differ by constant values, called clock offsets. However, nodes that communicate directly can estimate the difference between their local clocks, typically by exchanging “hello” messages that are time-stamped with local clock times. Consider a pair of nodes \(u \) and \(v \) that can communicate directly with each other and that have clock offsets \(t_u \) and \(t_v \) with respect to a reference clock. By passing messages back and forth, the nodes can measure the relative clock offset \(t_u - t_v \) with some error

\[
\zeta_{u,v} = t_u - t_v + \varepsilon_{u,v} \in \mathbb{R},
\]

where \(\varepsilon_{u,v} \) denotes the measurement error (see Figure 2). The task is now to estimate the clock offsets with respect to the global time as accurately as possible. The global time could simply be the local time at some reference node. This problem is considered in [3], though the measurements are modeled in a slightly different manner.

In the third scenario, consider a motion consensus problem. Several mobile agents move in space. Every agent would like to determine its velocity with respect to the velocity of a “leader,” but the agents can only measure their relative velocities with respect to nearby agents. These measurements could be obtained, for example, using vision-based sensors. In particular, two nearby agents \(u \) and \(v \) moving with velocities \(\dot{p}_u \) and \(\dot{p}_v \), respectively have access to the measurement

\[
\zeta_{u,v} = \dot{p}_u - \dot{p}_v + \varepsilon_{u,v} \in \mathbb{R}^3,
\]

where \(\varepsilon_{u,v} \) denotes measurement error. The task is to determine the velocity of each agent with respect to the leader based solely on the available relative velocities between pairs of neighboring agents.
Graph-induced measurement model and optimal estimate

The problems described above share the common objective of estimating the values of node variables \(x_1, x_2, \ldots, x_n \in \mathbb{R}^k \), \(k \geq 1 \) from noisy relative measurements of the form

\[
\zeta_{u,v} = x_u - x_v + \varepsilon_{u,v}, \quad u, v \in \{1, 2, \ldots, n\},
\]

where the \(\varepsilon_{u,v} \)'s are zero-mean noise vectors with associated covariance matrices \(P_{u,v} = E[\varepsilon_{u,v}\varepsilon_{u,v}^T] \). The measurements are assumed to be uncorrelated with one another, that is, \(E[\varepsilon_{u,v}\varepsilon_{p,q}^T] = 0 \) unless \(u = p \) and \(v = q \). This estimation problem can be naturally associated with the directed graph \(G = (V, E) \), which we call the measurement graph. For more details on directed graphs and the terminology associated with them, please see the sidebar “Graph Theoretic Definitions”. The vertex set of the measurement graph consists of the set of nodes \(V := \{1, 2, \ldots, n\} \) and its edge set \(E \) consists of all the ordered pairs of nodes \((u, v) \) for which a noisy measurement of the form (1) is available.

By stacking together all of the measurements into a single vector \(z \), all node variables into one vector \(X \), and all of the measurement errors into a vector \(\varepsilon \), we can express all of the measurement equations (1) in the compact form

\[
z = A^T X + \varepsilon,
\]

where \(A \) is uniquely determined by the graph \(G \). To construct \(A \), we start by defining the incidence matrix of \(G \), which is defined in the sidebar “Graph Theoretic Definitions”. Figure 3 shows an example of a measurement graph and its incidence matrix. The matrix \(A \) that appears in (2) is an expanded version of the incidence matrix \(A \), defined by \(A := A \otimes I_k \), where \(I_k \) is the \(k \times k \) identity matrix and \(\otimes \) denote the Kronecker product. Essentially, every entry of \(A \) is replaced by a matrix \(a_{ue} I_k \) to form the matrix \(A \) (see Figure 3).

Just with relative measurements, determining the \(x_u \)'s is only possible up to an additive constant. To avoid this ambiguity, we assume that at least one of the nodes is used as a reference and therefore its node variable can be assumed known. In general, several node variables may be
known and therefore we may have several references. The task is to estimate all of the unknown node variables from the measurements.

By partitioning X into a vector x containing all of the unknown node variables and another vector x_r containing all of the known reference node variables, we can re-write (2) as

$$z = A_r^T x_r + A_b^T x + \varepsilon,$$

or,

$$z - A_r^T x_r = A_b^T x + \varepsilon,$$ \hspace{1cm} (3)

where A_r contains the rows of A corresponding to the reference nodes and A_b contains the rows of A corresponding to the unknown node variables.

The estimation of the unknown node-variables in the vector x based on the linear measurement model (3) is a classical estimation problem. When ε is a random vector with zero mean and covariance matrix $\mathcal{P} := E[\varepsilon \varepsilon^T]$, the least squares solution leads to the classical best linear unbiased estimator (BLUE) [4], given by

$$\hat{x}^* := \mathcal{L}^{-1}b,$$ \hspace{1cm} $\mathcal{L} := A_b \mathcal{P}^{-1} A_b^T,$ \hspace{1cm} $b := A_b \mathcal{P}^{-1} (z - A_r^T x_r).$ \hspace{1cm} (4)

Among all linear estimators of x, the BLU estimator has the smallest variance for the estimation error $x - \hat{x}^*$ [4]. The inverse of the matrix \mathcal{L} exists as long as the measurement graph is weakly connected and provides the covariance matrix of the estimation error [5]:

$$\Sigma := E[(x - \hat{x}^*)(x - \hat{x}^*)^T] = \mathcal{L}^{-1}. \hspace{1cm} (5)$$

A directed graph is *weakly connected* if it is connected ignoring the edge directions. A precise definition is given in the sidebar “Graph Theoretic Definitions”. The covariance matrix Σ_u for the estimation error of a particular node variable x_u appears in the corresponding $k \times k$ diagonal block of Σ. Figure 3 shows a simple measurement graph along with the corresponding measurement equations (2)–(3) and estimate (4) defined above. Since the measurement errors are assumed uncorrelated with one-another, the error covariance matrix \mathcal{P} happens to be a block diagonal matrix. For this reason, the matrix \mathcal{L} has a structure that is closely related to the graph Laplacian of G. However, this connection is not explored here; the interested reader is referred to [6] for more details.
Challenges in estimation on graphs

The estimation problem defined above could be solved by first sending all measurements to one particular node, computing the optimal estimate using (4) in that node, and then distributing the estimates to the individual nodes. However, this “centralized” solution is undesirable for several reasons. First, it unduly burdens the nodes close to the central processor. The reason is that for a large ad-hoc network of wireless sensor nodes, sending all of the measurements requires multi-hop communication, and most of the data transmitted to the central processor have to be routed through the nodes close to it. When the nodes operate on batteries with small energy budgets, this mode of operation will greatly reduce the life of the nodes that carry out most of the communication. It should be noted that the primary source of energy consumption in wireless sensor networks is communication [2], and the energy consumed in computation is insignificantly smaller than that in communication [7]. Second, a centralized computation is less robust to node and link failures over time. Multi-hop data transfer to a central node typically requires construction of a routing tree rooted at the central node. Failure of a node in one of the branches of the routing tree effectively cuts off communication from all the nodes in the tree branch rooted at the faulty node. In addition, construction of a routing tree can be challenging when communication links suffer from temporary failures or when nodes are mobile [8]. Third, a centralized computation renders the entire network susceptible to a catastrophe if the central processor fails. This discussion raises one of the key issues investigated in this article:

Question 1: Is it possible to construct the optimal estimate (4) in a distributed fashion such that computation and communication burden is equally shared by all of the nodes? And if so, how much communication is required and how robust is the distributed algorithm with respect to communication faults?

By a *distributed algorithm* we mean an algorithm in which every node carries out independent computations, but is allowed to periodically exchange messages with its neighbors. In this article, the concept of “neighborhood” is defined by the edges of the measurement graph
In particular, two nodes u and v are allowed to communicate directly if and only if there is an edge between the corresponding vertices of G (in any direction), which is to say that there is a relative measurement between x_u and x_v. We are implicitly assuming bidirectional communication between nodes.

In this article we show that it is indeed possible to design scalable distributed algorithms to compute optimal estimates that are robust to communication faults. However, one may wonder what are the fundamental limitations in terms of accuracy for estimation problems defined in truly large graphs. Reasons for concern arise from estimation problems such as the one associated with the simple graph shown in Figure 4. It is a chain of nodes with node 1 as the reference and with a single edge $(u+1, u)$, $u \geq 1$ between consecutive nodes u and $u+1$. Without much difficulty, one can show that for such a graph the optimal estimate of x_u is given by

$$\hat{x}_u = \zeta_{u,u-1} + \cdots + \zeta_{3,2} + \zeta_{2,1} + x_1,$$

and since each measurement introduces an additive error, the variance of the optimal estimation error $\hat{x}_u - x_u$ increases linearly with u. Therefore, if u is “far” from the reference node 1 then its estimate is necessarily be quite poor. Although the precise estimation error depends on the exact values of the variances of the measurements, for this graph the variance of the optimal estimate of x_u grows essentially linearly with u. This example motivates the second issue investigated in this article:

Question 2: Do all graphs exhibit the property that the estimation error variance grows linearly with the “distance” to the reference nodes? If not, what types of scaling laws for error are possible, and can one infer these scaling laws from structural properties of the graph?

It seems reasonable that for every measurement graph the estimation error variance increases with the distance to the reference nodes. We show that the exact nature of the scaling of error variance with distance depends on intrinsic structural properties of the measurement graph, and that some graphs exhibit scaling laws far better than the linear scaling that we encountered in the graph shown in Figure 4. For a given maximum acceptable error, the number of nodes
with acceptable estimation errors is going to be large if the graph exhibits a slow increase of variance with distance, but small otherwise. These scaling laws therefore help us in designing and deploying large networks for which accurate estimates are possible.

The structural properties of interest are related to the “denseness” of the graph, but are not captured by naive measures of density such as node degree or node/edge density that are commonly used in the sensor networks literature. We describe a classification of graphs that determines how the variance grows with distance from the reference node. There are graphs where variance grows linearly with distance, as in the example of Figure 4. But there are also a large class of graphs where it grows only logarithmically with distance. Most surprisingly, in certain graphs it can even stay below a constant value, no matter the distance.

In this article, we address the error scaling issue (Question 2) before delving into distributed estimation (Question 1).

Error Scaling of the Optimal Estimate

As a first step toward addressing error scaling issue we show that the variance of a node’s optimal estimate is numerically equal to an abstract *matrix-valued effective resistance* in an appropriately defined abstract electrical network that can be constructed from the measurement graph G. This analogy with electrical networks is instrumental in deriving several results and also builds an invaluable intuition into this problem. We show that the matrix-valued effective resistance in a complicated graph can sometimes be bounded by the effective resistance in a “nicer” graph, in which we know how the resistance grows with distance. These nice graphs are the well-known lattice graphs. An answer to the question of variance scaling is thus obtained by exploiting the electrical analogy.

Analogy with electrical networks have been used to construct elegant solutions to a range of problems, notably those concerned with random walks in graphs [9, 18]. In [9], questions about random walks in certain infinite graphs were answered by bounding the effective resistance
in those graph with that in lattices. It turns out that a similar approach can be used to answer the question of estimation error scaling once we establish the analogy between error covariance matrices and matrix-valued effective resistances.

Electrical analogy

A resistive electrical network consists of an interconnection of purely resistive elements. Such interconnections are generally described by graphs whose nodes represent the connection points between resistors and whose edges correspond to the resistors themselves. The effective resistance between two nodes in an electrical network is then defined as the potential drop between the two nodes when a current source with intensity equal to 1 Ampere is connected across the two nodes (see Figure 5). For a general network, the computation of effective resistances relies on the usual Kirchoff’s and Ohm’s laws.

To see the connection between electrical networks and our estimation problem, consider the simple measurement graph shown in Figure 6, where a single scalar unknown variable x_2 needs to be estimated based on two noisy measurements with error variances σ_a^2 and σ_b^2. The reference node variable $x_1 = 0$ is assumed known. A simple calculation using the BLU covariance formula (5) shows that the variance σ_2^2 of the optimal estimate of x_2 is given by

$$\frac{1}{\sigma_2^2} = \frac{1}{\sigma_a^2} + \frac{1}{\sigma_b^2}.$$

Suppose now that we construct a resistive network based on the measurement graph, by assigning the edge-resistances R_a, R_b numerically equal to the variances σ_a^2, σ_b^2 of the corresponding measurement errors (see Figure 6). It is an elementary result in electrical circuits that the effective resistance between nodes 1 and 2 of the electrical network is given by

$$\frac{1}{R_{12}^{\text{eff}}} = \frac{1}{R_a} + \frac{1}{R_b} = \frac{1}{\sigma_a^2} + \frac{1}{\sigma_b^2} = \frac{1}{\sigma_2^2},$$

and therefore the variance σ_2^2 of the optimal estimate of x_2 is exactly equal to the effective resistance R_{12}^{eff} between this node and the reference node. This observation extends to arbitrary measurement graphs (not just the simple one shown in Figure 6) and is made in [3] in the context of estimating scalar node variables.
Going back to the estimation problem in Figure 6, but with node variables that are k-vectors, still a simple application of (5) shows that the $k \times k$ covariance matrix Σ_2 of the optimal estimate of the k-vector x_2 is now given by

$$\Sigma_2^{-1} = P_a^{-1} + P_b^{-1},$$

where now P_a and P_b are the $k \times k$ covariance matrices of the two measurements. This formula looks tantalizingly similar to the effective resistance formula shown before and prompted us to search for a more general electrical analogy.

Consider an abstract *generalized electrical network* in which currents, potentials, and resistors are $k \times k$ matrices. For such networks Kirchoff’s current and voltage laws can be defined in the usual way, except that currents are added as matrices and voltages are subtracted also as matrices. Ohm’s law takes the matrix form

$$V_e = R_e i_e,$$

where i_e is a generalized $k \times k$ matrix current flowing through the edge e of the electrical network, V_e is a generalized $k \times k$ matrix potential drop across the edge e, and R_e is the generalized resistance on that edge. Generalized resistances are always symmetric positive definite matrices.

The generalized electrical networks so defined share many of the properties of “scalar” electrical networks. In particular, given the current injected into a node and extracted at another, the generalized Kirchoff’s and Ohm’s laws uniquely define all currents and voltage drops on the edges of a generalize electrical network. Solving for the currents and voltages allows us to define the *generalized effective resistance* between two nodes as the potential difference between the two nodes when a current source equal to the $k \times k$ identity matrix is connected across them. It turns out that (6) is precisely the formula to compute the generalize effective resistance for the parallel network of two generalized resistors. Moreover, the electrical analogy for scalar measurements [3] still holds for vector measurements when one considers generalized electrical networks. This result is proved in [5], and is stated below.
Theorem 1. Consider a weakly connected measurement graph G with a single reference node o and construct a generalized electric network with $k \times k$ edge-resistors that are numerically equal to the covariance matrices of the edge-measurement errors. For every node u, the $k \times k$ covariance matrix Σ_u of the estimation error of x_u is equal to the generalized effective resistance between the node u and the reference node o.

The optimal estimates and the coefficient matrices that multiply the measurements to construct these estimates also have interesting interpretations in terms of electrical quantities [6]. It should be noted that although measurement graphs are directed because of the need to distinguish between a measurement of $x_u - x_v$ versus a measurement of $x_v - x_u$, the direction of edges is irrelevant as far as determining error covariance. In the context of electrical networks, the directions of edges are important to determine the “signs” of the currents, but are irrelevant in determining effective resistances.

In the remaining part of this section, we discuss several results that were previously known for “scalar” electrical networks and that can be adapted to generalized electrical networks. In view of Theorem 1, these results then carry over to our graph estimation problem.

Rayleigh’s Monotonicity Law

Rayleigh’s monotonicity law [9] states that if the edge-resistances in a (scalar) electrical network are increased, then the effective resistance between every pair of nodes in the network can only increase. Conversely, a decrease in edge-resistances can only lead to a decrease in effective resistance. The proof of Rayleigh’s monotonicity law provided by Doyle and Snell [9] can be easily extended to the case of generalized electrical networks to show that this monotonicity also holds for generalized effective resistances [5]. Theorem 1 therefore allows us to use Rayleigh’s monotonicity law to the problem of error scaling in measurement graphs.

For the problems considered here, it is convenient to consider not only increases or decreases in edge-resistances but also removing an edge altogether and adding new edges, for which we need the concept of graph embedding. Given two graphs $G = (V, E)$ and $\tilde{G} = (\tilde{V}, \tilde{E})$.
we say that G can be embedded in \bar{G}, or alternatively that G can embed \bar{G} if, ignoring the edge directions, G appears as a subgraph of \bar{G}. Figure 7 illustrates the concept of graph embedding. A precise definition of embedding is given in the sidebar “Graph Theoretic Definitions”. Since edge directions play no role in the definition of embedding, they are not shown in the figure.

The next theorem, which is taken from [5], shows that Rayleigh’s monotonicity law also holds for generalized electrical networks:

Theorem 2. Consider two generalized electrical networks with graphs $G = (V, E)$ and $\bar{G} = (\bar{V}, \bar{E})$ and matrix $k \times k$ edge-resistances R_e, $e \in E$ and $\bar{R}_{\bar{e}}$, $\bar{e} \in \bar{E}$, respectively, and assume that

1) G can be embedded in \bar{G}, that is, $G \subset \bar{G}$.

2) For every edge $e \in E$ of G, $R_e \geq \bar{R}_{\bar{e}}$, where $\bar{e} \in \bar{E}$ is the corresponding edge of \bar{G}.

Then for every pair of nodes $u, v \in V$ of G,

$$R_{u,v}^{\text{eff}} \geq R_{\bar{u},\bar{v}}^{\text{eff}}$$

where $R_{u,v}^{\text{eff}}$ denotes the effective resistance between u and v, and $R_{\bar{u},\bar{v}}^{\text{eff}}$ denotes the effective resistance between the corresponding nodes \bar{u} and \bar{v} in \bar{G}.

In the statement of Theorem 2 and in the sequel, given two symmetric matrices A and B, $A \geq B$ means $A - B$ is positive semidefinite.

In terms of the original estimation problem, Rayleigh’s monotonicity law leads to the conclusion that if the error covariance of one or more measurements is reduced (that is, measurements are made more accurate), then for every node variable the optimal estimation error covariance matrix can only decrease (that is, the estimate becomes more accurate). In addition, if new measurements are introduced, the new optimal estimate necessarily becomes more accurate (even if the new measurements are very noisy).

Lattices, Fuzzes and their Effective Resistances

Scaling laws for the effective resistance in graphs possessing special symmetry can be obtained without too much difficulty. Once such class is the well-known lattice graphs (see
Figure 8), which are described in the sidebar “Lattices and Fuzzes”. The effective resistance in lattices (with scalar resistors on every edge) have been studied in the literature, and we show that similar results can be obtained for generalized lattice networks. Lattices and a class of graphs derived from them, called lattice fuzzes, are especially useful in studying the scaling laws of effective resistance in large graphs.

An h-fuzz of a graph G, where h is a positive integer, is a graph with the same set of nodes as G but with a larger set of edges [9]. In particular, the h-fuzz G(h) has an edge between every two nodes whose graphical distance in G is less than or equal to h. For the definition of graphical distance see the sidebar “Graph Theoretic Definitions”. More detail on fuzzes are provided in the sidebar “Lattices and Fuzzes”. An h-fuzz of a graph clearly has a lower effective resistance than the original graph because of Rayleigh’s monotonicity law. However, it was shown in [10] for scalar electrical networks that the effective resistance in the h-fuzz is lower than that in the original graph only by a constant factor. It is not difficult to see that the same result also holds for generalized networks, and is stated in the next lemma.

Lemma 1. Consider a weakly connected graph G = (V, E) and let h be a positive integer. Construct two generalized electrical networks, one by placing a matrix resistance R at every edge of a graph G and the other by placing the same matrix resistance R at every edge of its h-fuzz G(h). For every pair of nodes u and v in V,

\[\alpha R_{u,v}^{\text{eff}}(G) \leq R_{u,v}^{\text{eff}}(G^{(h)}) \leq R_{u,v}^{\text{eff}}(G), \]

where \(R_{u,v}^{\text{eff}}(G) \) is the effective resistance between u and v in G and \(R_{u,v}^{\text{eff}}(G^{(h)}) \) is the effective resistance in \(G^{(h)} \) and \(\alpha \in (0, 1] \) is a positive constant that does not depend on u and v.

Lemma 2 (Lattice Effective Resistance).

Consider a generalized electrical network obtained by placing generalized matrix resistances equal to R at the edges of the h-fuzz of the d-dimensional lattice, where h is a positive
integer, \(d \in \{1, 2, 3\} \), and \(R \) is a symmetric positive definite \(k \times k \) matrix. There exist constants \(\ell, \alpha_i, \beta_i > 0 \) such that the formulas in Table I hold for every pair of nodes \(u, v \) at a graphical distance larger than \(\ell \).

The fact that in a 1-dimensional lattice the effective resistance grows linearly with the distance between nodes can be trivially deduced from the well-known formula for the effective resistance of a series of resistors (which generalizes to generalized electrical networks). In two-dimensional lattices the effective resistance only grows with the logarithm of the graphical distance and therefore the effective resistance grows slowly with the distance between nodes. Far more surprising is the fact that in three-dimensional lattices the effective resistance is actually bounded by a constant even when the distance is arbitrarily large.

Error scaling with Distance: Dense and Sparse Graphs

We now show how to combine the tools developed so far to determine the scaling laws of the estimation error variance for general classes of measurement graphs. Roughly speaking, our approach is the following: we determine what structural properties must a graph satisfy so that it can either embed, or be embedded in a lattice or the \(h \)-fuzz of a lattice. When a graph can be embedded in a lattice, Rayleigh’s monotonicity law gives us a lower bound on the generalized effective resistance of the graph in terms of the effective resistance in the lattice. We already know the effective resistance in the lattice as a function of distance, from the lattice effective resistance Lemma 2. When a graph can embed a lattice, we get an upper bound.

Before we go into describing these concepts precisely, we might ask ourselves if there are no simple indicators of the relationship between graph structure and estimator accuracy that might be used to answer the question of variance scaling without going into the somewhat complex route we have outlined above. In fact, in the sensor networks literature, it is recognized that higher “density” of nodes/edges usually leads to better estimation accuracy. Usually, the average number of nodes in an unit of area, or the average degree of a node (that is, its number
of neighbors), are used to quantify the notion of denseness [11, 12]. We have already seen that when one graph can be embedded in another, the one with the higher number of edges has a lower effective resistance, and consequently, lower estimator variance. One could therefore expect that a higher density of edges and nodes in the measurement graph should lead to better estimates. However, naive measures of density, such as node degree or the number of nodes/edges per unit area, turn out to be misleading predictors for how the estimation error variance scales with distance. We now present an example to motivate the search for deeper graph-structural properties that determine how variance scales with distance.

Counterexamples to Conventional Wisdom

The three graphs in Figure 9 offer an example of the inadequacy of node degree as a measure of denseness. It shows a 3-fuzz of a 1-dimensional lattice, a triangular lattice, and a 3-dimensional lattice. The effective resistance scales linearly with distance in the 3-fuzz of the of a 1-dimensional lattice, logarithmically with distance in the triangular lattice, and is uniformly bounded with respect to distance in the 3-dimensional lattice, even though each of these graphs has the same uniform degree, namely six. That the effective resistance in the 3-fuzz of the 1-dimensional lattice grows linearly with distance, and the effective resistance of the 3-dimensional lattice does not grow with distance, follow from lattice effective resistance Lemma 2. At this point the reader has to take our word for the stated growth of effective resistance in the triangular lattice, but the tools needed to establish this fact are forthcoming.

Graph Drawings

We derive conditions for embedding a graph in a lattice (and vice-versa) by looking at different “drawings” of the graph. A drawing of a graph $G = (V, E)$ is simply a mapping of its nodes to points in some Euclidean space, which can formally be described by a function $f : V \rightarrow \mathbb{R}^d, d \geq 1$. Graph drawings are used to capture the geometry of graphs in Euclidean space. Figure 10 shows two different “pictures” of the same graph. From a graph theoretic point of view, the two graphs are the same because they have the same nodes and edges. However, the
two graphs are “drawn” differently. For more discussion on this topic, see the sidebar “Graph Drawing”.

For a particular drawing f of a graph, we can define an Euclidean distance between nodes, which is simply the distance in that Euclidean space between the drawings of the nodes. In particular, given two nodes $u, v \in V$ the \textit{Euclidean distance between u and v induced by the drawing $f : V \rightarrow \mathbb{R}^d$} is defined by

$$d_f(u, v) := \| f(v) - f(u) \|,$$

where $\| \cdot \|$ denoted the usual Euclidean norm in d-space. Note that Euclidean distances depend on the drawing and can be completely different from graphical distances. For the definition of graphical distance, see the sidebar “Graph Theoretic Definitions”. It is important to emphasize that the definition of drawing does not require edges to not intersect and therefore every graph has a drawing in every Euclidean space.

For a sensor network, there is a \textit{natural drawing} of its measurement graph that is obtained by associating each node to its position in 1-, 2- or 3-dimensional Euclidean space. In reality, all sensor networks are situated in 3-dimensional space. However, sometimes it maybe more natural to draw them on a 2-dimensional Euclidean space if one dimension (for example, height) does not vary much from node to node, or is somehow irrelevant. In yet another situation, such as the one shown in Figure 4, one could draw the graph in 1-dimension since the nodes essentially form a chain even though nodes are situated in 3-dimensional space. For \textit{natural drawings, the Euclidean distance induced by the drawing is, in general, a much more meaningful notion of distance than the graphical distance}. In this article, we are going to see that the Euclidean distance induced by appropriate drawings provide the right measure of distance to determine scaling laws of error variances.

\textbf{Measures of Graph Denseness/Sparseness}

For a particular drawing f and induced Euclidean distance d_f of a graph $G = (V, E)$, four parameters can be used to characterize graph denseness/sparseness. The term \textit{minimum node}
distance denotes the minimum Euclidean distance between the drawing of two nodes

\[s := \inf_{u,v \in V} d_f(u, v). \]

The term maximum connected range denotes the Euclidean length of the drawing of the longest edge

\[r := \sup_{(u,v) \in E} d_f(u, v). \]

The term maximum uncovered diameter denotes the diameter of the largest open ball that can be placed in \(\mathbb{R}^d \) with no drawing of a node inside it

\[\gamma := \sup \left\{ \delta : \text{there exists } B_\delta \text{ such that } f(u) \notin B_\delta, \text{ for every } u \in V \right\}, \]

where the existential quantification spans over the balls \(B_\delta \) in \(\mathbb{R}^d \) with diameter \(\delta \). Finally, the term asymptotic distance scaling denotes the largest asymptotic ratio between the graphical and the Euclidean distance between two nodes as

\[\rho := \lim_{n \to \infty} \inf \left\{ \frac{d_f(u, v)}{d_G(u, v)} : u, v \in V \text{ and } d_G(u, v) \geq n \right\}, \]

where \(d_G(u, v) \) denotes the graphical distance between \(u \) and \(v \) in the graph \(G \). Essentially \(\rho \) provides a lower bound for the ratio between the Euclidean and the graphical distance for nodes that are far apart. Figure 11 shows the drawing of a graph and the four corresponding parameters \(s, r, \gamma, \) and \(\rho \).

Dense Graphs

The drawing of a graph for which the maximum uncovered diameter is finite (\(\gamma < \infty \)) and the asymptotic distance scaling is positive (\(\rho > 0 \)) is called a dense drawing. We say that a \(G \) is dense in \(\mathbb{R}^d \) if there exists a dense drawing of the graph in \(\mathbb{R}^d \). Intuitively, these drawings are “dense” in the sense that the nodes can cover \(\mathbb{R}^d \) without leaving large holes between them, and the graph has sufficiently many edges so that a small Euclidean distance between two nodes in the drawing guarantees a small graphical distance between them. In particular, for dense drawings there are always finite constants \(\alpha, \beta \) for which

\[d_G(u, v) \leq \alpha d_f(u, v) + \beta, \]

(7)
for every pair of nodes $u, v \in V$. This fact is proved in [6]. Using the natural drawing of a d-dimensional lattice, one concludes that this graph is dense in \mathbb{R}^d. One can also show that a d-dimensional lattice can never be dense in $\mathbb{R}^{\tilde{d}}$ with $\tilde{d} > d$. For example, every drawing of a 2-dimensional lattice in the 3-dimensional Euclidean space is not dense.

Sparse Graphs

Graph drawings for which the minimum node distance is positive ($s > 0$) and the maximum connected range is finite ($r < \infty$) are called *civilized drawings*. This definition is essentially a refinement of the one given in [9], with the quantities r and s made to assume precise values. Intuitively, these drawings are “sparse” in the sense that one can keep the edges with finite lengths, without cramping all nodes on top of each other. We say that a graph G is *sparse in* \mathbb{R}^d if it can be drawn in a civilized manner in d-dimensional Euclidean space. For example, we can conclude from the natural drawing of a d-dimensional lattice that this graph is sparse in \mathbb{R}^d. In fact, every h-fuzz of a d-dimensional lattice is still sparse in \mathbb{R}^d. However, a d-dimensional lattice can never be drawn in a civilized way in $\mathbb{R}^{\tilde{d}}$ with $\tilde{d} < d$. For example, a 3-dimensional lattice is not sparse in \mathbb{R}^2.

The notions of graph “sparseness” and “denseness” are mostly interesting for infinite graph because every finite graph is sparse in all Euclidean spaces \mathbb{R}^d for every $d \geq 1$ and no finite graph can ever be dense in any Euclidean space \mathbb{R}^d for every $d \geq 1$. The reason is that a drawing of a finite graph that does not place nodes on top of each other necessarily has a positive minimum node distance and a finite maximum connected range (from which sparseness follows) and it is not possible to achieve a finite maximum uncovered diameter with a finite number of nodes (from which lack of denseness follows). However, in practice infinite graphs serve as proxies for large graphs that, from the perspective of most nodes, “appear to extend in all directions as far as the eye can see.” So conclusions drawn for sparse/dense infinite graphs hold for large graphs, at least sufficiently inside the graph boundaries.

Sparseness, Denseness, and Embeddings
The notions of sparseness and denseness introduced above are useful because they provide a complete characterization for the classes of graphs that can embed or be embedded in lattices, for which the lattice effective resistance Lemma 2 provides the precise scaling laws for the effective resistance.

Theorem 3. Let $G = (V, E)$ be a graph without multiple edges between the same pair of nodes.

1) G is sparse in \mathbb{R}^d if and only if G can be embedded in an h-fuzz of a d-dimensional lattice. Formally, G is sparse in \mathbb{R}^d if and only if there exists $h < \infty$ such that $G \subset Z_d^{(h)}$.

2) G is dense in \mathbb{R}^d if and only if (i) the d-dimensional lattice can be embedded in an h-fuzz of G for some positive integer h and (ii) every node of G that is not mapped to a node of Z_d is at a uniformly bounded graphical distance from a node that is mapped to Z_d. Formally, G is dense in \mathbb{R}^d if and only if there exist $h, c < \infty$ such that $G^{(h)} \supset Z_d$ and for every $u \in V$ there is a $\bar{u} \in V_{\text{lat}}(G)$ such that $d_G(u, \bar{u}) \leq c$, where $V_{\text{lat}}(G)$ denotes the set of nodes of G that are mapped to nodes of Z_d.

The first statement of the lemma is essentially taken from [9] and the second statement is a consequence of results in [5, 6]. The condition of “no multiple edges between two nodes” is not restrictive for our problems because the effective resistance between any two nodes in a graph does not change if we can replace a set of multiple, parallel edges between two nodes by a single edge with a resistance equal to the effective resistance of those parallel edges.

Scaling Laws for the Estimation Error Variance

We are now finally ready to characterize the scaling laws of the estimation error variance in terms of the density/sparseness properties of the measurement graph. The following theorem precisely characterizes the scaling laws by combining the Electrical Analogy Theorem 1, Rayleigh’s monotonicity law, the lattice effective resistance Lemma 2, and the lattice embedding Theorem 3. The theorem follows from the results established in [5] and their extensions in [6].
Theorem 4. Consider a measurement graph $G = (V, E)$ with a single reference node $o \in V$ and covariance matrices for the measurement errors $P_e, e \in E$ that satisfy $P_{\text{min}} \preceq P_e \preceq P_{\text{max}}$, for every $e \in E$, for some symmetric positive definite matrices $P_{\text{min}}, P_{\text{max}}$. There exist constants $\ell, \alpha_i, \beta_i > 0$ such that the formulas in Table II hold for every node u at an Euclidean distance to the reference node o larger than ℓ.

Graphs that are both sparse and dense in some Euclidean space \mathbb{R}^d form a particularly nice family since the scaling laws of variance with distance in such graphs are known exactly. At this point the reader may wish to check that the triangular lattice in Figure 9 is both sparse and dense in 2-D, which validates the statement we made earlier that the effective resistance in it grows as the logarithm of distance.

It might be asked whether it is common for sensor networks to be sparse and/or dense in some Euclidean space \mathbb{R}^d. The answer happens to be “very much so”, and is often seen by considering the natural drawing of the network. Recall that a natural drawing of a sensor network is obtained by associating each node to its physical position in 1, 2 or 3-dimensional Euclidean space. All natural drawings of sensor networks are likely to be sparse in 3-dimensional space, since the only requirements for sparseness are that nodes not lie on top of each other and edges be of finite length. When a sensor network is deployed in a 2-dimensional domain or when the third physical dimension is irrelevant, again the natural drawing is likely to be sparse in 2-dimensional space for the same reasons. It is slightly harder for graphs to be dense, especially in two or three dimensions. Formally, a finite graph cannot be dense. However, what matters in practice is the structure of the graph sufficiently inside its boundary. Provided one examines only the interior of the graph, it is not too difficult to satisfy the denseness requirements as long as there are no big holes between nodes and sufficiently many interconnections between them. It is straightforward to show that a graph dense in \mathbb{R}^2 is generated when nodes are placed on a plane so that every node communicates with all its neighbors within a range twice as large as the diameter of the largest ball that contains no nodes. A similar construction in which nodes are placed in a volume and communicate with all neighbors inside a sphere with appropriate diameter leads to a graph that is dense in \mathbb{R}^3.
Distributed computation

We now answer the first question raised in this article: is it possible to compute the optimal estimate of the node variables in a distributed way using only local information? We show that it is indeed feasible, and present two distributed asynchronous algorithms to achieve this goal. The algorithms are iterative, whereby every node starts with an arbitrary initial guess for its variable and successively improves it by using the measurements on the edges incident on it and the estimates of its neighbors. The algorithms are guaranteed to converge to the optimal estimate as the number of iterations go to infinity. Moreover, they are robust to link failures and converge to the optimal estimate even in the presence of faulty communication links, as long as certain mild conditions are satisfied.

The starting point for the construction of the algorithm is the recognition that the optimal estimate given by (4) is the unique solution to the system of linear equations:

\[\mathcal{L} \hat{x}^* = b, \]

where \(\mathcal{L} \) and \(b \) are defined in (4). We seek for iterative algorithms to compute the solution to (8) subject the constraints:

1) At every iteration, each node is allowed to broadcast a message to all its 1-hop neighbors.
2) Each node is allowed to perform computations involving only variables that are local to the node or that were previously obtained by listening to the messages broadcasted by its neighbors.

The concept of “1-hop neighbor” is determined by the measurement graph \(G \), in the sense that two nodes receive each other messages if the graph \(G \) has an edge between them (in either direction). In short, we implicitly assume bi-directional communication.

Jacobi algorithm

Consider a node \(u \) with unknown node variable \(x_u \) and imagine for a moment that the node variables for all neighbors of \(u \) are exactly known and available to \(u \). In this case, the
node \(u \) could compute its optimal estimate by simply using the measurements between \(u \) and its 1-hop neighbors. This estimation problem is fundamentally no different than the original problem, except that it is defined over the much smaller graph \(G_u(1) = (V_u(1), E_u(1)) \), whose nodes include \(u \) and its 1-hops neighbors and the edge set \(E_u(1) \) consists of only the edges between \(u \) and its 1-hops neighbors. We call \(G_u(1) \) the 1-hop subgraph of \(G \) centered at \(u \). Since we are assuming that the node variables of the neighbors of \(u \) are exactly known, all of these nodes should be understood as references. The Jacobi algorithm is an iterative algorithm that operates as follows:

1) Each node \(u \in V \) picks arbitrary initial estimates \(\hat{x}^{(0)}_v, v \in V_u(1) \) for the node variables of all its 1-hop neighbors. These estimates do not necessarily have to be consistent across the different nodes.

2) At the \(i \)th iteration, each node \(u \in V \) assumes that its current estimates \(\hat{x}^{(i)}_v, v \in V_u(1) \) for the node variables of its neighbors are correct and solves the corresponding estimation problem associated with the 1-hop subgraph \(G_u(1) \). The corresponding estimate \(\hat{x}^{(i+1)}_u \) turns out to be the solution to the system of linear equations

\[
\left(\sum_{e \in E_u} P_e^{-1} \right) \hat{x}^{(i+1)}_u = \sum_{e \in E_u} P_e^{-1} (\hat{x}^{(i)}_{v_e} + a_{ue} z_e),
\] (9)

where \(v_e \) denotes the 1-hop neighbor that shares the edge \(e \) with \(u \), and \(a_{ue} \) is the \((u, e)\)th element of the incidence matrix \(A \). The node \(u \) then broadcasts the new estimate \(\hat{x}^{(i+1)}_u \) to all its neighbors.

3) Each node then listens for the broadcasts from its 1-hop neighbors, and uses them to update its estimates \(\hat{x}^{(i+1)}_v, v \in V_u(1) \) for the node variables of its neighbors. Once all updates are received a new iteration can start.

The algorithm can be terminated at a node when the change in its recent estimate is seen to be lower than a certain pre-specified threshold value, or when a certain maximum number of iterations are completed. Figure 12 shows the relevant equations for one iteration of the Jacobi algorithms, applied to the measurement graph \(G \) shown in Figure 3.

The iterative algorithm described by equation (9) can be viewed as the Jacobi algorithm to solve linear equation. Iterative techniques for solving linear equations have a rich history.
and a host of iterative methods have been developed for different applications, each with its own particular advantages and disadvantages. For the optimal estimation problem, the Jacobi algorithm has several benefits: it is simple, scalable, it converges to the optimal estimate under mild conditions, and is even robust with respect to temporary link failures [13]. However, its weakness lies in a relatively slow convergence rate.

Overlapping Subgraph Estimator (OSE) Algorithm

The Overlapping Subgraph Estimator (OSE) algorithm achieves faster convergence than Jacobi, while retaining its scalability and robustness properties. The OSE algorithm can be thought of as an extension of the Jacobi algorithm, in which individual nodes utilize larger subgraphs to improve their estimates. To understand how, suppose that each node broadcasts to its neighbors, not only its current estimate, but also all of the latest estimates that it got from his neighbors. In the absence of drops, at the *i*th iteration step, each node has the estimates $\hat{x}_v^{(i)}$ for its 1-hop neighbors and the (older) estimates $\hat{x}_v^{(i-1)}$ for its 2-hop neighbors (that is, the nodes at a graphical distance equal to two).

Under this information exchange scheme, at the *i*th iteration, each node u has estimates of all node variables in the set $V_u(2)$ consisting of all its 1-hop and 2-hop neighbors. In the OSE algorithm, each node updates its estimate using the 2-hop subgraph centered at u $G_u(2) = (V_u(2), E_u(2))$, with edge set $E_u(2)$ consisting of all of the edges of the original graph G that connect element of $V_u(2)$. For this estimation problem, node u takes as references the node variables of its 2-hop neighbors $V_u(2) \setminus V_u(1)$. The gain in convergence speed with respect to the Jacobi algorithm comes from the fact that the 2-hop subgraphs $G_u(2)$ contain more edges than the 1-hop subgraphs $G_u(1)$. The *OSE algorithm* can be summarized as follows:

1) Each node $u \in V$ picks arbitrary initial estimates $\hat{x}_v^{(-1)}$, $v \in V_u(2) \setminus V_u(1)$ for the node variables of all its 2-hop neighbors. These estimates do not necessarily have to be consistent across the different nodes.

2) At the *i*th iteration, each node $u \in V$ assumes that the estimates $\hat{x}_v^{(i-2)}$, $v \in V_u(2) \setminus V_u(1)$ (that it received through its 1-hop neighbors) are correct and solves the corresponding...
optimal estimation problem associated with the 2-hop subgraph $G_u(2)$. In particular, it solves the linear equations $L_u y_u = b_u$, where y_u is a vector of node variables that correspond to the nodes in its 1-hop subgraph $G_u(1)$, and L_u, b_u are defined for the subgraph $G_u(2)$ as L, b are for G in (8). After this computation, node u updates its estimate as $\hat{x}_u^{(i+1)} \leftarrow \lambda y_u + (1 - \lambda) \hat{x}_u^{(i)}$, where $0 < \lambda \leq 1$ is a pre-specified design parameter and y_u is the variable in y_u that corresponds to x_u. The new estimate $\hat{x}_u^{(i+1)}$ as well as the estimates $\hat{x}_v^{(i)}, v \in V_u(1)$ previously received from its 1-hop neighbors are then broadcasted to all its 1-hop neighbors.

3) Each node u then listens for the broadcasts from its neighbors, and uses them to update its estimates for the node variables of all of its 2-hop neighbors $V_u(2) \setminus V_u(1)$. Once all updates are received a new iteration can start.

As in the case of Jacobi, the termination criteria varies depending on the application, and nodes use measurements and covariances obtained initially for all future time. Figure 13 shows a 2-hop subgraph used by the OSE algorithm.

In the previous description of the OSE algorithm, we have assumed that communication is essentially synchronous and that all nodes always received broadcasts from all of their neighbors. For the OSE algorithm to work under imperfect synchronization and link failures, a node may have to proceed to a new iteration step before receiving broadcast messages from all its neighbors or after receiving multiple messages from the same neighbor. A timeout mechanism can be used for this purpose: each node resets a timer as it broadcasts its most recent estimates and when this timer reaches a pre-specified timeout value, the node initiates a new iteration, regardless of whether or not it received messages from all its 1-hop neighbors. If a message is not received from one of its neighbors, it uses “old data” for the computations of the new iteration; and if it received several messages from the same neighbors, it only uses the most recent data.

One could also design a h-hop OSE algorithm by letting every node utilize a h-hop subgraph centered at itself, where h is some (small) integer. The resulting algorithm would be a straightforward extension of the 2-hop OSE just described, except that at every iteration, individual nodes have to transmit to their neighbors larger amounts of data than in 2-hop OSE,
potentially requiring multiple packet transmissions at each iteration. In practice, this added communication cost limits the allowable value of h.

The following result establishes the correctness of the OSE algorithm [14].

Theorem 5. When the total number of consecutive iterations for which a node does not receive information from one of its neighbors is uniformly upper-bounded by a constant ℓ_f, the OSE algorithm is guaranteed to converge both when the covariance matrices $P_e, e \in E$ are all equal or when they are all diagonal (but not necessarily equal).

It should be noted that the requirement that the matrices P_e be equal or diagonal to establish convergence in the presence of drops can probably be somehow relaxed. In fact, it appear to be quite difficult to make the algorithm not converge to the correct solution. In the simulations we have done (which we are going to describe in a moment), this assumption is violated but the algorithm always converges.

Flagged Initialization: The performance of the basic Jacobi or OSE algorithms can be further improved by providing them with “better” initializations, which does not require more communication or computation. After the deployment of the network, the reference nodes initialize their estimates to their known values, but all other nodes initialize their estimates to 1, which serves as a flag to declare that these nodes have no good estimate of their variables. Subsequently, in their estimate updates each node only includes in their 1- or 2-hop subgraph those nodes that have finite estimates. If none of their neighbors has a finite estimate, then the node keeps its estimate at ∞. In the beginning, only the references have a finite estimate. In the first iteration, the 1-hop neighbors of the references are able to compute finite estimates, in the second iteration the 2-hop neighbors of the references are also able to obtain finite estimates and so forth until all nodes have finite estimates. Since the flagged initialization only affects the initial stage of the algorithms, it does not affect their convergence properties.

Simulations

In this section, we present a few numerical simulations to study the performance of the OSE algorithm. In these simulations the node variables represent the physical position of
sensors in the plane. All simulations refer to a network with 200 nodes that are randomly placed in an unit square (see Figure 14). Node 1, placed at the origin is chosen as the single reference node. Pairs of nodes separated by a distance smaller than $r_{\text{max}} := 0.11$ are allowed to have noisy measurements of each others’ relative range and bearing (see Figure 1). The range measurements are corrupted with zero mean additive Gaussian noise with standard deviation $\sigma_r = 15\% r_{\text{max}}$ and the angle measurements are corrupted with zero-mean additive Gaussian noise with standard deviation $\sigma_\theta = 10^\circ$. When the range and bearing measurement errors are independent and have variances independent of distance, for a noisy measurement (r, θ) of true range and angle (r_o, θ_o), a little algebra shows that the covariance matrix of the measurement error $\zeta_{u,v} = [r \cos \theta, r \sin \theta]^T$ is given approximately by:

$$P_{u,v} = \begin{bmatrix}
 y_o^2 \sigma_\theta^2 + \sigma_r^2 \cos^2 \theta_o & -x_o y_o \sigma_\theta^2 + \frac{\sigma_r^2}{2} \sin(2\theta_o) \\
 -x_o y_o \sigma_\theta^2 + \frac{\sigma_r^2}{2} \sin(2\theta_o) & x_o^2 \sigma_\theta^2 + \sigma_r^2 \sin^2 \theta_o
\end{bmatrix},$$

where $x_o = r_o \cos \theta_o$ and $y_o = r_o \sin \theta_o$. Assuming that the two scalars σ_r, σ_θ are provided a priori to the nodes, a node can estimate this covariance by using the measured r and θ in place of their unknown true values. It is clear that the covariances are not diagonal and different measurements have different covariances, so this example does not satisfy the assumptions for which the OSE algorithm is guaranteed to converge. The locations estimated by the (centralized) optimal estimator are shown in Figure 14, together with the true locations.

Figure 15(a) compares the normalized error as a function of iteration number for the Jacobi and OSE algorithms. Two versions of the OSE are tested - OSE 2-hop and 3-hop. The parameter λ for OSE is chosen somewhat arbitrarily as 0.9. The straight lines in the log-scaled graph show the exponential converge of both algorithms, and the faster converge rate of the OSE algorithm. This figure also shows a dramatic improvement achieved with the flagged initialization scheme. With flagged initialization, the 2-hop OSE algorithm is able to estimate the node positions within 3% of the optimal estimate after only 9 iterations. Figure 15(b) shows the performance of the 2-hop OSE algorithm with flagged initialization under two different link-failure probabilities. Every link is made to fail independently with probability p_f. Not surprisingly, higher failure rates result in slower convergence.
OSE versus Jacobi

The OSE algorithm exhibits a faster convergence rate than Jacobi, as evident from the simulations. However, faster convergence is achieved at the expense of each node sending more data to its 1-hop neighbors, because each node broadcasts its own estimate as well as the estimates that he previously received from its 1-hop neighbors. Hence the messages needed by OSE are \(d \) times longer than the ones required by Jacobi, where \(d \) denotes the node degree. One may then ask whether there is a significant advantage to using the OSE algorithm.

Energy consumption in wireless communication has a complex dependence on radio hardware, underlying physical and medium access control layer protocols, network topology and a host of other factors. Due to the overheads introduced by these factors, sending a short message offers no advantage in terms of energy consumption over sending a somewhat longer message (see [15]). In fact, transmitted energy per bit in a packet decreases monotonically up to the maximum payload [16]. One of the main findings in [17] is that in highly contentious networks, “transmitting large payloads is more energy efficient”. Therefore communication overhead generally favors the transmission of fewer long messages over many short ones, and sending a packet \(d \) times longer may cost negligible additional energy. In such cases, the faster convergence of OSE yields the greatest benefits because this algorithm requires a smaller number of iterations (and therefore a smaller number of messages) to achieve a desired error tolerance, resulting in lower energy consumption and increased network life. In [14], simulations with a simple model of energy consumption showed that OSE can reduce energy consumption by a factor of two or more compared to Jacobi while achieving the same accuracy.

Conclusion

Large-scale sensor networks give rise to estimation problems that have a rich graphical structure. We studied one of these problems in terms of (1) how such estimate can be efficiently computed in a distributed manner and (2) how the quality of an optimal estimate scales with the size of the network. Two distributed algorithms are presented to compute the optimal estimates
that are scalable and robust to communication failures. In designing these algorithms, we found the literature on parallel computation to be an especially rich source of inspiration.

In answer to the second question, structural properties that dictate how variance scales with distance are determined. The answer to the variance scaling question results in two classes of graphs, dense and sparse, for which we can find upper and lower bounds on the variance growth with distance. The variance scaling question was answered by exploiting the analogy between estimation error covariance and matrix-valued effective resistance. The monograph by Doyle and Snell [9] in particular helped us immensely by bringing to our attention the notion of bounding effective resistance by embedding. The tools we have developed for generalized electrical networks with matrix-valued resistances appear to be applicable to study a wide variety of other problems, such as distributed control, defined on large graphs [19].

Acknowledgment

The authors would like to thank Prof. Edmond Jonckheere for helpful and stimulating discussions on dense and sparse graphs.
REFERENCES

Author Bios

Prabir Barooah received his B.Tech and M.S. degrees in Mechanical Engineering from the Indian Technology, Kanpur, India in 1996 and the University of Delaware, Newark, DE in 1999, respectively. From 1999 to 2002 he worked at the United Technologies Research Center, and in January 2003 joined the Electrical and Computer Engineering Ph. D. program at the University of California, Santa Barbara. He is a recipient of a NASA group achievement award (2003) and the best paper award at the 2nd Int. Conf. on Intelligent Sensing and Information Processing (2005). His research interests include active combustion control, system identification, and distributed control and estimation in large-scale networks.

João P. Hespanha received the Licenciatura in electrical and computer engineering from the Instituto Superior Técnico, Lisbon, Portugal in 1991 and the M.S. and Ph.D. degrees in electrical engineering and applied science from Yale University, New Haven, Connecticut in 1994 and 1998, respectively. He currently holds a Professor position with the Department of Electrical and Computer Engineering, the University of California, Santa Barbara. From 1999 to 2001, he was an Assistant Professor at the University of Southern California, Los Angeles. His research interests include hybrid and switched systems; the modeling and control of communication networks; distributed control over communication networks (also known as networked control systems); the use of vision in feedback control; stochastic modeling in biology; the control of haptic devices, and game theory. He is the author of over one hundred technical papers and the PI and co-PI in several federally funded projects.

Dr. Hespanha is the recipient of the Yale University’s Henry Prentiss Becton Graduate Prize for exceptional achievement in research in Engineering and Applied Science, a National Science Foundation CAREER Award, the 2005 best paper award at the 2nd Int. Conf. on Intelligent Sensing and Information Processing, the 2005 Automatica Theory/Methodology best paper prize, and the 2006 George S. Axelby Outstanding Paper Award. Since 2003, he has been an
Associate Editor of the IEEE Transactions on Automatic Control. More information about Dr. Hespanha’s research can be found at http://www.ece.ucsb.edu/~hespanha

Contact Information:
João P. Hespanha
Address: Room 5157, Engineering I
Dept. of Electrical & Computer Eng.
University of California
Santa Barbara, CA 93106-9560, USA
email: hespanha@ece.ucsb.edu
Tel: +1(805) 893 7042
Fax: +1(805) 893 3262
Sidebar 1 Graph Theoretic Definitions

Directed Graph: A directed graph G is a pair (V, E) consisting of a set V of vertices or nodes, and a set E of edges, where each edge $e \in E$ is an ordered pair (u, v) of nodes $u, v \in V$. The edge (u, v) is directed toward v and away from u, and is said to be incident on u and v.

Incidence Matrix: The incidence matrix of a directed graph (V, E) with n nodes and m edges is an $n \times m$ matrix A with one row per node and one column per edge defined by $A := [a_{ue}]$, where a_{ue} is nonzero if and only if the edge $e \in E$ is incident on the node $u \in V$, and when nonzero $a_{ue} = -1$ if the edge e is directed toward u and $a_{ue} = 1$ otherwise. Figure 3 shows an example of a directed graph and its incidence matrix.

Weak connectivity: A directed graph is said to be weakly connected if it is possible to go from every node to every other node by traversing the edges, not necessarily respecting the directions of the edges.

Graph embedding: Given two graph $G = (V, E)$ and $\tilde{G} = (\tilde{V}, \tilde{E})$, we say that G can be embedded in \tilde{G}, or, \tilde{G} embeds G, if the two following conditions hold

1) Every node $u \in V$ of G can be mapped to one node $\tilde{u} \in \tilde{V}$ of \tilde{G}, but no two nodes of G are mapped to the same node of \tilde{G}.

2) For every edge $e \in E$ between u and v in G, there is an edge $\tilde{e} \in \tilde{E}$ between \tilde{u} and \tilde{v} in \tilde{G} where \tilde{u} and \tilde{v} are the nodes of \tilde{V} that correspond to the nodes u and v of V, respectively.

When G can be embedded in \tilde{G}, we write $G \subset \tilde{G}$. Figure 7 shows two graphs to illustrate the concept of graph embedding. Since edge directions play no role in the definition of embedding, they are not shown in the figure.

Graphical distance: Given two nodes u and v of a graph G, their graphical distance, denoted by $d_G(u, v)$ is the minimum number of edges one has to traverse in going from one node to the other. In this definition, we allow edges to be traversed in any direction and therefore $d_G(u, v) = d_G(v, u)$.

33
Sidebar 2 Lattices and Fuzzes

Lattice: A d-dimensional lattice, denoted by \mathbb{Z}_d, is a graph that has a vertex at every point in \mathbb{R}^d with integer coordinates and an edge between every two vertices with an Euclidean distance between them equal to one. Edge directions are arbitrary. Figure 8 shows 1-, 2-, and 3-dimensional lattices. Lattices have infinitely many nodes and edges, and are therefore examples of infinite graphs. In practice, infinite graphs serve as proxies for large graphs.

h-fuzz of a graph [9]: Given a graph G and an integer $h \geq 1$, the h-fuzz of G, denoted by $G^{(h)}$, is a graph that has an edge between u and v whenever the graphical distance between u and v is less than or equal to h. The directions of the “new” edges are arbitrary (see the comment following Theorem 1). Figure S1 shows a graph and its 2-fuzz. Although the effective resistance in the h-fuzz is lower than that in the original graph, it is lower only by a constant factor.

![Figure S1: A graph G and its 2-fuzz $G^{(2)}$. Every pair of nodes in G that are at a graphical distance of 2 have an edge between them in $G^{(2)}$. The graphical distances are reduced by a factor of h in going from a graph to its h-fuzz. Note that the edge directions are not shown as they are not important as long as we are interested only in the effective resistance.](image)
Sidebar 3 Graph Drawing

In graph theory, the branch of mathematics dealing with the study of graphs, a graph is treated purely as a collection of nodes connected by edges, without any regard to the geometry determined by the nodes’ locations. However, in sensor network problems there is an underlying geometry for the measurement graph because generally this graph is tightly related to the physical locations of the sensor nodes. For example, a pair of nodes from a sensor network typically has an edge if the two nodes are within some “sensing/communication range” of each other. In general, this range may be defined in a complex fashion (not just determined by the Euclidean distance), but still the geometric configuration of nodes in Euclidean space plays a key role in determining the measurement graph. The geometric features of a graph are best captured by its drawings, which is simply a mapping of its nodes to points in some Euclidean space. A drawing is also called a representation of a graph [20].
Fig. 1. Relative position measurement in a Cartesian reference frame from range and bearing measurement. A local compass at each sensor is needed to measure bearing with respect to a common “North.” Noisy measurements of range and bearing, \(r_{u,v} \) and \(\theta_{u,v} \), between a pair of sensors \(u \) and \(v \) are converted to noisy measurements of relative position in the \(x - y \) plane as
\[
\zeta_{u,v} = [r_{u,v} \cos \theta_{u,v}, r_{u,v} \sin \theta_{u,v}]^T.
\] The same is done for every pair of sensors that can measure their relative range and bearing. The task is to estimate the node positions from the relative position measurements.
Fig. 2. Measurement of differences in local times by exchanging time-stamped messages. Node u transmits a message, say, at global time t. The transmitter u's local time is $\tau_{tu} = t + t_u$. The receiver v receives this message at some later time, when its local clock reads $\tau_{tv} = t + t_v + \delta_{u,v}$, where $\delta_{u,v}$ is a random delay arising from the processing of the message at both u and v. Some time later, say at t' (global time), node v sends a message back to u, when its local time is $\tau'_{tv} = t' + t_v$. It includes the values τ_{rv} and τ'_{tu} in the message body. The receiver u receives this message at local time $\tau'_{ru} = t' + t_u + \delta_{uv}$, where the delay δ_{uv} has the same mean as the delay δ_{vu}. Node u can now estimate the clock offsets as $\zeta_{u,v} = \frac{1}{2}((\tau'_{ru} - \tau'_{tv}) - (\tau_{rv} - \tau_{tu})) = t_u - t_v + (\delta_{vu} - \delta_{uv})/2$. The error $\varepsilon_{u,v} := (\delta_{vu} - \delta_{uv})/2$ has zero mean as long as the (unidirectional) delays have the same expected value. The measured clock offset between u and v is $\zeta_{u,v} = t_u - t_v + \varepsilon_{u,v}$, of the form (1). Similarly, the measurement of clock offsets between nodes v and w is $\zeta_{v,w} = t_v - t_w + \varepsilon_{v,w}$.
A measurement graph G and its incidence matrix A (row and column indices of A correspond to node and edge indices, respectively). Matrix form (2) of the measurement equations (1) for this graph:

$$
\begin{bmatrix}
G_1 \\
G_2 \\
G_3 \\
G_4 \\
G_5
\end{bmatrix} =
\begin{bmatrix}
l & -l & 0 & 0 & 0 \\
l & l & 0 & 0 & 0 \\
0 & l & 0 & -l & 0 \\
0 & 0 & l & 0 & -l \\
0 & 0 & 0 & l & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix}
+ \begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4 \\
\varepsilon_5
\end{bmatrix}
$$

Measurement model (3) when node 1 is the reference with $x_1 = 0$:

$$
\begin{bmatrix}
G_1 \\
G_2 \\
G_3 \\
G_4 \\
G_5
\end{bmatrix} =
\begin{bmatrix}
l & 0 & 0 & 0 & 0 \\
l & 0 & 0 & 0 & 0 \\
0 & 0 & l & 0 & -l \\
0 & 0 & 0 & l & 0 \\
0 & 0 & 0 & 0 & l
\end{bmatrix}
\begin{bmatrix}
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_r
\end{bmatrix}
+ \varepsilon
$$

Optimal estimates (4) when all measurement covariance matrices are equal to the identity matrix:

$$
\begin{bmatrix}
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_r
\end{bmatrix} =
\begin{bmatrix}
l & -l & -l & -l & -l \\
-2l & 2l & -l & -l & -l \\
l & -l & -l & -l & -l \\
l & -l & -l & -l & -l \\
0 & 0 & 0 & 0 & l
\end{bmatrix}
\begin{bmatrix}
1 & -1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1 & -1 \\
-1 & -1 & 1 & -1 & -1 \\
-1 & -1 & -1 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4 \\
\varepsilon_5
\end{bmatrix}
$$

Covariance matrices of the overall estimation error and of the individual node-variable errors:

$$
\Sigma = \frac{1}{6}
\begin{bmatrix}
\Sigma_2 & 0 & 0 & 0 & 0 \\
0 & \Sigma_3 & 0 & 0 & 0 \\
0 & 0 & \Sigma_3 & 0 & 0 \\
0 & 0 & 0 & \Sigma_4 & 0 \\
0 & 0 & 0 & 0 & \Sigma_4
\end{bmatrix},
\Sigma_2 = \frac{1}{2}I, \quad \Sigma_3 = \frac{7}{6}I, \quad \Sigma_4 = \frac{7}{6}I
$$

Fig. 3. A measurement graph G with 4 nodes and 5 edges. Node 1 is the reference. The incidence matrix A is therefore a 4×5 matrix consisting of 0s, 1s and −1s. The 4 node variables (in the vector X) are related to the 5 measurements (in the vector z) by the $4k \times 5k$ matrix A, the expanded version of the incidence matrix. The relationship between the 3 unknown node variables in the vector x are related to the known quantities (measurements z and the reference variable x_1) by the $3k \times 5k$ matrix A_b. Since the graph G is weakly connected, L is invertible. The optimal estimate of the vector x, the solution to the equation (4), is given by $\hat{x}^* = L^{-1}A_bP^{-1}z$. Note the Laplacian-like structure of the matrix L. The covariance of the estimation error of a node u is simply the $u-1$th diagonal block of the covariance matrix Σ.

38
Fig. 4. A graph where a node variable’s optimal estimate has an error variance that grows linearly with the node’s distance from the reference. In this case, since every edge represents a measurement with independent error, the optimal estimate of a node variable x_u is simply the sum of the measurements along the edges from the reference (node 1) to node u, and its variance is the sum of the error variances of those measurements. Assuming for simplicity that all measurement error variances are equal, the variance of the estimation error $x_u - \hat{x}_u$ is proportional to the minimum number of edges one has to traverse in going from 1 to u – the “graphical distance” between 1 and u.
Fig. 5. A resistive electrical network. 1 Ampere current is injected at node u and extracted at the reference node o. The resulting potential difference $V_u - V_o$ is the effective resistance between u and o. When one deals with scalar valued measurements, if every resistance value is set equal to the variance of the measurement associated with that edge, the effective resistance between u and o is numerically equal to the variance of the estimation error $x_u - \hat{x}_u$ (with o as the reference). In this article we demonstrate how this analogy can be extended – and suitably exploited – when variables and measurements are vector-valued quantities.
Fig. 6. A measurement graph (left) and the corresponding resistive electrical network (right). Node 1 is the reference. The variance of the optimal estimate of x_2 has the same numerical values as the effective resistance between nodes 1 and 2 in the electrical network on the right when resistances are assigned equal to the measurement error variances: $R_a = \sigma^2_a$, $R_b = \sigma^2_b$.
Fig. 7. A graph embedding example. Every node of the graph G can be made to correspond in a one-to-one fashion with a subset of the nodes of G, and if there is an edge between two nodes in G, there is an edge between their corresponding nodes in \tilde{G}. So we say G can embed \tilde{G}, or equivalently, \tilde{G} can be embedded in G. In mathematical notation, $G \subset \tilde{G}$.
Fig. 8. Lattices

(a) 1-dimensional lattice \mathbb{Z}_1

(b) 2-dimensional lattice \mathbb{Z}_2

(c) 3-dimensional lattice \mathbb{Z}_3
Fig. 9. Three different measurement graphs — a 3-fuzz of a 1-dimensional lattice, a triangular lattice, and a 3-dimensional lattice. All three graphs have the same node degree for every node but quite different variance growth rates with distance. Variance grows linearly with distance in the 3-fuzz of the 1-dimensional lattice (see lattice effective resistance Lemma 2). On the other hand, variance grows as logarithm of distance in the triangular lattice, though we have to wait till Theorem 4 to see why.
Fig. 10. Two different drawings, f_1 and f_2 of the same graph G. Drawing $f_1(G)$ is a 1-dimensional drawing, whereas $f_2(G)$ is a 2-dimensional drawing.
Fig. 11. Drawing of a graph in 2-dimension and the corresponding denseness/sparseness parameters. The minimum distance between any two nodes is 1, so minimum node distance $s = 1$. The longest edge is between u^* and v^*, of length $\sqrt{10}$, so maximum connected range is $r = \sqrt{10}$. The diameter of the largest ball that can fit inside the drawing without enclosing any node is 2, so the maximum uncovered diameter is $\gamma = 2$. The minimum ratio between the Euclidean and graphical distance of a pair of nodes is achieved by the pair p^*, q^*, so the asymptotic distance scaling is $\rho = d_f(p^*, q^*)/d_G(p^*, q^*) = 1/5$.

The 1-hop subgraph $G_4(1)$ for the measurement graph in Figure 3.

$$G_4(1) = \{\{2, 3, 4\}, \{e_3, e_5\}\}$$

Measurement model (3) for the only unknown variable x_4, when x_2 and x_3 are taken as references:

$$\begin{bmatrix} z_3 \\ z_5 \end{bmatrix} = \begin{bmatrix} I_0 \\ A_r^T \end{bmatrix} \begin{bmatrix} x_4 \\ x_r \end{bmatrix} + \begin{bmatrix} e_3 \\ e_5 \end{bmatrix}$$

Corresponding optimal estimate (4) when all measurement covariance matrices are equal to the identity matrix:

$$L^{-1}b = \frac{1}{2}(x_2 - z_3 + x_3 + z_5).$$

Jacobi iteration for node 4:

$$\hat{x}_4^{(i+1)} = \frac{1}{2}(\hat{x}_2^{(i)} - z_3 + \hat{x}_3^{(i)} + z_5)$$

A similar construction based on the 1-hop subgraphs centered at nodes 2 and 3, leads to the following update equations for x_2 and x_3’s estimates in the measurement graph of Figure 3:

$$\hat{x}_2^{(i+1)} = \frac{1}{4}(\hat{x}_4^{(i)} + \hat{x}_3^{(i)} + \zeta_4 + \zeta_3 - \zeta_1 - \zeta_2)$$

$$\hat{x}_3^{(i+1)} = \frac{1}{2}(\hat{x}_2^{(i)} + \hat{x}_4^{(i)} - \zeta_4 - \zeta_5)$$

The reference node 1 is assumed to be at the origin and therefore x_1 does not appear in the equations.

Fig. 12. Equations for one iteration of the Jacobi algorithms by node 4 in the measurement graph G shown in Figure 3.
Fig. 13. (a) A measurement graph G with node 1 as reference, and (b) a 2-hop subgraph $G_{4}(2)$ centered at node 4. While running the OSE algorithm, node 4 treats 1, 5 and 2 as reference nodes in the subgraph $G_{4}(2)$ and solves for the unknowns x_3, x_4 and x_6.
Fig. 14. A sensor network with 200 nodes randomly distributed in a unit square area. The edges of the measurement graph are shown as line segments connecting the true nodes positions, which are shown as black circles. Two nodes with an edge between them have a measurement of their relative positions in the plane. The red squares are the positions estimated by the (centralized) optimal estimator. A single reference node is located at the origin.
Fig. 15. (a) Performance comparison between Jacobi and OSE. Normalized error is defined as
$$\varepsilon^{(i)} = \frac{\|\hat{x}^{(i)} - \hat{x}^*\|}{\|\hat{x}^*\|}$$
where $\hat{x}^{(i)}$ is the vector of estimates at the i-th iteration and \hat{x}^* is the optimal estimate. Except for the case with flagged initialization, simulations are run with all initial estimates of node variables set to 0. For the flagged OSE, the normalized error can only be defined after iteration number 8 because until then not all nodes have valid (finite) estimates.

(b) Normalized error $\varepsilon^{(i)}$ of 2-hop OSE as a function of iteration number i in the presence of link failures. Two different failure probabilities are compared with the case of no failure. With higher failure probability performance degrades, but the error is seen to decrease with iteration count even with large failure probabilities.
TABLE I
Effective resistance for lattices and their fuzzes. In the table, $d_{\mathbb{Z}_d}(u, v)$ denotes the graphical distance between the nodes u and v in the lattice \mathbb{Z}_d.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Effective resistance $R_{u,v}^{\text{eff}}$ between u and v</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}_1^{(h)}$</td>
<td>$\alpha_1 d_{\mathbb{Z}1}(u, v)R \leq R{u,v}^{\text{eff}} \leq \beta_1 d_{\mathbb{Z}_1}(u, v)R$</td>
</tr>
<tr>
<td>$\mathbb{Z}_2^{(h)}$</td>
<td>$\alpha_2 \log (d_{\mathbb{Z}2}(u, v))R \leq R{u,v}^{\text{eff}} \leq \beta_2 \log (d_{\mathbb{Z}_2}(u, v))R$</td>
</tr>
<tr>
<td>$\mathbb{Z}_3^{(h)}$</td>
<td>$\alpha_3 R \leq R_{u,v}^{\text{eff}} \leq \beta_3 R$</td>
</tr>
</tbody>
</table>
Covariance matrices of the estimation error for graphs that are dense or sparse. \(d_f(u, o)\) denotes the Euclidean distance between node \(u\) and the reference node \(o\), for a drawing \(f\) that establishes the graph’s sparseness/denseness.

<table>
<thead>
<tr>
<th>Euclidean space</th>
<th>Covariance matrix (\Sigma_u) of the estimation error of (x_u) in a sparse graph</th>
<th>Covariance matrix (\Sigma_u) of the estimation error of (x_u) in a dense graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{R})</td>
<td>(\alpha_1 d_f(u, o) P_{\min} \leq \Sigma_u)</td>
<td>(\Sigma_u \leq \beta_1 d_f(u, o) P_{\max})</td>
</tr>
<tr>
<td>(\mathbb{R}^2)</td>
<td>(\alpha_2 \log(d_f(u, o)) P_{\min} \leq \Sigma_u)</td>
<td>(\Sigma_u \leq \beta_2 \log(d_f(u, o)) P_{\max})</td>
</tr>
<tr>
<td>(\mathbb{R}^3)</td>
<td>(\alpha_3 P_{\min} \leq \Sigma_u)</td>
<td>(\Sigma_u \leq \beta_3 P_{\max})</td>
</tr>
</tbody>
</table>