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ABSTRACT
We introduce in this thesis a set of procedures through which a user is given the ability to
choose a particular desired output behavior from the circuit he is operating and obtain in
return the corresponding set of design parameters that yield the requested output. We will
demonstrate the applicability of these procedures on a Marx generator circuit. We
proceed by introducing a general state space representation algorithm for any N stages
Marx generator, then develop a time shifting algorithm that shifts the state trajectories of
the system by the desired amount of time and apply a nonlinear Least-squares

optimization algorithm to determine the set of design parameters.

vii



Table

of contents

List of Figures X
List of Tables: Xiii
Chapter 1 Introduction 1
1.1 IMOTIVATION....citiiiicic et 1

I © o] 1< od {1V USSR SSPSRSR 3

IR I |V 1< g oo (o] [T |2 SO SSU SRRSO 3

1.4 CONCIUSIONS: ..ot 4
Chapter 2  State Space Realization 6
2.1 N-Stages Marx Generator General CharacteristiCs:.........ccovvevvererivervsriesiennnnns 6

2.2 N=2-Stage Marx Generator State Space Representation................ccceeverveennenn. 11

2.3 N-Stage Marx Generator general structure state space model......................... 19

2.4 CONCIUSIONS ..ottt 22
Chapter 3 ~ System Discretization and Optimization 23
3.1 SyStem diSCretiZaAtiON .......c.eeivveieieeiieeie e 23

3.2 OptiMIZation OVEIVIEW: ......cceeieiiieiteeiesee e eeesee e ee e te e e sreeeesreesreenee e 24

3.3 Optimization algorithm .........cccceiiiiiic e 25
3.3.1  Quasi-Newton Methods:..........ccccovveiiiiieciic e 27

3.3.2  LiNE SEAMCNI ..ot 28

3.3.3  Quasi-Newton Implementation: .........c.ccccevveveviieie s 29

3.4 Application to the reference model:...........ccccoov e 32

viii



3.5 Conclusions

Chapter 4

Generating a new reference model

4.1 Generating a new reference state model: ...

4.2 Generating the New Reference Model

B O] o 113 o] o AR ORTRRPRPR
Chapter 5  Implementation and Results

5.1 Case 1: Maximum voltage across fifth capacitor at T=2.802 seconds ...........

5.2 Case 2: Maximum voltage across fifth capacitor at T= 3.302 seconds ...........

Chapter 6

Appendix A:

References:

Conclusion

37

37

47

49

50

50

60

69

71

74

93



List of Figures

Figure 1 — N stages MarX GENEIatOr. ........cceiueivereiieieeseee e seesie e e see e sae e 6
Figure 2- Generator’s j™ stage diSCharging ProCeSS.........ovvvverrervirerseeresesssesseseessesesenes 7
Figure 3-1% stage diSCharge PrOCESS ..........oviveevvveireeeieesee st 8
Figure 4- A 2-Stages MarX GENEIALON ..........coueiierierieiieiesee sttt ee e e 11
Figure 5- Graph of N=2-stage MarxX Generator ..........ccccccoerierierieieeniesie e 12

Figure 6- State trajectory representing the voltage across the parasitic capacitors of a 2-

STAgE MAIX GENETALON......cciuiiieiiit ettt 18
Figure 7- State trajectories X, obtained using the parasitic capacitor values from the

optimization algorithMi...........cccov i 33
Figure 8- Relative error between X, and X .o 34
Figure 9- Average error plot between X, and X oo 35
Figure 10- Voltage across the 5™ parasitic CapaCitor .............cocoeververeesereesreerssressenees 38
Figure 11- Voltage across the 5™ parasitic capacitor up to L 39
Figure 12- Voltage across the 5" parasitic capacitor up to | ST 40
Figure 13- Rebuilding Vc; up to T, using symmetry with respect to t; ........cc...ccooouue... 41
Figure 14- Rebuilding Vc, up to T, = 20 seconds using the periodicity property......... 42
Figure 15- Current across the fifth induCtor ............ccceoviii i, 43
Figure 16- Current across the fifth inductor up to T ., oo 44
Figure 17- Current across the fifth inductor up to t; ..o, 45
Figure 18- Rebuilding Ic, up to T, Using symmetry with respect to t; ... 46



Figure 19- Rebuilding Ic up to T, = 20 seconds using the periodicity property ......... 47

otal

Figure 20- New state MOdel X ; c.oovoviiiiieiiieee e 51

Figure 21- Voltage across the fifth parasitic capacitor in X, lagging the voltage across

the fifth parasitic Capacitor iN X, ... 52
Figure 22- State trajectories X, using the optimal set of parasitic capacitors............... 53
Figure 23- Relative error between X, and X .o, 54
Figure 24- Average error between X ; and X, «ooooes 55
Figure 25- Voltage across the first capacitor and the corresponding relative error.......... 57

Figure 26- Voltage across the first capacitor and the corresponding relative error between
FOr 15SEC. ST SLBSEC. weoiieiiiiieiiieite ettt ettt sttt sttt be e 58

Figure 27- New State trajeCtories X 5 «.voerveirirreisisreieeesie e 61
Figure 28- Voltage across the fifth parasitic capacitor in X, leading the voltage across
the fifth parasitic Capacitor IN X, ... 62

Figure 29- State trajectory X . obtained using the set of optimal parasitic capacitors .. 63

opt

Figure 30- Relative error between X, and X .o 64
Figure 31- Average error between X, , and X oo 65

Figure 32- Voltage across the ninth capacitor and the corresponding relative error
0 o USSR 66
Figure 33- Voltage across the ninth capacitor and the corresponding relative error
between fOr 10SEC. ST <L2SBC. .iiiiiiiiiiie e 67

Figure 34- A N=4-Stage MarX GENEIatOr.........cccouuiiieririie e 74

Xi



Figure 35- Graph representation of a 4-stage Marx generator..........ccccevvveeneenesiinsenens 75
Figure 36-State trajectory representing the voltage across the parasitic capacitors of a 4-

STAgE MAIX GENETALON......cciuiiieiiie ettt 84

xii



List of Tables:

Table 1= 2My; MALTIX c..ovivoieieciieciceece ettt bbb 15
TaDIE 2= 2V, MALIIX.cvoeeeieiiiicieie ettt 16
TabIe 3= 2M ,; MALMIX...ouiviivieiiieeicieie ettt 16
TabIE 4= 2 5, MALIIX..c.oieceeririreiiiieie ettt 17
Table 5= *My; MALTIX covviviiiciicce ettt 80
TabIE 6+ “M 5y MALTIX oottt 81
TabIe 7= *My, MALTIX ..ottt 82
TahIE 8= *M ) MALTIX c.veoeeeeceririiiieie ettt 82
Table 9= "M MALIIX w.vovvvieiicii ettt 86
Table 10- amatrix such that *'my, =[a b ...cooevveerieereeeceeeseee 88
Table 11- b matrix such that ™m;, =[a b .o 89
Table 12 M 1, MALTIX cooveieeieniriicieeie ettt 90
Table 13- My, MALIX covvuiviiciiieicieie ettt 91
Table 14 My, MALIIX c..veieeieciriicieie ettt 92
Table 15- PM o, MATIX...cviviiiiiiicicieieice ettt 92

Xiii



Chapter 1 Introduction

We offer, in this thesis, a circuit operating user with the capability of specifying his
system’s output trajectory and provide him in return with the design parameters whose
output best tracks the desired trajectory or reference model. As an application of this idea
we will use a Marx pulse power generator circuit. Marx generators are based on charging
a number of capacitors in parallel and discharging them in series [1]. Several circuit
representation of a Marx generator exists depending on the manufacturer‘s design and
components used. It was originally described by E. Marx in 1924 and is primarily used
because of its ability to repetitively provide high bursts of voltages especially when the
available voltage sources cannot provide the desired voltage levels [1]. Hence, a voltage
source initially charges the capacitors which are then connected and discharged in series

into the corresponding parasitic capacitors.

1.1 Motivation

The Marx generator is used for a wide range of applications in different research areas
some of which are according to [2]:

» Generation of high power microwave using virtual cathode oscillator devices

» Lightning testing on cables and insulators.

» Material and dielectric testing.

» Breaking of raw diamonds in mineralogy.

» High voltage and magnetic pulser.

> High repetition rate high power CO; lasers.



» Generating EMP on parallel plate transmission lines.

» Bridge wire exploring.

» Electron injection into nuclear reactors.

» Electron accelerators.

» Kilo amp linear accelerators.

» Current injection and generation.

> Radiation generation for high voltage steep pulser.

» Flash x-ray generation.

» Pulsed electron generation.

» Short duration luminous flash for ultra high speed photography.
» Firing boxes for pyrotechnic substance reliability testing.

» Exploding unattended munitions.

A\

Nuclear electromagnetic pulse generator.
Generation of plasma focusing.
Generation of axial plasma for injection purposes.

Remote de-programming of processors used in computers and other control circuitry.

YV V VYV V

Educational demonstration of electrical pyrotechnics.

However, so far, no one has attempted a state space representation of an N stages Marx
generator, and hence no one was able to exploit the simplifications induced by such a
realization to be better design and control the generator. Researchers have attempted to
improve the performance of Marx generators in terms of the electronics and hardware

involved in putting the generator together as was done in [3] and stated in [2]. Hence,



manufacturers deliver Marx generators with certain specifications and operational

characteristics that the user has to adapt to.

1.2 Objective

The main objective of this thesis is to provide the end user with the ability to specify a
desired behavioral performance from the output of his system, in our case from the Marx
generator he is operating. Consequently, Marx generator models can be standardized, by
providing their users with the ability of specifying the number of stages required for their
application and the instant of time at which the spark should occur. This will eliminate
the need to develop and produce a new generator for each application while freeing the
end user from the constraints involved with some of the manufacturer’s preset

specifications.

1.3 Methodology

To achieve our objective, we decided to first generate an algorithm that determines the
state space model of any N stages Marx generator. The next step was to choose a
reference state space trajectory model, so we decided to start from a reference model that
closely approximates the behavior of a Marx generator, but that is by no means ideal.
Now, we want to provide the user with the ability to predefine the time at which the first
spark is to occur. After providing the desired instant of time, we initialize a shifting factor
parameter and develop an algorithm that exploits some of the state trajectory properties to

move the state trajectories by the appropriate amount of time so that the spark occurs at



the new, user specified time. After obtaining a new state trajectory reference model, we
use a nonlinear least-squares optimization algorithm to determine the values of the design
parameters, in our case the parasitic capacitor values, that best track the reference model.
To show the effectiveness of this technique, we will present a comparison between the
new simulated state trajectories and the corresponding model reference.

Hence, we will start Chapter 2 with the state space realization of an N = 2 stages Marx
generator and then generalize the results to develop an algorithm that generates the state
space model of for any N stages Marx generator. In Chapter 3, we explain the system
discretization process required to successfully apply a nonlinear least-squares algorithm
that we introduce in the same chapter and show its application to a reference state
trajectory model. In the following Chapter 4, we present an algorithm that shifts the
reference state trajectories by a specific shifting factor such that the spark at the N +1
parasitic capacitor occurs at a user-specified time. In the last chapter, Chapter 5, using
two different shifting factors we apply the state-shifting algorithm of chapter 4 to our
reference model, apply the nonlinear least-squares optimization algorithm to obtain the
corresponding parasitic capacitor values and present the simulation results. Finally, we
conclude this thesis by an overall conclusion summarizing the results that we obtained

and proposing future work and applications.

1.4 Conclusions:

We have described in this chapter how a Marx pulse power generator works and listed

some of the applications for which this generator is used. In addition, we have outlined



the procedures that will be used to achieve our objective of providing the users with more

control over their Marx generators.



Chapter 2 State Space Realization

We start this chapter by explaining the equations that govern the performance of

any N stages Marx generator, then we present an N = 2 stages Marx generator, explain
how it works and derive its corresponding state space model. Extrapolating from the state
space representations of the N = 2 stages and N = 4 stages (presented in Appendix A)
Marx generators, we develop an algorithm that automatically generates the state space

realization any N stages Marx generator.

2.1 N-Stages Marx Generator General Characteristics:

R R, Gy Ry
Ve, Ly Ve, L Vey Ly Lyt
iREN AR SEEE AT e 7 AR
I it B el I

+ + llllll + + +Vc
@ — Ve, @ — Ve, — Ve, @ = VO | o

Figure 1 — N stages Marx Generator.

As explained in Chapter 1, an external voltage source simultaneously charges the
C.C,,---C,_,,C, capacitors. After charging these capacitors to the desired initial charge,
the discharging process starts into the corresponding parasitic capacitors through their
respective inductances and load resistances.

For all of the following N stages Marx generator models, the load resistances are such

that R, =R, =--- =R, =100,000€2, thus the current i;, for 1< j < N, across the "



resistor will be very small when compared to the corresponding 1. Hence, we will

assume from now on that the current across the j™ inductor is I, instead of 1, —i;.
As a direct consequence of the previous assumption, during the discharging process of
the N capacitors, the individual stages can be looked at as:

The first stage of the circuit
Ve, L,
NI , I

Figure 2- 1% stage discharge process

the governing voltage law is

Ve, =Ve, - Ll%

d?ve,

dt?

=V, =Ve, + L,



The remaining N stages can be looked at as

Figure 3- Generator’s jth stage discharging process

By examining Figure 2 we can write any j" stage voltage equation as:
. dl; .
Ve, =V, —LJ.EJerj_1 @

dvc,

where Ij = —Cj

, hence equation (1) becomes

A/c
dt?

j

. d .
ch :ch +LJ.CJ. +ch_l

Note here that to write the previous two equations we assume the following:
1. at the first stage the stage capacitor C, discharges into C, while the next stage
capacitor C, is not yet connected.
2. For the remaining N stages, the parasitic capacitor C, , and C, discharge into
the corresponding C; while the next stages C, ,

We now know that at the j" stage the voltage equation is defined recursively in function

of the previous parasitic capacitors voltages, therefore we can write a general voltage

equation for any of the N stages:



d Ve,

Vc =Vc; +L,C, e +ch71+Lj71Cj7l

d?vc, 2
TH+---+V01+L1C d Vcl (2)

We can simplify the above equation if we have the following assumptions

Hence, if the previous two constraints are satisfied equation (2) becomes

: dvec, dec,
Ve, =V, +VCJ-_1+---+VC1+LC[ B S dZVC ] @3)
dt dt

Writing the voltage equation at the N +1parasitic capacitor, we obtain

. , d*Vvc,,
Ve, =Vey — Ly uCyy dtzN '
G
: : dve,,
=Vey =V, + Ly.aCya dtzN :

If we replace j by N in equation (3), we obtain the following equality

Ve, =Ve, +Ve, , +-+Ve, + LC[d;\:SN + dz:j/:le T d;/zclj@

If we examine equations (4) and (5) in more details we notice that to have a consistent
expression for the resonant frequency at the N +1* stage, the following equality should
be satisfied

Ly..Crn.u =LC (6)
When equality (6) is verified, the resonant radiant frequency of the N stage capacitors

and the N +1* parasitic capacitor can be expressed by:



Using the concept of conservation of energy, we know that all the initial energy stored in

the C,,C,,---,C, capacitors must be recovered at the N +1"stage, i.e. at C,,,. Hence,
knowing that the energy across a capacitor iSE = %CVCZ , if all the currents and voltages

across stage capacitors are zeros at t, then the following equality must hold

1 . - N1
ECN+1VCN+1(tf)2 ZZECjVCj(O)Z (7)

1

Where Vc;(0) represents the initial voltage to which the corresponding j™ capacitor was
charged and V¢, , (t,) is the total voltage discharged into the N +1 parasitic capacitor.
Knowing that C, =C, , =---=C, =C and V¢, =Vc,_, =---=Vc, =V,, the above

equation (7) becomes

1_. . N
ECN+1VCN+1(tf)2 :?CVOZ (8)

the timet, is such that

1

27JLC

where 27 f) =, = f; =

The objective of Marx generators is to haveVc,,, (t ;) = NV,, hence equation (8) becomes

1. N
ECN+1N 2V02 = ?CVOZ

this can only be achieved if
C;\Hl = N C
this in turn, according to equation (6), implies that

10



L
N+1:N

Note that these results are true for all the stages involved in any N stages Marx generator.

2.2 N=2-Stage Marx Generator State Space

Representation
Ly R, Y R,
Ve, L Ve, L

L
- m
+

e
4

|‘\\+

Figure 4- A 2-stages Marx Generator

The above figure displays an N = 2stages Marx generator. We derive in this section its

corresponding state space representation. Let

X, =Ve,(t), X, =Vc,(t), X, =Ve,(t), X, =Vc,(t)
X :VC'3('[),X6 = |1(t)! X; = |2(t)’ Xg = Ia(t)-

Using Graph analysis we can redraw the above circuit as a connection of branches, where
tree branches represent voltage sources (in our case the capacitors), and links represent

current sources (in our case the inductors) and resistors. The direction of the arrows is

11



along the voltage drop in the case of a voltage source, or along the current in the case of a

current source [4]. The corresponding graph representation is therefore:

—  1TEE Branch

— Link

Figure 5- Graph of N=2-stage Marx Generator

Having chosen the states to be voltages across capacitors and currents across inductors
we follow these two simple rules stated in [4]:
1. Write KCL for every fundamental cut set (i.e. one tree branch and a number of
links) in the network formed by each capacitor in the tree.
2. Write KVL for every fundamental loop (i.e. one link and a number of tree
branches) in the network formed by each inductor in the co-tree (complement of a
tree).

dvc,

Cut set C;: C1?+i1+ l,=0=C,X,+i,+ X, =0 (9)

Cut set Cy: —il—I1+Cl'%+i2+l2 =0= —i,— X, +C, X, +i, + X, =0 (10)

12



dvc, 1

+1,=0=C,X, +X,=0= X2=—C—x7 (11)

2

Cutset Cs: C,

Cut set Cy: —i2—|2+c;%+ l,=0= i, ~ X, +C,X, + X, =0 (12)

. dVc. . .
Cut set Cs: C, ddf3 —1,=0=>C,X; - X, =0=> XS:—éX8 (13)

3

Loop 1 (1, = V¢, > Vc,):

dl . . - 1 1
le—t1+Vc1—Vc1 =0=LXs+X; =X, =0= X ZEXFKXS (14)

Loop 2 (1, = Vc, - Ve, = Vc,):

| o .
L2%+VC2 -V¢, -Ve, =0= L, X, + X, - X;-X,=0=
X, :ix2+ix3—ix4 (15)

I-2 L2 L2

Loop 3 (1, —Vc, —>Vc,):

Lg%wc; Ve, =0= L X, + X, - X, =0= X, :éxréxf, (16)
Eliminating i, i, :

Loop 6 (i, — V¢, —Vc,):

Rji, +Vc, Ve, =0=Rji, + X; - X, = 0=, :%(Xl—XB) (17)

Loop 7 (i, = Vc, —»Vc,):

R,i, +VC, —VC, = 0= Ry, + X, — X, =0 =1, =Ri(x3 ~X,) (18)

2

13



Replacing (17) in (9) we obtain:

C, X, +ix1 —ixs +X,=0= Xlz—ixﬁixrix6 (9)
Rl Rl Ricl Ricl Cl

Replacing (17) and (18) in (11) we obtain:

—ixl+ix3—x6+cl'xs+ix3—ix4+x7 =0
I:el I:el RZ RZ

oot R Ry L X, X, +CX, =0
R, RR, R,

st L - Xl_R1+R2- X3+ : ' X4+i'x6_i‘x7 (11)
R1C1 R1R2C1 RZCl Cl Cl

Replacing (18) in (12) we obtain:

—x7—ix3+ix4+x8+c'2><4=0:>
RZ 2
: 1 1 1 1
X4: - X3— ; )(4+—.X7——.X8 (12)

R,C, R,C, C,

2
Now we have the following set of equations that best describe the state space model of an
N=2-stage Marx generator:

X, =- L x1+ix3—ix6 9)
Rlcl Rlcl Cl

; 1
X, :_C_X7 (10)

X, = 1,x1_R1+R2, X, + 1,X4+i.X6—i,X7 (11)
R1C1 R1R2C1 R2C1 Cl Cl

X4: 1‘ X3— 1, X4+i,x7_i.xg (12)
RZCZ R2C2 C2 CZ

14



1
Xs :_C_:;Xs (13)
Xs :ixl_ix3 (14)
L L
1 1 1

X, =—X,+—X,——X, (15)
7 L2 2 L2 3 L2 4

Xs :i X, _é X5 (16)

L,
Hence, we can now write our state space representation in the following form:
X="M - X,

2 2

20 M11 MlZ . . .
Where ‘M = , , isan 8x8 matrix and X is a 1x8 column vector.
M21 M22

M., is a 5x5matrix with the following structure:

1 0 1 0
RlCl R1C1
0 0 0 0
1 0 R +R, 1
R,C, R,R,C, R,C
0 0 1 1
R2C2 RZCZ
0 0 0 0

Table 1- °M,, matrix

’M,, is a 5x3matrix with the following structure:

15




1 0 0
Cl
0 1 0
CZ
1 1 0
C, C,
0 1 1
C, C,
0 0 1
C,

Table 2- M, matrix

M, is a 3x5matrix with the following structure:

1 0 1 0 0
Ll Ll
0 1 1 _ L 0
L2 L2 L2
0 0 0 1 1
L3 L3

Table 3- ?M ,, matrix

16




M, is a 3x3 matrix with the following structure:

0 0 0
0 0 0
0 0 0

Table 4- M ,, matrix

Please note for this N = 2 stages Marx generator structure the following parameters were

used:
C=C,=C, =1F,
L=L=L,=1H,

R=R, =R, =100KQ,
L, =NxL=2x1=2H,

C, =0.1578005F,C, = 0.28165F,

=S _1f
N

with resonant frequency, o, = =1rad/sec.

1
JLC
During the simulation of this system we initially setl,,, =0A, Vc;,, =0V and

Ve, , =1V, which represents the initial voltage to which the C, and C, capacitors were

charged. The following graph represents the voltage trajectories across the parasitic

capacitors:

17




Voltage across the first parasitic capacitor
Yoltage across the second parasitic capacitor
Voltage across the third parasitic capacitor

15

—

Yoltage in Yolts

=
[Sa]
i

10 12 14 16 18 20
ime in Seconds

= oo |---

Figure 6- State trajectory representing the voltage across the parasitic capacitors of a 2-
stage Marx generator

Clearly when looking at Figure 6 one can notice that when the voltage across the first two

parasitic capacitors is zero the voltage across the third parasitic capacitor

27JLC 271
2

2

= 7~ 3.142 seconds. Note

Ve, (t;) =N-Vc,,(0)=2-1=2V, where t, =

here that at t, the currents across the inductors and voltages across the stage capacitors

are also zero.

18



Please refer to Appendix A for the derivation of the state space model of an N =4 stages

Marx generator.

2.3 N-Stage Marx Generator general structure state

space model

Before delving into the development of the algorithm, it is now clear that the number of
states for an N-stage Marx generator isS = 3N + 2. This formula was deduced from the
fact that for 2 stages the number of states is 8 and for 4 stages the number of states is 14
(as can be seen in Appendix A).

Going from the state space models of N =2 and 4 stages Marx generator we can
generalize and extrapolate the structure of the ™M matrix for any number of stages N as
follows:

> "M can be divided into four blocks as follows:

NM NM
NM = 11 12
_|:N N }
My, M,

> "M, isa (2N +1)x (2N +1) matrix with the following structure

m11 m1,2.N+1
o |: : , Where

Manggsseee m2N+l,2N+1_
o m,=-my= _%’ My v = Mynsosona =0

19



O My, nionu = 0

1 R1 + R2
0O My, = Rlcll T M8 = Mysinsssona = 0, Myine = R1R2C1I )

1

m = .
N+1,N+2 '
chl

1 Ri + Ri+l
O Mysizsn = Mysins2isona =0, mN+i,N+(i—1)=ﬁ'mN+i,N+i :_Wﬂci"
1 .
My Ny = 5= for i=2—>N.
i+170
0O Myy.115on41 =0
> “M,, isa (2N +1)x(N +1) matrix with the following structure
_mll ............... ml,N+1W
o]
Mynsggeseee m2N+1,N+1J
o m; :—Ci, for 1I<i<Nand m,; =0, for i= jsuchthat 1<i<Nand
1< j<N+1.
1 : :
o mM;; =-Mm —— for N+1<i<2Nand j=1—->N.

i,i i+l =
Cj

O Myni11n =0and m2N+1,N+l=0'

> “M,, isan (N +1)x (2N +1) matrix with the following structure

20



m2N+1,N+1_

(¢ m..:%forlsiSN and m;; =0, for i j suchthat 1<i<Nand

1<j<N.mg,;=0for1<j<N.

o mlN+1:i and m; =0 for N+2< j<2N +1.
1 L1 )

o m; :—mi’m:Li for 2<i<N+land j=1->N+1, m ;=0 fori= ]
j

suchthat 2<i<N+land N+1< j<2N +1.

> "M, isan (N +1)x(N +1) matrix with the following structure

o |: : |, whereall entries m;, ; =0 forall 1<i<N+1

_mN+l,1
and 1< j<N+1.

As a direct application of this algorithm, we present in Appendix A the state space model

of an N =8 stages Marx generator.
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2.4 Conclusions

This chapter demonstrated the use of graph theory to determine the state space realization
of an N =2 stages Marx generator. By carefully inspecting the state space models of an

N =2 and N = 4stages Marx generators, we developed an algorithm that generates the
state space model of any N stages Marx generator. To this extent, we have also included
in Appendix A the state space model of an N = 8 stages Marx generator using the

algorithm of sectionXX.
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Chapter 3 System Discretization and

Optimization

We start this chapter with the procedures involved in dicretizing the continuous time
model obtained in the previous chapter. Then we explain the least-squares nonlinear
optimization algorithm and use it in conjunction with the generator’s discrete time model
to determine the values of the parasitic capacitors that will best track a reference state
trajectory model. Please note that from now on, we will be using an N =4 stages Marx

generator to explain and demonstrate our work and results.

3.1 System discretization

Using the state space generation algorithm of 6Chapter 2, we can now determine the
matrix "M such that

X®)="M - X (t)
In particular for N =4, we will have the following continuous time state space model:

X (t)="M - X (t)
where*M , is the 14 x14 matrix presented in Chapter 2, and X (t) is a 14 x1 vector
containing 14 states of the N =4 stages Marx generator.
The solution to the above equation is given by

X (t) = exp(*M -t)- X (0)

Before applying this optimization scheme, the model was discretized using a time step of

h =0.002 seconds, such that the discrete time model representation is of the form
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X(k+1D=G-X(Kk)
= X (k) =G*- X (0)

where,

4 2
G:I+4Mh+< '\glh) +H.OT.,

H.O.T.are the higher order terms that cancel out as the power of h increases i.e.

ash TH.OT — 0 and | is an identity matrix of size equal to the size of the *‘M matrix,

that is 14 x14.

3.2 Optimization overview:

Optimization is an approach used to determine the optimal value of a set of design
parameters such that it minimizes or maximizes a defined objective function. Additional
constraints could be defined as lower and upper bounds on the parameters and inequality
or equality constraints on functions of the parameters. In the case where the objective
function and the constraint equations are linear functions of the design variables then the
problem can be solved as a Linear Programming problem. On the other hand, Nonlinear
Programming problem, where the objective function and the constraint equations are
nonlinear in the design variables, the solution is obtained using an iterative process
during which a new direction of search is calculated at each of the iterations [5].

After determining the state space model that best describes the N=4 stages Marx
generator, the objective became to find what values of the parasitic capacitors yield the

desired state behavior. Based on our reference model and as a proof of concept, we will
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try to track the states’ behavior using a nonlinear least-squares optimization algorithm

and show the effectiveness of this approach when used for our application.

3.3 Optimization algorithm

The optimization scheme is based on minimizing a set of objective functions
simultaneously. These functions are stored in a vector of functions called F . To generate
the entries in F, we choose an interval of time for which we want to track the reference
state trajectories. The general structure of the equations in F is
X, (i+1j)- X, (k+1j),

Where X is, a 10001x14 matrix, obtained from X =M - X, using a time vector
spanning the interval 0 <T < 20seconds, of size 1x10001, a step size h=0.002, and the
following initial conditions:

X, (0)=13,3,3,3,0,0,0,0,0,0,0,0]
The non-zero entries represent the initial voltages up to which the the capacitors

C,,C,,C,, C, were charged.

Thus, X, (i+1, j) represents the value of the j™ entry in matrix X, at instant of time
T(i+1).

X, (k+1:)=G-X,(k,:), isa 14x1 vector,G is a 14 x14 matrix, and X, (k,:) a 14x1
vector containing the values of the 14 states at time instant k +1. Therefore, X, (k +1, j)

corresponds to the value of the j" state at time step k +1.

25



The algorithm we use is a conjunction of line search procedures and a quasi-Newton
algorithm; the Levenberg-Marquardt method. The function that is minimized is

considered as a sum of squares:
min f(U) :1||F(u ) :lz FU? (@
UerN 2 2 2 - p

where F (U) =X, (i+1 j)- X (k+1]).
More accurately, according to [5], we are performing a nonlinear parameter estimation to

fit a model function to data generated in X, . F(U), has the following structure:

RU)
F,U)

F.(U)

FU)=

Please note that in the following, N represents the number of stages in the Marx

generator and therefore, for the current case we are studying, N =4. F(U) has the
following properties:
> UT=[C, C, - C, ] isan 1x N vector containing the values of the N design

parameters to be determined.

» J(U)isa nxN Jacobian matrix of F(U).
» G(U) the N x1 gradient vector of f(U).

» H(U) the NxN Hessian matrix of f(U).
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3.3.1 Quasi-Newton Methods:

Quasi-Newton methods are the most popular methods that use gradient information.

These methods formulate the problem as a quadratic problem represented by:
- (1 T T
flU)= nbm[EU HU+cU +bj

where the Hessian matrix, H , is a positive definite symmetric matrix, cis a constant
vector, and b is a constant. The optimal solution of this problem occurs when the partial

derivatives of f(U) go to zero [5]:

VEU")=HU +c=0

1
d(UTH Uj T
Where, according to [6]'2T: HU, ﬂo%):c and U " represents the

optimal solution point.

The advantage of quasi-Newton methods over Newton methods is the way the Hessian
matrix H is calculated. Newton-type methods calculate H directly and proceed in a
direction of descent to iteratively locate the minimum, which introduces computational
complexities that comes from the numerical generation of H . On the other hand, Quasi-

Newton methods use values of f(U) and Vf(U) to construct curvature information and

generate an approximation of what H should be using the appropriate updating
technique. The most efficient updating method, that proved to guarantee fast convergence
rate and global convergence under the right conditions [13], has been developed by

Broyden [7], Fletcher [8], Goldfarb [9], and Shanno [10], hence its name BFGS:

T T.T
H -H +qqu_HkSkska
k+1 — k T TH
Qi Sk S M, Sy
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where

Sy :Uk+l_Uk
O« = Vf (Uk+1)_Vf (Uk)

H,, the starting point of the updating technique, can be set to any positive definite
symmetric matrix in particular to the identity matrix. Instead of calculating the inverse of
the Hessian H ™, the DFP formula, derived by Davidon [11], Fletcher and Powell [12], is
used. The DFP formula uses the same formula as BFGS however while substituting g,
by s, :

s Hga:qH,

H o =H!+
“UTE Tslge giHG,

Similarly, the gradients of the objective function entries are obtained using a numerical
differentiation method via finite differences based on changing the value of each of the
design parameters and calculating the corresponding rate of change in the objective
function [5].
The direction of search for each iteration can be calculated as follows:
d, =-H"-VfU,)

3.3.2 Line Search:
Line search is the search method used by the Levenberg-Marquardt algorithm to find the
search direction towards the minimum of the objective function. At each step of the main

algorithm, the line-search method generates a new set of design variables for the next

iteration:

U,,=U, +a’d,
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where U, denotes the current iterate, d, is the search direction and ¢ is a scalar step
length parameter.
The line search method attempts to decrease the objective function along the line
U, +«"d, by continuously minimizing the objective function. The line search procedure
consists of two phases:
1. The bracketing phase: corresponding to an interval specifying the range of values
o to be tried-out along the line U, ., =U, + a"d, to be searched such that
fU.)<fU,).
2. The sectioning phase: dividing the bracket determined in the bracketing phase
into subintervals on which the minimum of the objective function is

approximated by polynomial interpolation.

The resulting step length « satisfies the Wolfe conditions:

(x, +ad,)< f(x)+caVi'd,
vf(x +ad, ) d, >c,aVi'd,

where ¢, and c, are constants with 0 < ¢, <c, <1.

These conditions guarantee that we will be using the largest value of « that decreases the

objective function.
3.3.3  Quasi-Newton Implementation:
The quasi-Newton method used consists of two parts:
» Determining the direction of search from the updated Hessian matrix using the BFGS

formula;

By looking at the Hessian update formula again:
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T TaT
" Ol Hy s sH,

H,, = H
“ “ q.krsk SIHkSk

where

Sy =Uk+l_Uk
q =ViWU,,)-ViU,)

The sign of H, , is dominated by the term q;’s,

qgsk Z(Vf (Uk+1)_Vf (Uk))T ‘(Uk+1_Uk)
q-krsk :(Vf (Uk+1)T -V (Uk)T)'(Uk +a,d, _Uk)
ars = (VU )" - VEU)T) (o)

Knowing that «, is a constant 1x1 term, we obtain the following expression for g;s, :

arse = (ViU -VEUT) 4,
We know that f(U,) = %Z F (U,)?, then it is guaranteed that f(U,) >0 and
p

vf(,)>0. Consequently, — f(U,)<0 and —Vf(U,)<0—-Vf(U,)" <0.From
section XX d, =-H,*-Vf(x,), hence d, <0:

-vfU,)'d, >0
= —aVf(U,)"d, isguaranteed to be positive negative. However, the term
—aVf(U,,,)"d, can still be negative. This is where the design of «, comes into play to
guarantee that q; s, is positive definite by guaranteeing:

—aviU,,)"d, +-aVfU,)"d, >0
= —aViU,,,) d, >-aVf (U,) d,

Hence, the Hessian matrix at each iteration is guaranteed to be positive definite so that

the direction of search d is always negative and hence in a descent direction.
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Consequently, a small step « in the same direction of d will decrease the magnitude of
the objective function.

» The line search procedures;

At each iteration, before a Hessian update is made, the following condition must be

checked:

FU) < FU)
where U, ,, =U, +,d .
If U,,, does not satisfy the condition above then «, is reduced to form a new iteration
step «,,,. The usual reduction method is a bisection method that involves halving the
current value of « until a reduction in f (U) is observed.

When a U that satisfies the condition above is found, the Hessian matrix is updated if the

term qs, is positive. If q;s, is not positive then further cubic interpolation is performed
such that a valid U, , is found that satisfies the following conditions:
fU.,)<fU)
vf (U, )" d is small enough such that g,s, >0
As U, approaches the solution point, the procedure goes back to using an «, that is close

to unity.
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3.4 Application to the reference model:

That being said, we applied the nonlinear least-squares optimization algorithm explained
above to the reference state matrix X, , displayed in Figure 36 of Appendix A. The
results turned out as follows:

C, =0.0359876, C, =0.06721539, C, = 0.02362871, C, =0.12467976.
Looking at the parasitic capacitor values used for the reference model

"C,=0.0359864, 'C, =0.067215, "C, =0.02362875, 'C, = 0.12467875
Hence, we have the following differences between the reference model parasitic
capacitors values and the one obtained from the least-squares optimization algorithm:

"C,—C,=-1.2x10"°, 'C,-C, =-39x107 , 'C,—C, =4x10" ,
"C,-C,=-1.01x10"°.

Which shows that the error between the two sets of parasitic capacitors is relatively small
with an average of —2.56x10"-6.
By using the values for the parasitic capacitors obtained from the optimization algorithm

we obtained the following state trajectories stored in X, :
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Woltage across the first parasitic capacitor
Woltage across the second parasitic capacitor
Woltage across the third parasitic capacitor

“Woltage across the fourth parasitic capacitor

“Woltage across the fifth parasitic capacitor

Yoltage in Wolts

0 2 4 B 8 10 12 14 16 18 20
Time in seconds

Figure 7- State trajectories XOpt obtained using the parasitic capacitor values from the
optimization algorithm

The relative error between the X, and X, calculated using the following formula:

Xr(i! J)_ Xopt(i’ J)

— ,for 1<i<10001 and 1<i <14
X, (0, 1)

err(i, j) =

Looks as follows:
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Figure 8- Relative error between X, and XOpt

Clearly the errors overlap at some of the time intervals. The spikes seen in this graph are
due to the fact that we are plotting the relative error and dividing by X, (i, j) which, at
some points in time, when the voltages across the N +1=5 parasitic capacitors are
approaching zero, have very small values that are reflected at spikes in the graph.

For example, the minimum of err(:,5) is-278.6434, this minimum occurs at index

I = 6346 which corresponds to T (6346) =12.69 seconds. Hence we have

err(6346,5) = —278.6434 , which corresponds to

X, (6346,5) - X, (6346,5)
X . (6346,5)

err(6346,5) = , Where X, (6346,5) =-1.2786e-007 V and
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X oot (6346,5) = -3.5755€e - 005 V. We can see that the difference between these two

values is very small and both of them are very close to zero however X, (6346,5) is of
order 107 and X, (6346,5) is of order 10~° which introduces the spike of —278.6434

in the relative error plot.

Plotting the average of the error between the two set of states X, and X, we obtain the

following:

mean(e(-.5))
mean(e(:,B))
mean(e(-.7})
mean(e(-.8))
mean(e(:,9))

0.01 : : : : : : : : :

T k.. -

Yoltage in Wolts

-0.005 {------- eseoees CTTLORE FELUREE boeoeses deroensee e oo s R .

e —_———_—_-

0015 A N S A R AR S
0 2 4 6 8 10 12 14 16 18 20
Time in Seconds

Figure 9- Average error plot between X, and XOpt
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As we can see in the figure, the averages are small having absolute values smaller than

1.1%, more precisely:
Imean(err(:,5))| =1.09%, |mean(err(:,6))| = 0.2%, |mean(err(:,7))| = 0.0112%,
Imean(err(:,8))| = 4.8104e - 4%, |mean(err(:,9))| = 0.8729%.
These results show that the parasitic capacitor values obtained using the least-squares

nonlinear optimization algorithm yield a set of state trajectories that closely follow our

reference model X, with a relatively negligible error.

3.5 Conclusions

We have seen in this chapter that using the least-squares nonlinear optimization algorithm
yields an optimal set of parasitic capacitor values that, when used for input to the Marx
generator, result in a state model that closely follows the reference model with a

relatively negligible error.
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Chapter 4 Generating a new reference model

We introduce in this chapter some of the properties associated with the Marx generator
state trajectories and develop a state shifting algorithm that shifts the state trajectories by
a specific shifting factor such that the spark generated by the generator occurs at a user

specified time instant.

4.1 Generating a new reference state model:

It is worth noting that the trajectories of the 14 states have all the following properties:
1. They are periodic with period T, .
2. Symmetric with respect to, depending on the state in consideration, either their

per

seconds for each T, time
2

minimum or maximum value which occurs at t, =

interval.
As an illustration of these two properties, consider the voltage across the N +1 capacitor,

which corresponds to the 9™ state of our model:
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Yoltage in Wolts

voltage across the fifth parasitic capacitor | |
0 2 4 B B 10 12 14 16 18 20
Time in seconds

Figure 10- Voltage across the 5" parasitic capacitor

Clearly the state trajectory is periodic with period T, = 6.284 seconds.

38



Yoltage in Volts

voltage across the fith parasitic capacitor |;

0 1 2 3 4 g B
Time in seconds

- th -y -
Figure 11- Voltage across the 5™ parasitic capacitor up to Tper

T
The maximum during the first period is 11.9999 at t, = pz‘” = 3.142 seconds,
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Figure 12- Voltage across the 5" parasitic capacitor up to t,

Having this portion of the state up to t, =3.142 seconds, we can rebuild the state

trajectory for the first period using the symmetrical property with respect to the time

index at which the maximum occurs.
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Yaltage in Volts

data up to the maximum reahed during the first period
data built using the symmetrical property |

] 1 2 3 4 g 6 7
Time in seconds

Figure 13- Rebuilding ch up to Tper using symmetry with respect to t,

Having rebuilt the data up to the first period, the full state trajectory can be generated by

adding up the rebuilt data for successive multiples of the period up to T =20 seconds:
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Figure 14- Rebuilding VC;.) upto T,

total

= 20 seconds using the periodicity property

Having shown the symmetrical and periodical properties of one of the states, in particular
the voltage across the N +1 capacitor, we will display one more example of these
properties at the 14™ state which represents the current across the N +1 inductor. The

corresponding reference trajectory is displayed in the following figure:
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current accross
the M+1 inductor

Current in Amperes

i
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Figure 15- Current across the fifth inductor

Again by looking at Figure 15 we can see that the trajectory is periodic having the same

. th . . . . .
period as the 9™ state, that is T = 6.284 seconds. Displaying the trajectory for the first

period:
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Current in Amperes

Time in seconds

Figure 16- Current across the fifth inductor up to T,

T
This trajectory is symmetric with respect to its minimum at t, = pze“ =3.142 seconds.

Plotting the curve to t, =3.142 seconds:
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data up to its minimum reached during the first period :
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Figure 17- Current across the fifth inductor up to t;

Rebuilding the state path up to the first period T, can be achieved by using the

symmetrical property of the curve with respect to the time index at which the minimum

occurs:
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Figure 18- Rebuilding ICL'3 up to Tper using symmetry with respect to t,

The full path can be, hence, built using the periodicity of the original curve as is

explained for the 9" state trajectory:
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data up to the first minimum

data built using symmetry

data built using periodicity

------------------------------------------------------------------------------

______________________________________________________________________________

“oltage in Wolts
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Figure 19- Rebuilding IC'5 up to T, = 20 seconds using the periodicity property

4.2 Generating the New Reference Model

The next step to be considered is generating a new X, ; that is a desired trajectory to be

followed, during which the peak voltage at the N +1=5" capacitor is set to be at a new
desired time value. Hence, this would require shifting all of the 14 states of the N =4
stages Marx generator by the right fraction of time. As an example, knowing that in our

reference model t, (i =1572) = 3.14 seconds, and wanting the maximum of the 9™ state

during the first period to occur at T (i =1402) = 2.802 seconds, than the factor by which
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the state trajectories should be shifted by is fc = % . To this extent and exploiting the

stated state trajectory properties of symmetry and periodicity, we developed the following
two steps algorithm to reflect the desired state shift:
1% step:
e Define both the maximum and minimum during the first period and their respective
indices in a variable called temp.
e Define a new array called Xnd _temp in which values ranging from 0.01% up to 100%
of the maximum corresponding state variable are stored.
e Go through the entries in Xnd _temp and compare them to actual values in X, in order
to determine their respective indices in X, . At this stage we consider two scenarios
o Thevalue in Xnd _temp is exactly equal to one of the entries of X, in
this case its entry index would be the same as in X, .
0 Thevalue in Xnd _temp does not have an exact match in X, . Therefore it
will eventually be in an interval between a lower and higher bound values
in X, . Hence its stored entry index is chosen to be equal to the lower

bound entry index of its interval.
The 2" step:

¢ \We define the shift factor fc.

e We multiply the corresponding maximum value index by fc, round the result and store

itinnew_max_i.
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Similarly, we multiply the corresponding minimum value index by fc, round the result

and store it innew_min_i .

e Store at X, (new_maxXx_i, j) the corresponding maximum value of X, .

e Store at X (new_min_i, j) the corresponding minimum value of X, .

e Move the values stored in Xnd _temp into X, with the corresponding indices being
multiplied by fc.

e Until now we have built X, for half a period, therefore we use the symmetric property
of X, tobuilt X, for a one period duration such that the new period is
T e = (new_max_i (or new _min_i))x 2.

e Using the periodicity property of X, , we fill out the remaining entries of X, up to

T, (i =10001) = 20 seconds.

4.3 Conclusion:

This chapter showed the symmetrical and periodical properties of the 2N +1 states and

presented the algorithm used to generate a new reference trajectory X, based on these

properties and the reference model X, , such that the maximum of the N +1 parasitic

capacitor occurs at a desired point in time.
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Chapter 5 Implementation and Results

In this chapter, we apply the state shifting algorithm developed in Chapter 4 to the
reference state model of the N =4 stages Marx generator using two different shifting
factors. Hence, we obtain two new reference state trajectory models with different
voltage peaking times at the N +1=5" parasitic capacitor. Next, we apply the least-
squares nonlinear optimization algorithm explained in 23Chapter 3 to obtain the set of
parasitic capacitor values that best track the corresponding reference model and present a
comparison between the state trajectory obtained using the optimization results and the

corresponding reference model.

5.1 Case 1: Maximum voltage across fifth capacitor at

T=2.802 seconds

Using the previous algorithm, we first generated a new X, where the maximum voltage

across the N +1=5" parasitic capacitor occurs at T (i =1402) = 2.802 seconds, i.e.

1402
1572

fc and X , (1402,9) =12V .

By using the algorithm developed in the previous chapter the new state trajectory X,

looks as follows:
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Woltage across the first parasitic capacitor
Woltage across the second parasitic capacitor
“Woltage across the third parasitic capacitor

Woltage across the fourth parasitic capacitor

Woltage across the fifth parasitic capacitor

Yoltage in Volts
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Figure 20- New state model X

The subsequent figure reflects better the time shift applied to the new state trajectory. To

avoid confusion, 1 will only plot the voltage across the 9" parasitic capacitor in X, and

X

nl-*
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Yoltage in Volts
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Figure 21- Voltage across the fifth parasitic capacitor in X ; lagging the voltage across

the fifth parasitic capacitor in X,

Please note that this same time shift of fc = % is reflected in all of the 14 states of our

N =4 stages Marx generator. You can see from the figure that the maximum of X, (:,9)

is leading the maximum of our reference model X, (:,9) by
T(1572) - T (1402) = 3.142 — 2.802 = 0.340 seconds.
Using the nonlinear least-squares optimization algorithm, the optimal set of parasitic

capacitor values that best follows the new state trajectories in X ; is the following:

C, =0.032176F., C, =0.060065F., C, = 0.02111F., C, =0.1115F.
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Using these values as inputs for the parasitic capacitor values and multiplying

bothCandL by fc to reflect the time shift into the resonant frequency o, , we obtain the
following state trajectories stored in X,

“Woltage across the first parasitic capacitor
“Woltage across the second parasitic capacitor
“Woltage across the third parasitic capacitor
“Woltage across the fourth parasitic capacitor

“Woltage across the fifth parasitic capacitor
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Figure 22- State trajectories X . using the optimal set of parasitic capacitors

opt
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The states generated using the new set of parasitic capacitors seems to be closely

following the trajectories in X, shown in Figure 20. The relative error between he two

set of state trajectories X, and X, is reflected in the following plots:

opt
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Figure 23- Relative error between X, and X,

As is reflected in the figure, the spikes of the errors along the different states have larger
magnitudes at certain points in time than the relative error plot shown in Figure 8. The
absolute maximum magnitudes reached by the error between the, new, reference state

trajectories X, and the simulated ones X, are as follows:

opt

max|(err(:,5))| = 3005.8, max|(err(:,6))| = 479.2271, max|(err(:,7)) = 684.7525,

max|(err(:.8))| =1, max|(err(:,9))| =142.0193.
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The next plot shows the mean of the relative error between the states in X, generated

using the algorithm in the previous chapter and the ones obtained by simulation using the

optimal set of parasitic capacitors and stored in X, :

mean(e(:,5))
mean(e(-.6))
mean(e(:,7}))
mean(e(:,8))
mean(e(-.9))
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Figure 24- Average error between X ; and X

More precisely the absolute values of the average percentages are:

Imean(err(:5))| = 0.2753%, |mean(err(:,6))| =12.8018%, [mean(err(:,7))| =15.9186%,

Imean(err(:8))| = 0.5530%), |mean(err(:,9))| = 2.5711%.
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The above percent averages are small and relatively negligible except for the 6™ and 7"
states that have a bit higher average percent error.

If we consider the 5™ state more closely, we have seen that it has a very large peek of
3005.8, however it has an overall average relative error of 0.2753% which shows that the
peek happens at a fixed instant of time, i.e. at T (i =5393) =10.7840 whereas for the
remaining time indices the corresponding relative error is very small.

It is worth noting that the spikes in the relative error magnitude occur at points in time
where the voltages across the N +1=>5 parasitic capacitors approach zero volts. Hence,
choosing smaller time intervals during which there are no sudden jumps in the error
magnitude decreases the mean error between any two pair of states significantly.

To better illustrate this statement, the next figure, simultaneously, displays the voltage

across the first parasitic capacitor (i.e. the 5" state in X ot ) @nd the relative error between

X (5) and X, (:,5):
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------- relative error err(:,5))
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Figure 25- Voltage across the first capacitor and the corresponding relative error

As stated the spikes occur when the state approaches zero volts. Choosing a time interval

during which the voltage across the fifth state in X, is not approaching zero, in

particular between 15 and 16 seconds and repeating the same plot as above:
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------- relative error err(:,5))
voltage across the first parasitic capacitor
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Figure 26- Voltage across the first capacitor and the corresponding relative error between
for 15sec. <T <16sec.

As seen in this figure, the relative error has a small magnitude in this interval:

~0.0253 < err(7501:8001,5) < 0.0198

and absolute mean percentage of:

Imean(err(7501:8001,5))| = 0.0426%

Where T (7501) =15seconds and T (8001) =16 seconds.
The spikes observed in Figure 23 are due to numerical discrepancies induced by the

relative error calculation. For instance, if we again consider in more details the maximum

of the relative error corresponding to the 5" state:
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max|(err(:5))| = 3005.8
This occurs at index 5393 of the err matrix, i.e. err(5393,5) = 3005.8. Knowing that

an(i, J)_ xopt(i' J)
X, J)

err(i, j) = , for 1<i<10001 and 1<i<14

X 4 (5393, 5) - X ,,, (5393, 5)

Hence, err (5393, 5) = X ., (5393, 5)
nl !

, Where

X 1(5393,5) =5.8184e-006 and X, (5393, 5) = 1.75x107. Both of these values have

small magnitudes, however one of them has order 10 and the other 10™® which induced
the large jump in the relative error magnitude. To overcome this issue, | will set a

threshold value such that whenever the order of X ; is less than 10~° while the order

of X, is less than 1072, set the corresponding relative error value to zero. Hence, with

opt
the application of this constraint, the absolute maximums of the relative state errors

become:
max|(err(:,5))| =19.3360, max|(err(:6))| =1, max|(err(:,7))| = 0.9865,
max|(err(:8))| = 0.3239, max|(err(:,9))| = 0.9475.
with the following absolute mean percentages:
mean|(err(:,5))| = 2.1227%, mean|(err(:,6))| = 3.1654%, mean|(err(:7))| = 0.8188%,
mean|(err(:8))| = 0.4509%, mean|(err(:,9)) =1.3447%.

Thus the absolute maximum and percentage average of the relative errors have been
greatly decreased, which shows the effect of calculation discrepancies on the error
especially in regions where the state variable values become minute when approaching

Zero.
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5.2 Case 2: Maximum voltage across fifth capacitor at

T= 3.302 seconds

The next case considered is when the maximum voltage across the N +1=9" parasitic

capacitor occurs at T (i =1652) =3.302 seconds, i.e.

fc _ 1652 and X ,(1652,9) =12V.

1572

Hence, the new state trajectories look as follow:
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“Woltage across the first parasitic capacitor

“Woltage across the second parasitic capacitor

“Woltage across the third parasitic capacitor

“Woltage across the fourth parasitic capacitor

“Woltage across the fifth parasitic capacitor
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| S Y U U | U | g

F-------

§10A U 8BBYOA,

12 p-mme e
10 -

al-- L

0

12 14

Time in seconds

New state trajectories X ,

Figure 27-

The subsequent figure reflects better the time shift applied to the new state trajectory. To

avoid confusion, I will only plot the voltage across the 9" parasitic capacitor in X, and

Xoa
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Figure 28- VVoltage across the fifth parasitic capacitor in X, leading the voltage across

the fifth parasitic capacitor in X,

Please note that this same time shift of fc = 12% is also reflected in all of the 14 states

of our N=4 stages Marx generator. You can see from the figure that the maximum of

X, (:,9) is lagging the maximum of our reference model X, (:,9) by

T(1652) —T (1572) =3.302 —3.142 = 0.16 seconds.
Again using the nonlinear least-squares optimization algorithm, the optimal set of

parasitic capacitor values that best follows the new state trajectories X, is the following:

C, =0.037819F., C, =0.070636F., C, = 0.024877F., C, = 0.13122F.
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Using these values as inputs for the parasitic capacitor values and multiplying

bothCandL by fc to reflect the time shift into the resonant frequency o, , we obtain the
following state trajectories stored in X,

YWoltage across the first parasitic capacitor
“Woltage across the second parasitic capacitor
Yoltage across the third parasitic capacitor

Woltage across the fourth parasitic capacitor

Woltage across the fifth parasitic capacitor

Yoltage in Volts

0 2 4 & 8 10 12 14 16 18 20
Time in seconds

Figure 29- State trajectory X opt obtained using the set of optimal parasitic capacitors

From the above plot, the state trajectories seam to follow the new reference model X,

much better than the previous case. The resulting relative error plots are as follows:
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Figure 30- Relative error between X, and X,

Still one can notice the jumps in the magnitude of the relative error that are larger than
the ones shown in Figure 8, however much smaller than the spikes obtained in the
previous study case. The absolute maximums of the relative error magnitudes are as
follows:
max|(err(:,5))| = 258.8794, max|(err(:,6))| = 2319.9, max|(err(:,7)) =558.8778,
max|(err(:,8))| =1, max|(err(:9))| = 418.3080.
The subsequent plot shows the mean of the relative error between the states in X, and

the ones obtained by simulation X, :
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Figure 31- Average error between X, and X,

The absolute values of the averages are:
Imean(err(:,5))| = 26.6565%, |mean(err (:,6))| =3.8268%, |[mean(err(:,7))| =10534%,
Imean(err(:,8))| =0.3932%, [mean(err(:,9))| = 0.5068%.

Similarly to the reasoning behind the first case study, the percentages shown above are
clearly small enough for the exception of the one corresponding to the 5" state. The large
average error value is due to the larger spikes in the corresponding relative error as

shown in Figure 30.
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Again the spikes in the relative error magnitude occur at points in time where the voltage
across the N +1parasitic capacitors approaches zero volts.

Similarly to the previous case, choosing smaller time intervals during which there are no
sudden jumps in the error magnitude decreases the mean error between any two pair of
states significantly. The following figure, gives a better pictorial explanation of this fact
by simultaneously displaying the voltage across the fifth parasitic capacitor (i.e. the 9"

state in X, ) and the relative error between X ,(:,9) and X, (:,9):

-------- Relative Error Err{-,9)

Voltage across the fifth parasitic capacitor

S

S

Relative Errar
Yoltage in Volts
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Figure 32- Voltage across the ninth capacitor and the corresponding relative error
between
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As stated the spikes occur when the state approaches zero volts. Choosing a time interval

during which the voltage across the ninth state in X __ is not approaching zero, in

opt
particular between 9 and 12 seconds and repeating the same plot as above:

-------- Relative Error Err{-,9)
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Figure 33- Voltage across the ninth capacitor and the corresponding relative error
between for 10sec. <T <12sec.

As is reflected by the figure above, the relative error of the 9" state has a small
magnitude in this interval:

-0.024329 < err(5001:6001,9) < -5.51697e - 005,
and absolute mean percentage of:

Imean(err(5001: 6001,9))| = 0.50413%
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Where T (5001) =10seconds and T (6001) =12 seconds.

As stated for the previous study case, the spikes observed in Figure 32 are due to

numerical discrepancy induced by the relative error calculation. For instance, if we

consider the maximum of the relative error corresponding to the 5" state:
max|(err(:5))| = 258.8794

This occurs at index 6831 of the err matrix, i.e. err(6831,5) = 258.8794 . Knowing that

an(iv J)_ Xopt(i' J)

— ,for 1<i<10001 and 1<i<14
Xn2(|1 J)

err(i, j) =

X (6831, 5) - X, (6831, 5)

Hence, err (6831, 5) = X ., (6831, 5)
n2 !

, Where

X, (6831, 5) = ~3.27509698 x10° and X, (6831, 5) = 8.4458x10~°. Both of these

values have small magnitudes however one of them has order 10~ and the other 10°°
which induced the large jump in the relative error magnitude. By setting a threshold value

such that whenever the order of both X, and X, is less than or equal to 10~ set the

opt
corresponding relative error value to zero. Hence, with the application of this constraint,

the absolute maximums of the relative error become:

max|(err(:,5))| = 6.0306, max|(err(:,6)) = 0.4166, max|(err(:,7))| = 0.0582,
max|(err(:8))| = 0.0239, max|(err(:,9))| =80.756.

with the following absolute mean percentages:

mean|(err(:,5))| = 0.0524%, mean|(err(:,6))| = 0.0436%, mean|(err(:7))| = 0.1377%,

mean|(err(:,8))| = 0.1121%, mean|(err(:,9)) = 4.4930%.
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Again, the absolute maximum and percentage averages have been greatly decreased,
which shows the effect of calculation discrepancies on the error especially in regions

where the state variable values become minute when approaching zero.

5.3 Conclusions:

The main area of interest in the state trajectories is when the voltage across the N +1
capacitor reaches its maximum of Vc,,,, = N -Vc;(0), where i = {1,2,---,N} while the

voltage across the remaining N parasitic capacitors is approaching zero. Using the state
space generation algorithm we have explained in Chapter 2 to generate a new desired

state trajectory X, and the least-square nonlinear optimization algorithm to obtain the

optimal set of parasitic capacitors to track the new X, we obtained X, whose state

opt
trajectories closely follow the desired X, especially in the interval of interest. Adding a

constraint to the relative error magnitude, such that whenever the value of the states go
down below a certain threshold value set the corresponding relative error to zero, proved

that X, closely follows X with negligible mean relative error value which undermines

opt
the effect of the sudden jumps in the relative error magnitude. It is worth noting here that
the time shift in this section could have been reproduced by time scaling the state space

model of the Marx generator

X(t):%“l\/l X (1)

It is worth noting here that the time shift in this section could have been reproduced by

time scaling the state space model of the Marx generator
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X(t):fiC_NM - X (t)

1
However, even though this concept is applicable for the case of a Marx generator it is
cannot be generalized for any state space mode. The goal here is to show that by shifting
the state trajectories of a particular system it is still possible to determine the design

parameters that will yield the desired output.
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Chapter 6 Conclusion

We demonstrated in this thesis how to generate the appropriate state space model for any
N stages Marx generator by simply following the algorithm developed in Chapter 2. This
state space representation can be used to analyze Marx generators with arbitrary large
number of stages and introduces the advantage of knowing the behavior of the voltages
across the capacitors and the currents across the inductors at all instance of time and
hence prevent any unpleasant behavioral surprise.

We developed in Chapter 4 an algorithm that exploits the state trajectory properties of
periodicity and symmetry to construct a new set of states that comply with the user’s
desired specifications. Hence, a user can now specify the time at which he desires the

voltage across the N +1 parasitic capacitor to peek, that is the time instant t, at which
Ve, (t,)=N-Vc (0), where i = {1,2,---,N}, and the algorithm generates the appropriate

state trajectories that achieve that goal. This is where the application of the nonlinear
least-squares algorithm comes into play. Up till now the new desired state trajectories are
just theoretical and not the resulting output of the corresponding Marx generator. To be
able to determine the parasitic capacitor values that produce the desired state behavior,
we used a nonlinear least-squares optimization algorithm based on the quasi-Newton
Levenberg-Marquardt algorithm with line search procedures.

This strategy was shown to be successful with small relative error between the state

trajectories in X __, obtained from the new set of parasitic capacitors, and the new

opt *

desired trajectories in X, , generated using the algorithm of Chapter 2. At some particular
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instants of time, we encountered large jumps in the relative error magnitude. More
precisely, the relative error peeks occur at instants of time when the voltages across the

N +1 parasitic capacitors are approaching zero. These jumps can be undermined without
any serious effect on the system’s behavior; primarily because we are approximating the
behavior of a Marx generator using a base reference model that is by no means ideal and

because they do not occur at time intervals of interest that is the time intervals when the
voltage across the (N +1)St parasitic capacitor is peeking while the remaining voltages

and currents are approaching zero. In addition to the numerical discrepancies induced by
the calculation of the relative error, these error magnitude jumps might be due to the
optimization algorithm we are using that has proven to be less efficient when
encountering line search inaccuracies. Hence, by setting a threshold value such that
whenever the state value goes below that threshold the error is set to zero, we were able
to eliminate all the spikes and hence obtain both relative error and mean error values that
are negligible. It is worth noting that we generated the new sets of “desired” state
trajectories based on a model that is an approximation of what the behavior of a Marx
generator would be. Therefore, obtaining and basing our new state trajectories on a
reference model that has proven to be more accurate can greatly improve our results as
we will be attempting to track more realistic state trajectory models. Other issues worth
looking at are using another variation of the optimization algorithm such as the Guass-
Newton methods and predicting the state trajectories of an N stages generator using the

trajectory models of N -1, N —2,---, 2 stages Marx generators. Besides that, it would be

interesting to apply the concepts in this thesis to an actual Marx generator and compare
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the simulation results to the practical results and, thus, obtain a better idea of the accuracy
and effectiveness of the results obtained in this thesis.

Therefore by applying the concepts developed in this thesis to a Marx generator circuit,
we have showed that by generating the state space model of any circuit in combination
with the appropriate optimization algorithm, a user can specify a desired output trajectory
of hi circuit at a particular instant of time and determine in return the design parameters
that yield a trajectory that best tracks his output reference model.

As an interesting application of the concepts developed in this thesis, provided
appropriate safety measures are taking into consideration, I propose providing the user
with an interface through which he can specify the instant of time he desires the spark at
the N +1 parasitic capacitor to occur and the number of stages he desires, this number
would be dependant on the charging voltage sources available for the user and the
maximum output voltage value he is seeking. The device’s memory will contain the state
space trajectories for a wide range of stage numbers. The tool will then use the shifting
algorithm of Chapter 4, the state space generation algorithm of Chapter 2 and the
nonlinear least-squares optimization algorithm of Chapter 3 to generate the appropriate
parasitic capacitor values that will simulate the state space trajectories that conform to the

user’s specifications.
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Appendix A:

A.1 N=4-Stage Marx Generator

Now computing the state space realization of an N=4 stages Marx generator:

L
+

R e e i
e, (1) e )

+
— Vc’3 |4 - Vc’4 |5 —

— V¢

Figure 34- A N=4-Stage Marx Generator

Let

X, =Vc,(t), X, =Vc,(t) X, =Vc,(t) X, =Vc,(t), X, =Vc,(t), X, =Vc,(t),
X7 =VC$('[),X8 =VC;1(t)’ X9 =VC%(’[), X10 = |1(t)’ X11 = Iz(t)’ X12 = |3('[),
X13 = |4(t)’ X14 = Is(t)-

Similarly to the 2-stage Marx generator, using graph theory we obtain the following

graph
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Figure 35- Graph representation of a 4-stage Marx generator

Having chosen the states to be voltages across capacitors and currents across inductors
we follow these two simple rules stated in 93[4]:

3. Write KCL for every fundamental cut set (i.e. one tree branch and a number of
links) in the network formed by each capacitor in the tree.

4. Write KVL for every fundamental loop (i.e. one link and a number of tree
branches) in the network formed by each inductor in the co-tree (complement of a
tree).

dvc,

Cutset Cy: C,—=2+i,+1,=0=C,X, +i,+ X,, =0 (A.1.1)
1 dt 1 1 171 1 10

Cut set Cy: —|1—I1+Cl%+|2+ l,=0= -1, - X, +C X, +i,+ X, =0 (A.1L.5)

dve : :
Cut set Cs: CzTZjL I,=0=C,X,+X,;,=0= X, :—CLX11 (A.1.2)

2

Cutset C4: -1, — I2+C;%+i3+ l,=0= i, — X, +C, X, +iy + X, =0 (A.1.6)
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dvc, 1

+1,=0=C X, + X, =0= X, =—C—le (A.1.3)

3

Cutset Cs: C,

Cut set Cg: —i, — 1, +C, dzj/tcs +i,+ 1, =0= —i;— X, +C, X, +i, + X, =0 (A.L.7)

dvc, 1

+1,=0=>C, X, +X,=0= X, =— % (A.1.4)

4

CutsetCs: C,

dvc,

Cutset C: —i, -1, +c;—t+ l|,=0=—i, -~ X;; +C, X, + X, =0 (A.1.8)

. dVc, » ,
Cutset Cg: — 1, +C, dtcs =0=-X, +C; X, =0=> ngéx14 (A.1.9)

5

Loop 1 (1, —>Vc, = Vc,):

Ll%+Vcl' Ve, =0= L X + X, - X, =0= X, :éxl—éxs (A.1.10)

Loop 2 (1, —Vc, = Ve, —Vc,):

dl . . .
L, =2 4VE, ~Ve, —Ve, 0= L Xy, + Xy = Xs = X, =0=>
; 1 1 1
Xll :L—X2 +L—X5 —L— X6 (Alll)

2 2 2

Loop 3 (1, = Ve, —»Vc, — Vc,):

I . . .
L3%+Vc3 -Ve, -Ve, =0= L X, + X, - X, - X, =0=>
X, =ix3 L X _1 X, (A.1.12)
L, Ly Ly

Loop 4 (1, = Vc, - Vc, = Vc,):

L4°'O+t“+vC;1 ~-Ve, -Ve, =0= L X, + X, - X, - X, =0=

X _ L X, L X, L X, (A.1.13)
L4 I-4 L4
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Loop 5 (1, — Vc, — Vc,):

dl : : ; ;
Lsd—t5+VC5 Ve, =0= L Xy, + X =X =0= X,y :LiXB_Lix‘a (A.1.14)

5 5
Eliminating i, i,, iy, i,

Loop 6 (i, = Vc, = Vc,):

Ri, +VC, —Ve, =0=> Ri, + X, — X, =0=>i, :Ri(xl ~X,) (A.1.15)

1

Loop 7 (i, — Ve, —Vc,):

R2i2 +VC’2 _VC;L :O: R2i2 + X6 - X5 = 0:> i2 :Ri(xs - XG) (A'l'16)

2

Loop 8 (i, —Vc, —Vc,):

R +VE, ~VE, =025 R+ X, ~ X =05 |y = (X, - X,) (AL17)

3

Loop 9 (i, = Ve, — Vc,):

R, +VC, —Ve, =0=> R,i, + X, — X, =0=1i, =Ri(x7 ~X,) (A.1.18)

4

Replacing (A.1.15) in (A.1.1) we obtain:

C, X, +ix1 —ixs + X =0 X, =—ix1+ix5—ix10 (A.1.1)
R, R, RC, = RC ~ C

Replacing (A.1.15) and (A.1.16) in (A.1.5) we obtain:

1 1 S| 1

—R—1X1+—1X5—X10 +C1X5 +R—2X5—R—2X6+Xll:0
Ly s Rty Ly x4 X, +CX, =0

Rl RlRZ RZ

Xs = 1.x1—R1+R2. X + L .x6+i.xm—i.x11 (A.15)
RC, RR,C, R,C, C, C,
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Replacing (A.1.16) and (A.1.17) in (A.1.6) we obtain:

1 1 o 1 1
——Xg+— X =X, +C, X +— X ——X,; +X,, =0
R2 RZ RS 3

Ly o RetRay Ly X aX,+CiX, =0
RZ R2R3 R3

X = 1 X, — R, + Ry X + L x7+i.xn—i.x12 (A.1.6)
RZRSCZ R3C2 C2 CZ

Replacing (A.1.17) and (A.1.18) in (A.1.7) we obtain:

—ix6 +ix7 ~ X, +C X, +ix7 —ix8 + X, =0
R, R, R, s
R, +R .
Loy e Bt Ry Ly X, 4+ X +CX, =0
R, R.R, R

4

Ly, RFRy v 1 xilx -Lx, a1y
RC, ° RRC, ' RGC, ° C, % c,

Replacing (A.1.18) in (A.1.8) we obtain:

1 1 Yy
_R_4X7+R_4X8_X13+X14+C4X8:0
Xq = L X, - L x8+i.x13—i.xl4 (A.1.8)

R,C, RC, ° C, C,

Now we have the following set of equations:

X, =- Rllcl xl+% X —Cilx10
X, :-Ciz Xy
XS:_C%X”
x4=—Cix13
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X = X, - 2 X5 Xg+—X X
° RC, T RRC EETORAANRE I
Xe = : Xy — i +R3 Xe =Xt Xy s X1

R,C, R, RC R3C2 C, 9
X; = : X = R+R4x 1'X8+1X12 1X13
R,C, R;R,C, R,C, C, 3
Xg = : X = 1'X8+1X13 1X14
R,C, R,C, C, 4
1
Xq C_;JXM
1 1
X=X =—Xq
Lo
Xn:iszrixs_ixe
L, L, L,
x1z_ixs+ixe_ - X;
3 L, 3
Xls—iX4+iX7 . Xg
4 L, 4
; 1 1
X14:EX8_L_5X9

Hence, we can now write our state space representation of the form:

X=*M - X,

4

ang _ 4Mn MlZ : : :
Where*M = A A is a 14 x14 matrix and X is a 1x14 column vector.
M 21 M 22
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*M,, is a 9x9 matrix and has the following structure

1 0[0]0 1 0 0 0
RC RC
0 0[0]0 0 0 0 0
0 0[0]0 0 0 0 0
0 0[0]0 0 0 0 0
1 0[{0|0| (R+R) 1 0 0
RC, RRC, RC,
0 0[0(0 1 _(R+R) 1 0
RC, RRC, RC,
0 0[0(0 0 1 _(R+R) 1
RC, RRC, RC,
0 0[0]0 0 0 1 1
RC, RC,
0 0/0]0 0 0 0 0

Table 5- “M,, matrix




4
MZl

IS a 6x9 matrix and has the following structure:

1 0 0 0 1 0 0 0
L
0 1 0 0 1 1 0 0
L L L
0 0 1 0 0 1 1 0
L L
0 0 0 1 0 0 1 0
L L
0 0 0 0 0 0 0 1
L5
Table 6- “M,, matrix
*M,, is a 9x5 matrix and has the following structure:
1 0 0 0
C
0 1 0 0
C
0 0 1 0
0 0 0 1
C

1 1 0 0

C, C,

0 1 1 0

C, C,
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0 0 1 1 0
C, C,
0 0 0 1 1
C, C,
0 0 0 0 1
C,
Table 7- “M,, matrix
*M,, is a 5x5 matrix and has the following structure:
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Table 8- “M,, matrix

Please note that the N =4 stages Marx generator structure that we are presenting
conforms to all the constraints set in Chapter 2 for a general N stages Marx generator and
has, similarly to the N = 2 stages Marx generator, the following parameter values:
C=C,=C,=C,=C, =1F,

L=L =L =L =L,=1H,

R=R =R, =R, =R, =100,000Q,

L, =NxL=4x1=4H,

C, =0.03599F,C, =0.067215F,C, = 0.02363F,C, = 0.12468F ,
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. C
C5 = W =
The simulation results for this system were obtained by initially setting I, ,,,-(0) =0A,
V¢, ,545(0)=0V and Vc,,,,(0) =3V , which represents the voltage value to which the

C,.C,,C,,C, capacitors were initially charged:
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“Woltage across the first parasitic capacitor
“Woltage across the second parasitic capacitor
“Woltage across the third parasitic capacitor

“Woltage across the fourth parasitic capacitor

“Woltage across the fifth parasitic capacitor

“oltage in Volts

0 2 4 6 a 10 12 14 16 18 20
Time in seconds

Figure 36-State trajectory representing the voltage across the parasitic capacitors of a 4-
stage Marx generator

Similarly to the N=2-stage Marx generator, at the instant of time t, =3.142 seconds, the
voltage across the first four parasitic capacitors,Vc;,Vc,,Vc;,Ve,, is approximately zero,

and the voltage across the fifth parasitic capacitor, Vc;(t;) =N -Vc,,,,(0)=4-3=12V.
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A.2 N=8-Stage Marx Generator

Using the algorithm developed in Chapter 2 we can generate the corresponding
®M matrix for an N=8-stages Marx generator.

First we know that the number of states expected from an N=8 stages Max generator

8

&M M
would beS =3N +2 =3-8+2 =26, therefore our M = Hu 2| matrix would
8IlefL BM 22

have to be a 26 x 26 matrix.

If we start by considering M., , we know that it will have a size of (2N +1)x (2N +1),
that is 17 x17 with the following structure:

"M, = [”m11 llmlz], where "'m;, and “'m, are respectively 17 x8 and 17x9

matrices:

85



“m,, looks as follows:

1
RC,

0

0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Table 9- 1lmll matrix
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Due to the large number of entries in *'m,, , it will be expressed as *'m,, =[a b], where

a and b are respectively 17x4and 17 x5 matrices.

Hence, a has the following structure:

1 0 0 0
RC,
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
B R +R, 1 0 0
Rleci R,C,
1 B R, + R, 1 0
R,C, R, RSC; R,C,
0 1 B R, +R, 1
R.C, R3R4Cé R,C,
0 0 1 B R,+R.
R,C, R,R.C,
0 0 0 1
R,C,
0 0 0 0
0 0 0 0
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Table 10- & matrix such that 'm,, =[a b]

And b the following structure:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
R.C,
R +R; 1 0 0
R.R,C; R.C.
1 R +R; 1 0
R.C, R.R,C, R.C,
0 1 R, +R, 1
R.C, R.R,C, R.C,
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1 1
RiCs ReCs
0 0

Similarly if we now consider ®M,, it will have be a (2N +1)x (N +1) matrix, that is

Table 11- b matrix such that *'m,, =[a b]

17 x9 with the following structure:

1 [ o 0 0 0 0 0 0
Cl
o | 1 | o 0 0 0 0 0
C:2
0 0 1| 0 0 0 0 0
Cs
0 0 0 1| 0 0 0 0
C,
0 0 0 o | 1 | o 0 0
C5
0 0 0 0 o | 1 | o 0
CG
0 0 0 0 0 0 1| 0
¢
0 0 0 0 0 0 o | 1
CS
1 [ 1 o 0 0 0 0 0
C, C,
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0 1 [ 1] o 0 0 0 0 0
C, C,
0 0 1 [ 1| o 0 0 0 0
C, C,
0 0 0 1 [ 1| o 0 0 0
C, c,
0 0 0 0 1 [ 1| o 0 0
Cs Cs
0 0 0 0 0 1 [ 1| o 0
Cs Co
0 0 0 0 0 0 1 [ 1| o
C C,

0 0 0 0 0 0 0 1 [ 1
Cy Cy

0 0 0 0 0 0 0 0 1
C,

Table 12- °M,, matrix

M, s size is (N +1)x (2N +1), i.e. it is a 9x17 matrix with the following structure:

8 21
M21 = [ my,

*'m,, has the following structure:

mlz], where *m;, and *m,, are respectively 9x8 and 9x9 matrices.

1 0 0 0 0 0

L,

0 1 0 0 0 0
LZ
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1 0 0
L,
0 1 0
L4
0 0 1 0
L5
0 0 0 1 0
L6
0 0 0 1 0
L7
0 0 0 0 0 1
Ly
0 0 0 0 0
Table 13- 21m11 matrix

?'m,, has the following structure:
1 [ o 0 0 0 0
L,
1 | 1| o 0 0 0 0
L2 L2
0 1T | 1 | o 0 0
L, L,
0 1| 1 0 0
L, L,
0 0 1 1 0 0
L5 L5
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0 0 0 0 1 | 1] o 0 0
L, L,
0 0 0 0 0 1 1 0 0
L, L,
0 0 0 0 0 0 1 1 0
L, L,
0 0 0 0 0 0 0 1 1
L, L,
Table 14- 21m12 matrix

The last part of the ®M matrix is the ®M ,, block which has a size of (N +1)x (N +1),

therefore it is a 9x9matrix full of zeros:
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Table 15- °M,, matrix
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