
1

Distributed Smart-home Decision-making in a
Hierarchical Interactive Smart Grid

Architecture
Ding Li, Student Member, IEEE, and Sudharman K. Jayaweera, Senior Member, IEEE

Abstract—In this paper, we develop a comprehensive real-time interactive framework for the Utility and customers in a smart grid
while ensuring grid-stability and Quality-of-Service (QoS). First, we propose a hierarchical architecture for the Utility-customer
interaction consisting of sub-components of customer load prediction, renewable generation integration, power-load balancing
and demand response (DR). Within this hierarchical architecture, we focus on the problem of real-time scheduling in an abstract
grid model consisting of one controller and multiple customer units. A scalable solution to the real-time scheduling problem is
proposed by combining solutions to two sub-problems: (1) centralized sequential decision making at the controller to maximize
an accumulated reward for the whole micro-grid and (2) distributed auctioning among all customers based on the optimal load
profile obtained by solving the first problem to coordinate their interactions. We formulate the centralized sequential decision
making at the controller as a hidden mode Markov decision process (HM-MDP). Next, a Vikrey auctioning game is designed
to coordinate the actions of the individual smart-homes to actually achieve the optimal solution derived by the controller under
realistic gird interaction assumptions. We show that though truthful bidding is a weakly dominant strategy for all smart-homes in
the auctioning game, collusive equilibria do exist and can jeopardize the effectiveness and efficiency of the trading opportunity
allocation. Analysis on the structure of the Bayesian Nash equilibrium solution set shows that the Vickrey auctioning game can be
made more robust against collusion by customers (anticipating distributed smart-homes) by introducing a positive reserve price.
The corresponding auctioning game is then shown to converge to the unique incentive compatible truthful bidding Bayesian Nash
equilibrium, without jeopardizing the auctioneer’s (microgrid controller’s) profit. The paper also explicitly discusses how this two-
step solution approach can be scaled to be suitable for more complicated smart grid architectures beyond the assumed abstract
model.

Index Terms—Bayesian Nash equilibria, hidden mode Markov decision process (HM-MDP), hierarchical architecture, microgrid,
resource pooling, smart-home, truthful bidding strategy, Utility-customer interaction, Vickrey auction.
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1 INTRODUCTION

Proliferation of distributed energy resources (DER), in
particular renewable distributed generation, provides great
promise in significantly improving the efficiency of elec-
tricity distribution. However, as DER’s proliferate to a
significant fraction of the overall electric energy on the
distribution network, without proper procedures integration
may lead to highly imbalanced transient behaviors which
may overwhelm current infrastructure not to mention out-
ages and brown-outs. In a future smart grid, a customer
with renewable generation capability (such as PV panels
and wind turbines) may use predictive strategies to optimize
its energy demand requests over time and determine when
to use, sell or store its own renewable generation, flexibly
interacting with the electric-grid and other customers, as
opposed to being a passive energy consumer as today. The
information shared among distributed nodes (customers)
endowed with generation, storage and consumption at-
tributes can result in a distributed decision and control
framework that will lead to both overall energy and cost
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Fig. 1. Hierarchical smart grid architecture that is scal-
able while allowing for sufficient resource pooling.

efficiencies. Realizing the full potential promised by smart
grid concept, however, requires systematic design princi-
ples, a comprehensive protocol framework for interaction
among distributed entities that make up the grid and ro-
bust and computationally efficient control and optimization
algorithms.

Although a comprehensive formulation and an analysis
is not yet available, still there have been some attempts



2

to understand, model and analyze these effects [1], [2].
For example, a multi-stage frequency control framework
is presented in [3]–[5]. However, it does not address the
issue of consumption planning on the customer side. The
uncertainty in supply due to integrated renewable DER’s
and the challenges they impose on the existing distribution
infrastructure and the system operator have been discussed
in [6]. The distribution-level smart grid features such as in-
terconnection of distributed generation and active distribu-
tion management, automated meter reading (AMR) systems
in network management and power quality monitoring were
discussed in [7]. In [8], the implementation of vehicle-to-
grid (V2G) power issues, strategies and business models
for doing so, for purposes of both stabilizing the grid and
supporting large-scale renewable energy were discussed.

Usually, peak load shaving and load profile flattening are
achieved by incorporating demand response (DR) schemes
that are based on the predicted renewable generation. Var-
ious demand response (DR) schemes have been reported
in literature [9]–[16] based on different pricing schemes
such as time-of-use (TOU), peak-time pricing and real-
time pricing [17]. However, DR schemes only provide a
nominal operating point for the nodes in the grid (i.e. the
flat load profiles for customers) without allowing for the
real-time fluctuations and intermittence in the grid due to
the inevitable mismatches between the actual and predicted
renewable generations.

Various control-theoretic and system-level problem for-
mulations of smart grid architectures have been discussed
in [18] and [19]. In [18], for example, the authors showed
that significant improvements can be made to the operations
of a smart grid by providing information about the likely
behavior of renewable energy through both online short-
term forecasting and longer-term assessments. In [19], a
distributed control method was proposed for converter-
interfaced renewable generation units with active filtering
capability.

However, all these existing architectures mainly focus
on the system-wise operation from the perspectives of the
power generation side and the Utility companies. None of
them has considered a comprehensive cycle of interactions
between the Utility and the distributed entities (customers)
taking into account aspects of customer-side decision mak-
ing, Utility-side demand response scheduling, renewable
DER integration and power-load balances for grid-stability
and the effects of information and communication technol-
ogy (ICT) infrastructure on all these.

The major contributions of this paper include:
1) Proposing a comprehensive architecture that ad-

dresses not only the generation control and the con-
sumption planning separately, as have been done in
almost all previous work, but also the interaction and
integration of the two within a unified framework.

2) Proposing a hierarchical architecture, as shown in
Fig. 1, that is the first framework, to the best of our
knowledge, that not only assures the scalability of the
grid model, but also allows for sufficient resource
pooling among customer units. This enables us to

focus on an abstract power grid model consisting of
one controller and multiple customer units without
loss of generality.

3) Extending the concept of “smart-home”. In most
current smart grid literature, the term “smart-home”
is used to refer to households with “smart devices”
such as Advanced Metering Infrastructure (AMI)
[20], [21], which enables remote meter reading and
electricity bill estimation based on real-time pricing
information. In this paper, the concept of “smart-
home” is extended in two aspects: First, smart-home
is capable of not only intelligently managing its
own energy consumption, but also actively interacting
with the grid in real-time. Second, the concept of
“smart-home” can scale up to a broader customer unit
consisting of a cluster of households. For example, a
microgrid can also be a broad smart customer unit in
the feeder-level.

4) Proposing a hidden mode Markov decision process
(HM-MDP) based model for the smart grid real-time
planning. The HM-MDP model allows for the two-
step decision framework containing both centralized
sequential decision making at the controller and the
auctioning game design among distributed customers.

5) Proposing a novel auctioning game for distributed
customers to compete for limited energy trading
opportunities. The proposed auctioning game with
a reserved price has several advantages: (1) being
robust to adding/removing customers, (2) being ro-
bust against collusion by customers with untruthful
bidding strategies, and (3) converging to the unique
Bayesian-Nash equilibrium.

It is worth pointing out that application of different
auction schemes for smart grid problems have been reported
in [22]–[24]. For example, auction mechanisms that can be
used by the aggregators for procuring stochastic renewable
generations are proposed in [22]. In [23] and [24], double
auction is adopted for distributed energy resources (DERs)
management and Plug-in hybrid electric vehicles (PHEVs),
respectively. However, most of these are focused on the
solution derivation of auctions and fail to address the
connection between the centralized and distributed decision
schemes, which is important for the hierarchical architec-
ture of the modern smart grid.

The rest of this paper is organized as follows: In sec-
tion 2, we present our hierarchical interactive smart grid
architecture with the proposed two-step decision-making
framework. In section 3, with a hidden mode Markov deci-
sion process (HM-MDP) framework developed for the cen-
tralized controller sequential decision making (addressed in
detail in the supplementary part of this paper), we present
a Vickrey auctioning game for the distributed customer
decision making problem and the truthful bidding strategy
is discussed in detail. In section 4, a detailed analysis on the
solution set of the Bayesian Nash equilibria is presented.
By introducing a reserve price, the Vickrey auction is
shown to be more robust against collusive customers and
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converges to the unique truthful bidding Bayesian Nash
equilibrium. Simulation results with performance analysis
are also presented in section 4. The conclusions from this
study are given in section 5.

2 A HIERARCHICAL INTERACTIVE ARCHI-
TECTURE FOR SMART GRID

2.1 A Hierarchical Smart Grid Architecture

We propose a hierarchical architecture for the smart grid
that is scalable while allowing for sufficient resource pool-
ing, as shown in Fig. 1. The scalability of the grid requires
being able to easily integrate additional customers into the
grid without affecting the established operational conditions
of the grid. Ideally this might be achievable if each indi-
vidual household is managed separately, but, of course, this
would preclude any resource pooling, which is one of the
most important strategies to energy efficiency in the grid.
A tradeoff to this can be achieved by using the notion of
microgrids with DER’s. Each microgrid is a collection of
households with certain self-containing capabilities, which
are geographically adjacent and coordinated by a microgrid
controller, as shown in the red box in Fig. 1. However,
we can also think of each approximately self-contained
microgrid as a broader customer unit coordinated by a
feeder-level controller as shown in the blue box in Fig. 1.
Similarly, we can scale up to the substation level and above
and develop an entire hierarchical smart grid architecture,
as shown in Fig. 1.

As we scale up to construct the entire grid, at each level,
all branches with the same structure of one controller and
multiple customer units are all approximately self-contained
and are coordinated by the controller at a higher level. For
example, at the microgrid level in Fig. 1, all microgrid
branches identical to the red box are approximately self-
contained. When the power-load mismatch is too big to
be mitigated within a single microgrid, electric power flow
will be routed among different microgrids under the coordi-
nation of a feeder-level controller. Similarly, at the feeder-
level in Fig. 1, all branches identical to the blue box are
approximately self-contained. Power flow among feeder-
level branches are to be coordinated by the substation-
level controller. Hence, with this hierarchical architecture
interpretation, any decision-making framework designed for
a controller and the individual units below it is applicable
to each of the levels in this hierarchical smart grid. Thus, in
the following, we may focus on an abstract model made of
a single (micro-grid) controller and a collection of multiple
(smart-home) customers managed by it.

It is also important to notice that this hierarchical archi-
tecture can be robust against cascading failures in a power
grid due to its design based on self-containment at various
granular levels. When the deviation is too large to be
mitigated, the Utility can temporarily isolate the individual
branch, in which the initial failure started, from the grid
to prevent cascading failures. Therefore, this hierarchical
structure significantly enhances the power grid reliability

by routing power flow within and across different customer
units to mitigate uncertainties.

2.2 A Utility-Customer Interaction Model between
the Generation and Consumption Sides
Utility-customer (generation-consumption) interaction is an
important topic in smart grid design. The interaction be-
tween the generation and consumption sides allows more
efficient power-load scheduling compared to conventional
power grid planning, which is purely matching genera-
tion to demand. However, the Utility-customer interaction
varies depending on different time scales of the interaction
periods, as well as different customer units at different
levels of the hierarchical architecture. For example, in
a microgrid, the smart-homes are the customer units at
the microgrid level while the microgrid controller is a
customer unit at the feeder-level (one level above). To
address different interactions between the generation and
consumption sides, in this section, we propose a two-stage
model for the Utility-customer interaction, consisting of the
initial scheduling (long-term planning) and the real-time
scheduling (short-term planning).

2.2.1 Initial Scheduling: Prediction based Long-term
Planning
In the initial interaction (long-term planning) stage, demand
response (DR) schemes are implemented and it is desired
that the customer loads always stay relatively flat. Note that,
a flat load profile with low peak-to-average ratio means a
need for relatively low generation capacity reserve, leading
to more efficient operations of conventional generation
facilities and a less number of idle generators for most of
the time. In [13], [14], [25], we presented optimization-
based and game theoretic DR schemes for the Utility to
achieve this goal. In these DR schemes, customers pay less
(or receive incentive payments) if they strictly fulfill their
energy commitments. Similarly, they will have to pay extra
as a penalty if they fail to honor the agreement reached
during the long-term planning. Interaction at this level
usually happens at the beginning of each scheduling period
[12], [13], [15], [16] and is called the initial interaction or
long-term planning in our interaction framework.

2.2.2 Real-time Scheduling: Short-term Planning
The DR schemes in the initial scheduling provide a nom-
inal operating point for the nodes in the grid (the flat
customer load profiles). However, since all DR schemes
are based on the prediction of the renewable generations
within the scheduling period (for example, a 12-hour or
24-hour period), they may not properly handle the real-
time fluctuations and intermittence in power grid due to
the inevitable mismatches between the actual and predicted
renewable generations. This can be overcome, and the over-
all efficiency and stability can be improved, by allowing
for (near real-time) interactions at a finer time scale (short-
term) between the Utility and customers (generation and
consumption sides).
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From the perspective of the Utility (conventional gen-
eration side), both frequency control and voltage control
schemes are needed for keeping active and reactive power-
load balances [3], [4], [26]–[28]. From the perspective of
customers (consumption side), who are most likely self-
oriented, the objective is to make optimal decisions to maxi-
mize the accumulated profits (or minimize the payments) by
taking advantage of their local DER’s. Given the relatively
flat load profiles computed by DR schemes, a customer
can decide to sell part of its excess renewable energy to
the grid and storing the rest for future use, according to the
real-time pricing information.

It is worth pointing out that though the real-time decision
schemes are important supplements to the DR schemes,
they are different not only in scales of scheduling period
but also in their functionalities. The DR scheme design
(long-term planning) provides a nominal operating point
(flat load profiles) for the nodes. In real-time scheduling,
on the other hand, if local generations are less than the
nominal load demands computed in the long-term planning,
customers do not have much flexibility other than to buy
electricity they need from the Utility. However, if local
renewable generations are more than the nominal load
demands, customers can flexibly decide how much of their
own excess energy to be sold. Therefore, no matter in what
scenario (buying or selling), the real-time scheduling is
always based on the flat load profiles computed by the DR
schemes.

2.3 A Two-step Decision Framework for Real-time
Scheduling
Various DR schemes for the long-term planning problem
have already been reported in literature [9]–[16]. In this
paper, however, our focus is on the real-time scheduling
problem in the above assumed abstract grid model (consist-
ing of one controller and multiple customer units). Within
this abstract model, there are two main decision problems
(for real-time scheduling) to be addressed: (1) centralized
controller decisions and (2) distributed customer decisions.

Take a microgrid as an example. On one hand, as a
customer unit at the feeder-level, the microgrid controller
needs to make sequential decisions to maximize the ac-
cumulated reward of the entire microgrid. At each time
step the microgrid controller decides how much electric
energy need to buy or sold by the microgrid, taking into
account of all local DER’s within the microgrid (first
problem). On the other hand, smart-homes (customers) with
excess energy also need to make distributed decisions when
the microgrid controller needs to sell part of the excess
energy. The distributed decisions indicate how much excess
energy each smart-home contributes to the total amount of
electric energy to be sold by the whole microgrid (second
problem). To address both the centralized and distributed
decision making problems, we propose a two-step decision
framework for real-time scheduling, as shown in Fig. 2. The
centralized microgrid controller decision making problem is
shown in the upper level in Fig. 2 and the distributed smart-
home decision making problem is shown in the lower level

Fig. 2. A two-step decision framework for a microgrid
addressing (1) centralized microgrid controller deci-
sions and (2) distributed smart-home decisions.

in Fig. 2. In light of the discussion on how the abstract
model can represent scaled up units in the hierarchical
model, the optimal decision making strategies developed for
this abstract model can also be applied to different levels
in the hierarchical smart grid with relevant modifications.

2.4 Centralized Decision Making: a Hidden Mode
Markov Decision Process (HM-MDP) Model
In the main part of this paper, we present a brief discussion
on the centralized decision scheme design. Detailed prob-
lem formulation and model development for the centralized
decision making have been included in the supplementary
part of this paper. From the perspective of the controller,
the Markov properties of load demands and renewable
generations [29]–[31] allow us to characterize the tran-
sitions of these quantities defined above by a (possibly
non-stationary) Markov decision process (MDP). Though
all the energy related quantities are continuous valued, we
can quantize the state space into discrete levels. On one
hand, a certain level of granularity, say, a “basic energy
unit”, is essential in practice for energy operations to be
effective enough for microgrid level scheduling. On the
other hand, not too much error would be introduced as
long as the quantization level is sufficiently small. By
doing this, we obtain a discrete state space. Similarly, we
can define the action of the MDP, with a discrete action
space, as the number of basic energy units to be sold
by the controller. By solving the formulated MDP, the
controller makes optimal decisions in each time interval
and maximizes the accumulated reward defined over the
scheduling period.

One major difficulty on the solution derivation is the
non-stationarity of the MDP. However, observations on
environmental transitions reveal a possible environment
characterization with the concept of “environment mode”.
Different from the internal state, which is based only on lo-
cal information and fully observable, the environment mode
is actually hidden from the microgrid controller (as it is not
local information). Thus, the environment mode can only
be estimated based on observations of other information,
such as renewable generations and energy consumptions.
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With the fully observable internal state and the hidden
environment mode defined, we may adopt a hidden mode
Markov decision process (HM-MDP) model to solve the
centralized controller sequential decision making problem
[32], [33].

With the centralized solution algorithm design for the
controller addressed in an earlier paper [34], in this paper
we focus on the distributed decision scheme for customers.
It must be pointed out that the solution proposal for
the distributed decision problem (which is the focus of
this paper) is independent of the solution approach to
the centralized decision problem. No matter what type of
centralized solution algorithm is adopted for the controller,
given the optimal energy profile computed by implementing
that algorithm, the proposed distributed decision scheme
can be always adopted in each time interval. The only
link between these two schemes is that the solution from
the first stage (centralized problem) is the starting point
for the second-stage (distributed problem). The second-
stage attempts to find an equitable (fair) implementation
of the solution computed by the first stage under realistic
interactions among the customer units. As will be discussed
in section 3, from the perspective of problem formulation,
the centralized decision and distributed decisions together
make the real-time decision making scheme complete and
applicable at different levels in the proposed hierarchical
smart grid architecture. While from the perspective of prob-
lem solving, the solutions to the centralized and distributed
decision making problems can be designed separately.

3 DISTRIBUTED OPTIMAL DECISION MAK-
ING: AN AUCTIONING GAME DESIGN

Based on the optimal sequential decisions of the microgrid
controller obtained by solving the HM-MDP model as
discussed in the previous section, in this section we focus
on the decision scheme design for distributed customers
(smart-homes). When the microgrid controller decides to
sell part of the total excess energy of the entire microgrid,
this distributed decision scheme is especially important to
decide how many excess energy units each smart-home
contributes to the total amount of energy to be sold,
considering the fact that smart-homes are all self-oriented.
Several important issues need to be addressed about the
distributed decision scheme design:

1) First, the optimal distributed scheme needs to be
robust to adding/removing customers. This is because
the number of smart-homes within a microgrid could
be large and the status of smart-homes (buying-mode
or selling-mode) also vary over time.

2) Second, the optimal distributed scheme needs to
allow all participating selling-mode smart-homes to
specify how eager they are to sell their excess energy
units. Because usually not all excess energy units
can be sold, a fair and efficient distributed decision
scheme needs to make sure that the excess energy
units to be sold are those units that the selling-
mode smart-homes are highly eager to sell. Hence,

to quantitatively describe the eagerness of selling-
mode smart-homes, we need to define a metric of
eagerness. It is worth pointing out that not only could
the eagerness-metrics be different among different
selling-mode smart-homes, even for the same selling-
mode smart-home, the eagerness-metric might vary as
the number of remaining excess energy units changes.
Therefore, according to different eagerness-metrics
of distributed customers, the microgrid controller
needs to guarantee that the energy units sold always
correspond to high eagerness metrics.

3) Third, the optimal distributed scheme needs to be
robust against collusive smart-homes. This is because
that individual selling-mode smart-homes are all self-
oriented and interested in maximizing their own
benefits. Thus, selling-mode smart-homes might not
necessarily telling their true eagerness metrics and
they might tell the untrue values if doing so results
in higher benefits.

Denote by Et
l the total amount of excess energy (assum-

ing Et
l is an integer multiple of the basic energy units)

that the microgrid will sell to the outside grid. Recall that
Et

l is obtained from the optimal solution of the centralized
decision problem, in which the microgrid controller decides
how much electric energy need to buy or sold by the
microgrid in order to maximize the accumulated reward
of the entire microgrid. Since this Et

l number of energy
units comes from possibly different selling-mode smart-
homes, we can define the number of trading opportunities
to be Et

l , where each trading opportunity corresponds to
the trading of a single basic energy unit. The eagerness
metric of a selling-mode smart-home associated to each
trading opportunity is defined as the valuation (measured
in money unit) of the trading opportunity that the smart-
home has. The valuation that the smart-home has asso-
ciated to an individual trading opportunity is defined as
how much the smart-home expects to get from selling
its excess energy unit. The valuations of the Et

l trading
opportunities are private information of smart-homes and
are usually determined by factors such as energy storage,
power consumptions and so on. For example, when a smart-
home needs to sell its excess energy units more urgently, it
will associate higher values to these trading opportunities.
Hence, the eagerness-metrics it associates to these trading
opportunities are also higher. With the eagerness-metric
defined above, the original distributed decision making
problem is equivalent to an optimal allocation problem,
in which Et

l number of trading opportunities are to be
allocated among selling-mode smart-homes.

3.1 Vickrey Auction based Distributed Allocation
Scheme

Considering all the desired properties required by the
distributed decision making scheme, we propose a Vick-
rey auction based allocation scheme for distributed smart-
homes in the microgrid, as shown in Fig. 2. Assume that out
of the total K number of smart-homes, there are K̂t number
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of selling-mode smart-homes in time interval t participating
in the Vickrey auction competing for Et

l number of trading
opportunities. Note that in a one-shot auction in each time
interval, selling excess energy always increases the smart-
home’s immediate reward. Thus, every smart-home wants
to sell as much excess energy as possible for its own benefit.
However, from the microgrid controller’s perspective, to
maximize the total accumulated reward in a long run, Et

l

number of energy units must be sold to the grid at time t
(this is what the first step solution determines). Since Et

l

is no greater than the total excess energy Ex(t) among
all smart-homes in the microgrid, only part of the excess
energy units can be sold. Selling-mode smart-homes com-
pete for the Et

l number of trading opportunities by telling
that how much money (the bids) they are willing to pay
for each of the trading opportunities. Selling-mode smart-
homes determine the bids based on their own valuation
associated to each trading opportunity. These bids are not
necessarily equal to their valuations. Thus, selling-mode
smart-homes need to take into account the payments they
need to make for the trading opportunities and the profits
they may have by selling their excess energy units. Here
the profits of a smart-home equal to the difference between
the total valuations associated to all trading opportunities
it obtains and the total payments it makes.

In the Vickrey auction, the k-th (k = 1, 2, . . . , K̂t)
selling-mode smart-home submits Et

l number of bids bnt,k’s
(n = 1, 2, . . . , Et

l ) to indicate how much it is willing to
pay for each additional trading opportunity in time interval
t. Thus, bid bnt,k is the amount of money the selling-
mode smart-home k is willing to pay for its n-th trading
opportunity. Let bt,k = (b1t,k, b

2
t,k, . . . , b

Et
l

t,k) denote the
Et

l dimensional bid vector with nonnegative elements of
selling-mode smart-home k at time interval t. We assume
that the components in the bid vector is always non-
increasing in index and denote by B the bid vector space.
B is a subspace of the Et

l dimensional real vector space
REt

l
+ , which contains all Et

l dimensional real vectors with
nonnegative components. Mathematically, we have

B :=

{bt,k ∈ REt
l

+ |b1t,k ≥ b2t,k ≥ · · · ≥ b
Et

l

t,k,∀k = 1, 2, . . . , K̂t}
(1)

Note that, in practice restricting bid vectors to have non-
increasing components makes sense. This is because the
selling-mode smart-home’s valuations attached to individ-
ual trading opportunities is non-increasing as the smart-
home gets more and more trading opportunities. For exam-
ple, if a selling-mode smart-home has no trading opportu-
nity, it needs to sell its excess energy the most urgently and
its valuation for its first trading opportunity is the highest.
As it sells out more and more excess energy, its storage
facility gets released gradually and the marginal valuation
(marginal eagerness-metric) is thus non-increasing. If a
selling-mode smart-home k is only interested in selling et,k
(et,k ≤ Et

l ) number of excess energy units in the auction

at time t, then the last Et
l − et,k elements of its bid vector

are all zeros.
A total of K̂t × Et

l bids bnk ’s (k = 1, 2, . . . , K̂t;n =
1, 2, . . . , Et

l ) are placed for the action at time t, and the
Et

l number of trading opportunities are assigned to the Et
l

highest of these bids, which are deemed winning bids. Ties
are broken by choosing with equal probability among all
tying bids. The number of trading opportunities assigned
to a selling-mode smart-home is equal to the number of
winning bids submitted by that selling-mode smart-home.
Thus if selling-mode smart-home k has nk ≤ Et

l of the
highest bids, then it gets nk units of trading opportunities
in time interval t.

Denote by c−k the Et
l dimensional competing bid vector,

which consists of the Et
l highest others’ bids, facing selling-

mode smart-home k, so that c−k
1 is the highest of the other

bids, c−k
2 is the second highest of the other bids, and so

on. To win exactly n trading opportunities, selling-mode
smart-home k’s n-th highest bid must defeat the n-th lowest
competing bid. If selling-mode smart-home k wins nt,k
trading opportunities, then the the payment gk it makes
is the sum of nk highest losing bids of the other customers
[35], which is given by

gk =

nk∑
n=1

gnk =

nk∑
n=1

c−k
Et

l−nk+n
, (2)

where gnk is the payment for the n-th trading opportunity.

3.2 Truthful Bidding Strategy for Vickrey Auction

In the auction in each time interval, all selling-mode
smart-homes have their own valuations, which determine
the bidding strategies, corresponding to all Et

l number of
trading opportunities. In the microgrid, selling-mode smart-
homes do not know other’s valuations precisely (incomplete
information) since valuations of different customers are
determined by their own energy storage status (private
valuation). Denoted by vt,k = [v1t,k, v

2
t,k, . . . , v

Et
l

t,k] the
private valuation vector of selling-mode smart-home k at
time interval t, where vnt,k represents the marginal value
of obtaining the n-th trading opportunity. These marginal
values are assumed to be non-increasing for similar reasons
that we assumed non-increasing marginal bids so that

v1t,k ≥ v2t,k ≥ · · · ≥ v
Et

l

t,k, k = 1, 2, . . . , K̂t. (3)

The total value to the selling-mode smart-home k of
obtaining exactly nt,k ≤ Et

l trading opportunities is then
the sum of the first nt,k marginal values:

∑nt,k

j=1 v
j
t,k. Note

that symmetry on valuations is usually assumed in Vickrey
auction literature [35], [36], in which vt,k’s are indepen-
dently and identically distributed (i.i.d) on the valuation set

Vt,k = {vt,k ∈ [0, ωt]
Et

l : ∀n, vnt,k ≥ vn+1
t,k }, (4)

where ωt is the maximum valuation for all selling-mode
smart-homes. However, the i.i.d symmetric condition is too
strong for our problem since the valuations of different
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selling-mode smart-homes could be different depending
on individual energy consumption and storage informa-
tion. Thus we drop the condition of identical distribution
and assume more general asymmetric selling-mode smart-
homes—smart-home k’s valuation vector vt,k is indepen-
dently drawn from some distribution that has positive
density everywhere on the set Vt,k.

The Vickrey auction in each time interval actually
forms a game with incomplete information, in which ev-
ery selling-mode smart-home wants to maximize its own
payoff. Here a smart-home’s payoff equals the sum of
valuations obtained from winning trading opportunities
minus the total payment. To better analyze the formulated
Vickrey auctioning game, we first introduce several im-
portant concepts from game theory and then propose an
important proposition.

1) Bayesian Nash equilibrium: A Bayesian Nash equi-
librium for a game with incomplete information is
a strategy profile for each player that maximizes the
expected payoff for each player given the strategies
played by other players [35], [37], [38].

2) Strictly dominant strategy: A strictly dominant strat-
egy is an action strategy that gives higher reward than
any other strategy [37].

3) Weakly dominant strategy: A weakly dominant strat-
egy is an action strategy that gives reward no lower
than any other strategy [37].

With these concepts introduced above, we present an
incentive compatibility proposition for Vickrey auction,
along with its proof [35].

Proposition 1: The Vickrey auction is incentive compat-
ible, meaning truthful bidding (bidding the real valuation)
maximizes each selling-mode smart-home’s payoff and is
a weakly dominant strategy for every selling-mode smart-
home.

Proof : Consider selling-mode smart-home k and the
competing bids c−k facing it. Suppose that when smart-
home k submits a bid vector bk,t = vk,t, it is assigned
nk trading opportunities. According to the Vickrey pricing
rule, its payment is given by

∑nk

n=1 c
−k
Et

l−nk+n
[35]. It is

the case that for all n ≤ nk, vnk ≥ c−k
Et

l−nk+n
(where,

c−k
Et

l−nk+n
= gnk ), whereas for all n > nk, vnk < c−k

Et
l−nk+n

(where, c−k
Et

l−nk+n
= gnk ). Now suppose selling-mode

smart-home k were to submit a bid vector bk,t 6= vk,t such
that it is assigned the same number of trading opportunities
as when it submitted its true value vector vk,t, then the
payment it pays for these trading opportunities would be
unaffected, as would its overall payoff. If selling-mode
smart-home k were to submit a bk,t 6= vk,t so that it
is assigned a greater number of trading opportunities, say
n

′

k > nk, then the payments it would pay for the first nk
trading opportunities would be unchanged, and so would
the payoff derived from these. For any trading opportunity
n > nk, the payment gnk exceeds (or at best equals) the
n-th marginal value vnt,k, so the payoff from these n

′

k−nk
trading opportunities would be negative (or at best zero). As
a result, the overall surplus would be lower (or at best, the

Fig. 3. Incentive compatibility of the Vickrey auction.
The normalized truthful bidding strategy point (1, 1)
maximizes the payoff of the individual smart-home.
However, it is only weakly dominant because bidding
strategies represented by other points in the same
plane, within which the truthful bidding point stays,
achieve the same maximum payoff.

same) than that if it were to bid truthfully. Finally, if selling-
mode smart-home k were to submit a bk,t 6= vt,k such that
it is assigned a smaller number of trading opportunities,
say n

′

k < nk, then the payments it would pay for the first
n

′

k ones would be unchanged and therefore so would the
payoff derived from these. But the payoff from any trading
opportunity n < nk was positive and is now forgone. Thus
by winning fewer trading opportunities selling-mode smart-
home k’s overall payoff would be lower than if it were
to bid truthfully. Based on the argument above, truthful
bidding is a weakly dominant strategy for every selling-
mode smart-home.

As shown above, the truthful bidding strategy forms a
Bayesian Nash equilibrium. Figure 3 shows an example
of an individual smart-home in a Vickrey auction bidding
for two trading opportunities. The competing bids from
other selling-mode smart-homes are assumed to be fixed.
As we can see, with the bids normalized by the real
valuations of the first and second trading opportunities, the
truthful bidding strategy b = (1, 1) leads to the maximum
payoff (bottom right plot). Deviation from the truthful
bidding point (1, 1) might increases the number of trading
opportunities obtained by the smart-home (top left plot),
however, the individual payoff (bottom right plot) becomes
lower. Moreover, we can see that the truthful bidding
strategy is only a weakly dominant strategy, because other
bidding strategies represented by the points in the same
plane, within which the truthful bidding point stays, achieve
the same maximum payoff.

4 BAYESIAN NASH EQUILIBRIA SOLUTION
SET STRUCTURE ANALYSIS

Though every selling-mode smart-home’s payoff is maxi-
mized by the truthful bidding strategy, there is no guarantee
that such Vickrey auctioning games always converge to
the truthful bidding equilibrium. This is because truthful
bidding is only a weakly dominant strategy and truthful
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bidding equilibrium is not the unique Bayesian Nash equi-
librium in a Vickrey auction. Therefore detailed analysis
on the entire equilibrium solution set of Vickrey auction is
required.

4.1 The Two Types of Bayesian Nash Equilibria

Following [39], we divide the Bayesian Nash equilibria
in the Vickrey auction solution set into two categories.
Equilibria in the first category can be described as follows:
There exists at least one selling-mode smart-home k who
has at least one bid bnt,k ∈ (0, ωt) with positive probability.
There is a threshold b∗t ∈ (0, ωt) for all selling-mode smart-
homes such that all participants bid truthfully for which
they have a valuation exceeding b∗t . Furthermore, there is
a unique distinct selling-mode smart-home k̂ who bids b∗t
on any trading opportunity for which his valuation is below
the threshold. The remaining selling-mode smart-homes bid
zero on any trading opportunity for which their valuation
is below the threshold. Put in a more mathematical format:

bn
t,k̂

=

{
vn
t,k̂

if vn
t,k̂
∈ [b∗t , ωt]

b∗t if vn
t,k̂
∈ [0, b∗t ),

(5)

for all n = 1, 2, . . . , Et
l and

bnt,k =

{
vnt,k if vnt,k ∈ (b∗t , ωt]

0 if vnt,k ∈ [0, b∗t ],
(6)

for all k 6= k̂ and all n = 1, 2, . . . , Et
l , where ωt is the

highest valuation over all customers and

b∗t :=

inf{b ∈ (0, ωt)|∃k, n s. t. ∀ε > 0, Prob{bnt,k ∈ [b, b+ ε]} > 0}.
(7)

It can be proved that any bid strategy profile that can
be described as above forms an Bayesian Nash equilibrium
[39]. Conversely for any equilibrium in which certain bnk ∈
(0, ωt) with positive probability for some selling-mode
smart-home k and trading opportunity n, there is a profile of
bid functions in the first category that describes the behavior
of each selling-mode smart-home for almost all valuations,
allowing variants (deviating behavior) on sets of measure
zero of valuations. Specifically, as in reality selling-mode
smart-homes usually have continuous distribution over the
valuation set, there usually exists at least one selling-
mode smart-home whose valuation distribution over (0, ωt)
assigns positive probability to arbitrarily small positive
values. In this case, we have b∗t = 0 and the first category
equilibria reduce to the truthful bidding equilibrium.

For all equilibria that are not of the first type, there is
zero probability of positive bids below the highest valuation
ωt. Each selling-mode smart-home k (k = 1, 2, . . . , K̂t)
bids at or above the highest valuation ωt on n̂t,k number
of trading opportunities and bids zero on the remaining
ones in such a manner that the total number of positive
bids across all selling-mode smart-homes equals the number
of trading opportunities to be sold, i.e.

∑K̂t

k=1 n̂t,k = Et
l .

The second type of Bayesian Nash equilibria reveals the
possibility that the Vickrey auction might end up with a
collusive equilibrium that selling-mode smart-homes bid
untruthfully and all trading opportunities are sold with zero
payment.

4.2 Vickrey Auction Equilibrium Analysis
Vickrey auction with truthful bidding equilibrium has many
good properties. For example, it is an efficient mechanism
as it maximizes the social welfare (maximizing the sum
of participants’ values [35], [37], [38]). It is also incentive
compatible as bidding the real values is a weakly dominant
strategy for all customers [35], [37], [38]. However, as
mentioned above, Vickrey auction is vulnerable to collusion
by selling-mode smart-homes. In the first type of Bayesian
Nash equilibria, if the number of bids above the threshold
is less than the number of trading opportunities for sale,
then some selling-mode smart-homes will get some trading
opportunities for free. In the second category of Bayesian
Nash equilibria, all winning smart-homes pay zero payment
for the trading opportunities they win. Generally speaking,
equilibria of both categories are collusive in the sense that
there are positive probabilities that customers get some
trading opportunities with zero payment.

The collusive equilibria jeopardize the distributed control
framework in two ways: (1) The collusive equilibria fails
to achieve the most important goal of the distributed
decision scheme, which is to guarantee that the trading
opportunities are allocated to selling-mode smart-homes
who value them the highest (with highest eagerness-metric).
(2) The collusive equilibria does not guarantee the profit
of the auctioneer (the microgrid controller). Though in
our problem, the profit of the auctioneer (the microgrid
controller) is not one of the objectives to be maximized,
zero payments are not desired either considering reasonable
operation cost of the microgrid controller.

4.3 Vickrey Auction with a Reserve Price
To address the two issues raised from collusive Bayesian
Nash equilibria, we further extend the Vickrey auctioning
game design by introducing a reserve price. It can be
proved that the Vickrey auction can be made more robust
against collusive selling-mode smart-homes by introduc-
ing a positive reserve price by the microgrid controller
[39], [40]. Suppose the microgrid controller sets a positive
reserve price rt for the auction in time interval t such
that each selling-mode smart-home has to pay at least
the reserve price for any trading opportunity obtained.
Without loss of generality, bids below the reserve price,
or not bidding, are identified with bidding zero. Refer to
n

′

t the number of bids at or above rt. Then at the end
of the auction, there are µt = min{n′

t, E
t
l } units are

sold to the selling-mode smart-homes with the µt highest
bids. A selling-mode smart-home who wins nk units pays∑nk

j=1 max{c−k
Et

l−nk+j
, rt}. It can be shown that with a

positive reserve price rt, the Vickrey auction with more
than two participants converges to a unique Bayesian Nash
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equilibrium, in which selling-mode smart-homes refrain
from bidding on any trading opportunity for which their
valuation is less than rt and otherwise bid their valuation for
each trading opportunity [39]. Introducing a reserve price
not only guarantees the uniqueness of equilibrium solution
of Vickrey auction, therefore making the Vickrey auction
more robust to collusion by selling-mode smart-homes, but
also guarantees a certain amount of benefit of the microgrid
controller.

In sum, the Vickrey auction with a reserve price gives a
better allocation scheme in the following aspects: (1) The
Vickrey auction with a reserve price is robust to collusion
by selling-mode smart-homes. (2) The Vickrey auction
with a reserve price is incentive compatible, meaning
assigning trading opportunities to smart-homes with highest
eagerness-metrics. (3) The Vickrey auctioning game with
a reserve price converges to the unique Bayesian Nash
equilibrium. (4) The Vickrey auction with a reserve price
guarantees a certain amount of benefit of the microgrid
controller. The only possible issue with the Vickrey auction
with a reserve price is that, when the reserve price is too
high, it is possible that the number of bids above the reserve
price is less than Et

l , therefore the trading opportunities
assigned to selling-mode smart-homes is not enough. How-
ever, in our problem formulation, the auctioneer’s profit
is not one of the objectives of the distributed decision
framework, thus there is no reason for the microgrid
controller to set a high reserve price. In the worst case
that this situation happens, repeated Vickrey auctions can
be adopted and the reserve price can be adjusted until all
Et

l trading opportunities are assigned.

4.4 Simulation Results

We implement the Vickrey auction (without collusion) for
a microgrid model with 10 smart-homes bidding for 20
trading opportunities. The truthful valuations on the trading
opportunities are within [0, 1]($). For comparison purpose,
we also analyze the performance of two other auction
schemes: discriminatory auction and uniform-price auction
[35]. In discriminatory auction, smart-homes pay what they
bid while in uniform-price auction, smart-homes pay the
same highest losing bid for every trading opportunity they
get. In the three different auctions, the trading opportunities,
payments, payoffs of each of the 10 smart-homes, as well as
the social welfare of the microgrid are compared, as shown
in Fig. 4. Vickrey auction maximizes the social welfare
of 18.87($), compared with 17.68($) of discriminatory
auction and 17.87($). It is worth pointing out that in the
truthful bidding equilibrium of the Vickrey auction reveals
another good property in the bidding behavior of individual
smart-homes, which is Individual Rationality, meaning the
payoff function is always non-negative (as shown in the
bottom plot).

In Fig. 5, we investigate the influence of the reserve price
on the profit of the auctioneer in a one shot Vickrey auction
with different time interval sizes within the processing
block. As the reserve price (normalized by the highest

The social welfare: Vickrey: 18.87($) discriminatory: 17.68($), uniform−price: 17.87($)
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Fig. 4. The truthful bidding equilibrium of the Vickrey
auction maximizes the social welfare of the entire
microgrid, while keeping the individual rationality of
smart-homes.
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Fig. 5. As the reserve price (normalized by the highest
value) increases from 0 to 1, after certain point, the
number of trading opportunities that can be success-
fully allocated to smart-homes decreases from 20 to 0,
which corresponds to the extreme case with reserve
price higher than the highest possible value.

value) increases from 0 to 1, after certain point, the number
of trading opportunities that can be successfully allocated to
smart-homes decreases from 20 to 0, which corresponds to
the extreme case with reserve price higher than the highest
possible value.

5 CONCLUSION
In this paper, we developed a hierarchical interactive archi-
tecture the Utility and the distributed customers in a smart
grid while ensuring grid-stability and Quality-of-Service
(QoS). With an abstract model consisting of one controller
and multiple customers developed, we formulated a two-
step decision framework for the real-time scheduling. The
two-step decision framework consisted of (1) centralized
controller sequential decisions and (2) distributed customer
decisions. We first developed a hidden mode Markov deci-
sion process (HM-MDP) model for the controller sequential
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decision making. With the solution algorithm design for the
HM-MDP model discussed in an earlier paper, in this paper
we focused on the Vickrey auction design for distributed
customers. The solution set of the Vickrey auctioning game
was divided into two categories and detailed analysis on the
Bayesian Nash equilibria were presented, which showed
that the truthful bidding strategy was a weakly dominant
Bayesian Nash equilibrium. To overcome the vulnerability
of the Vickrey auction against collusion by selling-mode
smart-homes, the developed Vickrey auction was extended
by introducing a reserve price, which guaranteed robustness
of the auction and the convergence of the auctioning game
to the unique truthful bidding equilibrium.
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