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Abstract

In this survey paper, we characterize the learning probteeognitive radios and state the impor-
tance of artificial intelligence in achieving real cognétisystems. We review various learning approaches
that have been proposed for cognitive radios classifyiegthinder supervised and unsupervised learning
paradigms. Unsupervised learning is presented as an antarslearning procedure that is suitable
for unknown RF environments, whereas supervised learniethods can be used to exploit prior
information available to cognitive radios during the ldaghprocess. We describe some challenging
learning problems that arise in cognitive radio networksparticular in non-Markovian environments,
and present their possible solution methods. Finally, vesgmt some generic cognitive radio problems

and show suitable machine learning approaches for leainitigese contexts.
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I. INTRODUCTION

Since its inception, the term cognitive radio has been usegfer to radio devices that are
capable of learning and adapting to their environment [2], A key aspect of any cognitive
radio is the ability for self-programming [3]. In [4], Haykienvisioned cognitive radios to
be brain-empoweredvireless devices that are specifically aimed at improving tiilization
of the electromagnetic spectrum. According to Haykin, antibge radio is assumed to use
the methodology ofinderstanding-by-buildingnd is aimed to achieve two primary objectives,
which are permanent reliable communications and efficiéhzation of the spectrum resources
[4]. With this interpretation of cognitive radios, a new @facognitive radios began, focusing on
dynamic spectrum sharing (DSS) techniques to improve tleetspm utilization [4]-[8]. This
led to research on various aspects of communications amalgigocessing required for DSA
networks [4], [9]-[24]. These included underlay, overlaydanterweave paradigms for spectrum
co-existence by secondary cognitive radios in licensedtap® bands [8].

To perform its cognitive tasks, a cognitive radio should be@ of its RF environment. It
should sense its surrounding environment and identifyypkes of RF activities. Thus, spectrum
sensing was identified as a major ingredient in cognitiveosaft]. Many sensing techniques have
been proposed over the last decade [25], based on matcleedsiilergy detection, cyclostationary
detection, wavelet detection and covariance detectioffy [28]—[31]. In addition, cooperative
spectrum sensing was proposed as a means of improving temgetcuracy by addressing the
hidden terminal problems inherent in wireless networks2h][ [22], [25], [27], [32]-[34]. In
recent years, cooperative cognitive radios have also beesidered in literature as in [35]—[38].
Recent surveys on cognitive radios can be found in [26],-{3H]].

In addition to being aware of its environment, and in ordebé¢oreallycognitive a cognitive
radio should be equipped with the abilities of learning agalsoning [1], [2]. These capabilities
can be achieved through a cognitive engine which was idedtés the core of a cognitive radio
[42]-[47], following the pioneering vision of [2]. A cogrve engine coordinates the actions of
the cognitive radio by applying machine learning algorighidowever, only in recent years there
is a growing interest in applying machine learning algemighto cognitive radios [48], [49], and
these algorithms can be categorized under either supdreisansupervised learning.

The authors in [44], [50], [51] have considered supervigaaning based on neural networks
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and support vector machines for cognitive radio applicetidJnsupervised learning, such as rein-
forcement learning (RL), has been considered in [52], [68]0SS applications. The distributed
Q-learning algorithm has been shown to be effective in aagertognitive radio application
in [54]. For example, in [55], cognitive radios used the @rfeng to improve detection and
classification performance of primary signals. Other aggpions of RL to cognitive radios can
be found, for example, in [56]-[59]. Recent work in [60] imtiuces novel approaches to improve
the efficiency of RL by adopting a weight-driven explorati@n the other hand, an unsupervised
Bayesian non-parametric learning procedure based on thehl@t process was proposed in
[61]. A robust signal classification algorithm was also megd in [62], based on unsupervised
learning.

Although the RL algorithms (such as Q-learning) may provadesuitable framework for
autonomous unsupervised learning, their performance rtiaflg observable, non-Markovian
and multi-agent systerhgan be unsatisfactory [64]-[67]. Other types of learningchamisms
such as evolutionary learning [65], [68], learning by irtita, learning by instruction [69] and
policy-gradient methods [66], [67] have been shown to adigpen RL on certain problems under
such conditions. For example, the policy-gradient apgrdaas been shown to be more efficient
in partially observable environments since it searchesctly for optimal policies in the policy
space, as we shall discuss throughout this paper [66], [67].

Similarly, learning in multi-agent environments has beensidered in recent years, especially
when designing learning policies for cognitive radio netigo (CRN’s). For example, [70]
compared a cognitive network to a human society that exhibdth individual and group
behaviors, and a strategic learning framework for cogaitietworks was proposed in [71].
An evolutionary game framework was proposed in [72] to pilevadaptive learning to cognitive
users during their strategic interactions. By taking inbmsideration the distributed nature of
CRN'’s and the interactions among the cognitive radios hagitiearning methods can be obtained
based on cooperative schemes, which helps avoid the se#ffsviors of individual nodes in a
CRN.

1A multi-agent system can be defined as a group of autonomntesacting entities sharing a common environment, which
they perceive with sensors and upon which they act with smtsid63].



A. Purpose of this paper

This paper discusses the role of learning in cognitive diod emphasizes how crucial the
autonomous learning ability in realizing a real cognitia€eio device. We present a survey of the
state-of-the-art achievements in applying machine legrméchniques to cognitive radios. We
will focus on the special challenges that are encounter@gjiying machine learning techniques
to cognitive radios. In particular, we describe differeypes of learning paradigms that have
been proposed in the literature as well as those that mighe&sonably applied to cognitive
radios in the future. The advantages and limitations ofdleshniques are discussed to identify
perhaps the most suitable learning methods in a particulategt or in learning a particular

aspect.

B. Organization of the paper

The remainder of this survey paper is organized as follovesti@n Il defines the learning
problem in cognitive radios and presents the differentnliegr paradigms. Sections Il and IV
present the unsupervised and supervised learning tedwigaspectively. In Section V, we
describe the learning problem for centralized and deckrgchcognitive radio systems. Section
VI presents the learning challenges in non-Markovian emritents and we conclude in Section
VII.

II. NEED OF LEARNING IN COGNITIVE RADIOS
A. Definition of the learning problem

Learning is defined athe modification of behavior through practice, training, @perience
[73]. According to [74], the learning ability is an indispble component of an intelligent
behavior. A practical definition for the terfearningwas given in [74] to behe ability of creating
knowledge from the information acquired about the envirentrand the internal state®ased
on this definition, learning is related to the ability of dyesizing the acquired knowledge in
order to improve the future behavior of the learning agehts Thakes knowledge a fundamental
component of the learning process and relates to the ¢egnitionwhich is defined ashe act

or process of knowingr perception[73]. In Fig. 1, we depict the relations among intelligence,
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Fig. 1. Learning is a fundamental component of intelligeritshares a common feature with cognition, which is knogted

learning and cognition, and illustrate the concept of kremlgle as a common feature of both
learning and cognition.

Thus, learning is indispensable to any cognitive systerd, muast be at the foundation of
cognitive radios. By using its learning capability, an agesn classify, organize, synthesize and
generalize information obtained from its sensors [74]. Eeev, learning is not the unique feature
of an intelligent device which should also be aware of its@umding environment and must be
capable of reasoning. Hence, the three main constitueritgefigence can be identified as: 1)
perception, 2) learning and 3) reasoning [74].

We discuss, in the followings, how the above three constitief intelligence can be realized
through cognitive radios. Firsperceptioncan be achieved through the sensing measurements of
the spectrum. This allows the cognitive radio to identifygoimg RF activities in its surrounding
environment. After acquiring the sensing observations, dagnitive radio tries tdearn from
them in order to classify and organize the observations $uiitable categories. This can be
achieved through different types of learning algorithmatttve discuss below in this survey.
Finally, thereasoningability allows the cognitive radio to use the knowledge aczpithrough
learning to achieve its objectives. These characteristiese initially specified by Mitola in
defining the so-callec¢ognition cycle[1]. We illustrate in Fig. 2 an example of a simplified
cognition cycle that was proposed in [75] for designing aotaous cognitive radios, referred

to asRadiobots
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Fig. 3. Supervised and unsupervised learning approachefmitive radios.

B. Unique characteristics of cognitive radio learning pleims

Although the terntognitive radiohas been interpreted differently in different researchmom
nities [75], perhaps the most widely accepted definitiorsisaaio that can sense and adapt to its
environment [48]. The ternsognitiveimplies awarenessperception reasoningand judgement
However, as we have pointed out earlier, in order to make itiwgmadios truly intelligent, the
learning ability must also be present [74]. Learning impltbat the current actions should be
based on past and current observations of the environm@htl[fis should not be confused with
reasoning which consists of observing only the currenestathe environment and making the
decisions ignoring the past information [48]. Thus, thedg plays a major role in the learning
process of cognitive radios and forms a fundamental factoogtimizing the cognitive radio

objectives.



Several learning problems are specific to cognitive radigiegtions due to the nature of the
cognitive radios and the operating RF environments. Fifstllp due to the noisy observations
and sensing errors, cognitive radios usually obtain daotigervations of their state variables.
The learning problem is thus equivalent to a learning pr®aepartially observable environments
and must be addressed accordingly.

Another problem that should be considered in cognitiveaadearning problems is the multi-
agent learning process. This situation arises, in padiculi CRN'’s in which multiple agents try
to learn and optimize their behaviors simultaneously. lkiarmore, the desired learning policy
may be based on either cooperative or non-cooperative sshand each cognitive radio might
have either full or partial knowledge of the actions of thhastcognitive users in the network.
In the case of partial observability, a cognitive radio ntighply special learning algorithms to
estimate the actions of the other nodes in the network befelecting its appropriate actions,
as in [64].

Finally, autonomous learning methods are desired in omengble cognitive radios to learn
in unknown RF environment. This is because, in contrast idémsed wireless users, a cognitive
radio is supposed to operate in any available spectrum lanahy time and in any location.
Thus, a cognitive radio may not have any prior knowledge efdperating RF environment such
as the noise or interference levels, noise distributionsar daraffics. Instead, it should be able
to apply autonomous learning algorithms that reveal thesdythg nature of the environment
and its components. This makes the unsupervised learnirggfacp candidate for the learning
problem in cognitive radio applications, as we shall poiat throughout this survey paper.

To sum up, we have identified three main characteristics eatl to be considered when
designing efficient learning algorithms for cognitive rasli

1) Learning in partially observable environments.

2) Multi-agent learning in distributed CRN's.

3) Autonomous learning in unknown RF environments.

A cognitive radio design that embeds the above capabiliidide able to operate efficiently

and optimally in any RF environment.



C. Types of learning in cognitive radios

In this survey paper, we classify the learning algorithmsdagnitive radios under two main
categories: Supervised and unsupervised learning, asnshowig. 3. Unsupervised learning
is particularly applicable for cognitive radios operatiitg alien environments. In this case,
autonomous unsupervised learning algorithms permit exgdahe environment characteristics
and self-adapting actions accordingly without having amyprpknowledge. However, if the
cognitive radio has prior information about the environtpenmight exploit this knowledge
by using supervised learning techniques. For example riicesignal waveform characteristics
are known to the cognitive radio prior to its operation,rinag algorithms would help cognitive
radios to better detect those signals. We present, in tHewfimlg major learning algorithms
under each of these categories, and describe some of ti@icatns in cognitive radios.

In [69], the two categories of supervised and unsupervisadhing are defined as learning
by instructionand learning byreinforcementrespectively. A third learning regime is defined as
the learning byimitation in which an agent learns by observing the actions of simitgnés
[69]. In [69], it was shown that the performance of a learraggnt (learner) is influenced by its
learning regime and its operating environment. Thus, fobgndive radio to learn efficiently,
it must adopt the best learning regime, whether it is legrby imitation, by reinforcement
or by instruction[69]. Of course, some learning regimes may not be applicabtier certain
circumstances. For example, in the absence of an instrub®rcognitive radio may not be able
to learn by instruction and may have to resort to learningdiyforcement. An effective cognitive
radio architecture is the one that can switch between difiefearning regimes depending on

its requirements, the available information and the emrirent characteristics.

[1l. UNSUPERVISEDLEARNING
A. Reinforcement learning (RL)

Reinforcement learning is a technique that permits an afgentodify its behavior by inter-
acting with its environment. This type of learning can bedubg agents to learn autonomously
without supervision. In this case, the only source of knogkeis the feedback an agent receives
from its environment after executing an action. Two mainuess characterize the reinforcement

learning:trial-and-error anddelayed rewardBy trial-and-error it is assumed that an agent does

8



not have any prior knowledge about the environment, and ecetes some actions blindly in
order to explore the environment. Thelelayed rewardis the feedback signal that an agent
receives from the environment after executing each acfldvese rewards can be positive or
negative quantities, tellingow good or badan action is. The agent’s objective is to maximize
these rewards bgxploitingthe system.

Reinforcement learning is distinguished fr@upervised learnindpy not having a supervisor
to tell whether an action is correct or wrong. Therefore, lderning agent only relies on its
interactions with the environment and tries to learn on Ws.0This makes the reinforcement
learning a basic algorithm for autonomous learning.

A key concept in reinforcement learning is that the agentukhobserve the reward for each
action in each situation. By repetition, the agent attenbptgarn to favor the actions that lead
to positive rewards, and avoids the actions that lead totivegeewards. Moreover, a learning
agent can use the reinforcement learning to choose thenadhat permit avoiding certain bad
situations. After several repetitions, the agent acquare®ptimal policy and adapts its actions
and behavior to the environment.

The theory of reinforcement learning has evolved alongettmain threads. The first thread is
the learning bytrial and error which has its roots in the psychology of animals. This apginoa
goes back tal898 and has led to the revival of the reinforcement learning m erly 1980's
[77]. For example, in his analysis of animal behavior, Thitke observed that animals tend to
reselect actions that are followed by good outcomes, andttizgeto avoid the actions that lead
to bad outcomes [78].

The second thread originates from the problem of optimatroband its dynamic programming-
based solution. One approach to this problem was develop#eimid1950’s by Bellman and
others by extending the theory of Hamilton and Jacobi. Theadyic programming (DP) is
found to be the most efficient solution to the optimal conpradblem. However it suffers from
what Bellman called the curse of dimensionalitypecause the complexity of DP increases
exponentially with the number of state variables. Also,eijuires complete knowledge of the
system.

The third thread that led to the reinforcement learning is tdmporal differenceconcept

which was first applied to learning problems by Samuel [79jisTidea consists of updating
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an evaluation function about the environment in order toroup the total reward. The three
threads that constitute the reinforcement learning wereegbtogether in 989 by Watkins when
he developed the Q-learning algorithm [80], [81].

It should be noted that many studies used the teximforcement learningalso to refer to
supervised learningand this distinction should be made clear since reinfossgnearning is
defined when an agent tries to learn fromatsn experience by evaluating the feedback signals
that it receives after each action [82]. These feedbackatsgineinforcement values) do not tell
if an action is correct or wrong. They only reveal how good ad bhe action is. On the other
hand, supervised learning applies to the cases when a cleareais available to the agent on
whether its action was correct or wrong. Usually, supedrigarning consists of training the
agent for a certain duration by assigning the actions aneatag the correct answers.

The applications of reinforcement learning extend to a wahgye of domains, such as robotics,
distributed control, telecommunications, economicsadaining and active gesture recognition
[82]-[84]. Recently, reinforcement learning was appliedthe telecommunication field and
especially to cognitive radio. RL is found to be effective dagnitive radio context because
it presents an autonomous technique to make an agent to daearmdapt to its environment,
which is a key feature of a cognitive radio. In particular, ggeitive radio can interact with
its RF environment and can try to learn by observing the aumseces of its actions. This
method is useful if the cognitive radio does not have knog#edbout certain parameters of its
environment, and thus, tries to learn an optimal policy tkatls to the best performance in a
given RF environment.

A reinforcement learning-based cognition cycle for cogeitradios was defined in [53], as
illustrated in Fig. 4. It shows the interactions betweendbgnitive radio and its RF environment.
Based on this process, the learning agent receives an alisery; of the state variable; at
time instantt. The observation is accompanied with a delayed rewardpresenting the reward
resulting from taking actior;_; in states; ;. The learning agent uses the observatipand
the rewardr; to compute the action, that should be taken at tinte Again, the actiony; results
in a state transition from, to s,,; and a delayed reward,,. It should be noted that here the
learning agent is not passive and does not only observe ttowroes from the environment,

but can also affect the state of the system via its actionk tuat it might be able to drive the
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environment to a desired state that brings the highest teweathe agent.

In order to apply the above described RL procedure to cogniaidios, the learning problem
can be formulated in several ways. As a specific example, wsider the model in [85] which
assumes a primary and a secondary (cognitive) user thatstaexthe same frequency band.
The primary user (PU) is assumed to use a combination of diiwvision and frequency-division
multiple access (TDMA, FDMA) schemes, which might resultsipectral or temporal holes.
Spectrum holes are the unused spectrum opportunities. démesist of frequency bands and/or
time slots that are not used by any radio transmission at ticplar time and at a particular
location [8], [10]. These spectrum holes characterize thdewutilization of the frequency
spectrum and form perfect candidates for secondary useporamistic spectrum access [24],
[86], [87]. In the model proposed in [85], the SU is assumea@dopt an OFDM scheme such
that each subcarrier can be switched on and off individudpending on the PU allocation. It
is assumed that the primary channel activity follows a Markbain and the SU's try to access
those channel resources whenever they are idle. Insteadiof the dynamic programming
approach to solve the dynamic spectrum access problem lbastte Markov decision process
(MDP) framework [88], the authors in [85] use the RL algamithio obtain the optimal solution
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of their MDP formulation. Similarly to the dynamic prograrnmg approach, the RL algorithm
leads to optimal solution to the MDP problem, yet at a lowemptexity [82]. Moreover, the
RL algorithm does not require complete knowledge about yiséesn model and can be applied
as an online learning algorithm, as described in [85].
The authors in [85] propose two problem formulations for dgeamic spectrum access prob-
lem: In the first formulation, a simplistic model is assumelich considers that the switching
cost between frequency bands is negligible. The resultindahis similar to the:-armed bandit
problem and is solved by using the softmax exploration aggrd82]. The softmax approach
generates stochastic policies in which an action is seleai¢h a probability proportional to
the value of that action. In the second formulation, the awglassumed a certain switching cost
among channels and introduced a state {1,---, Ny} which denotes the current sub-band
of the SU, whereNy, is the total number of available frequency bands. The probke thus
modeled as an MDP characterized by the following parameters
« A finite setS of states for the agent (i.e. SU).
« A finite set.4 of actions that are available to the agent. In particulagach states € S,
a subsetd, C A might be available.

« A state transition probability : S x A x § — [0,1] defines the transition probability
p(s'ls,a) from states € S to s’ € S, after performing the action € A.

. A reward functionr : § x A — R defining a reward-(s, a) that the agent receives when
performing actioru € A, while in states € S.

The agent observes the current statend chooses an actienfor the next stage. This is done
according to the stochastic poliey: A x S — [0, 1], wheren(a, s) defines the probability of
taking actiona when the agent is in state An optimum policy maximizes the total expected
rewards (i.e. the return function), which is usually disctma by a discount factoy € [0, 1) in
case of an infinite time horizon. Thus, the objective is to fimeloptimal policyr that maximizes
the return functionR(t):

R(t) =E {Z Vreer(See, Clt+/<:)} , (1)

k=0

wherer;, s; anda; are, respectively, the reward, state and actions at timé&..
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In [85], the states € {1,---, Ny} denotes the current frequency band that the SU is using
for transmitting. According to the assumed model, the set\dilable actions in state is
As = {ay, ass, azs}, wheres = S\s and

« ay: perform a cycle of detection and transmission in the curfeguency band.

o as9z. perform a detection phase in frequency ban@ut-of-band detection).

« azs. switch the SU system to frequency bahd

According to the proposed model in [85], a state transiticnuos only if the actionus; is

selected. In addition, the reward functiofu, s) is defined as follows:

ui(s) for a=a
r(a,s) = uy  for a=ag (2

Us for a= ass

wherew;(s) is the number of radio resource goods (e.g. bits transnpittet have been trans-
mitted in the current step, while staying in the current @rerocy bandu, is the reward/cost
for performing a detection in a different frequency banglis the cost of switching to another
frequency band, which can represent a negative rewarda(iomst) associated with any trans-
mission delay that is incurred due to switching (e.g. cdrdaeta exchange overhead). Note that,
in this setup, bothi; andus are independent of the current state

Several solutions were proposed for the MDP problem by fohg, for example, theralue-
iteration or the linear programmingalgorithms of [88]. The value-iteration algorithm is an
iterative algorithm that is based on the Bellman’s prineipl optimality [88], [89]. This algorithm
estimates the value functiori’ at a given stage in function of the value functio~! at the

previous stage — 1, as follows:

Vi(s) = mA{<) +7 Y p(s)s.0) vt—1<s/>} . @)

s'eS
Puterman showed that the value-iteration algorithm gueemnthat the estimated value function
is e-optimal over an infinite horizon [88], [89].

On the other hand, the MDP can be solved by following the linmagramming approach of
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[88] as follows:

min s V(s)

StO>7r(s,a) +7d esp(8]5,a)V(s) = V(s);Vs € S,Va e A

The above solutions lead to optimal and near-optimal smistio the MDP, but require knowl-
edge of the transition probabilities of the MDP. The RL aitjon, on the other hand, finds the
optimal solution to the MDP, yet without knowledge of thendion probabilities [82]. This
makes the RL algorithm a desired approach for problems wvattigd knowledge of the MDP
model, as in [85]. The RL algorithm in [85] is based on the temapdifference (TD) learning

approach which updates the value of each state), after each interaction, as follows:

V(sy) <= V(s) + Brigr + 7V (se41) = V(se)] (4)

where 3 is a positive step-size parameter, called kb&ning rate Hence, after observing the
rewardr,,, at timet+ 1, and knowing the old state and the new state, ,;, the agent updates
V (s;) according to the rule described above. The obtained valuetifin is thus used to update
the policyr as follows:

eP(s,0)

Zb ep(s,b) ’

where p(s,a) are updated differently, depending on the type of actiontiolica; is updated

m(s,a) = P{la;, = als; = s} = (5)

using a common update rule:

p(s,a1) < p(s,a1) + Bidy (6)

where; is a positive step-size and = .1 +7V (si41) — V(s¢). The above update rule reflects
the amount of transmitted data when the system is in stafehe update rule of(s, as;) is
defined such that it favors the exploration of less relialidges. The update rule is defined as
follows [85]:

p(s,a25) = (1 = ((s)) V(s) , ()
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where((s) € [0, 1] is a reliability value. Finallyp(s, as;) is updated as:

_ N
2

N

plsass) = C(s) (VIE) = ) + =2 ®)

where Ny, is the number of frequency bands. Thus, this rule favors witclsing to frequency
bands having large number of resources and high reliahitityes((s).

The TD algorithm is a combination of Monte Carlo and DynamrogPamming methods
[82]. Like Monte Carlo, it can learn directly from experienavithout a complete model of the
system. Like Dynamic Programming, TD updates estimatesdbas other learned estimates
without waiting for the final outcome [82]. In particular, anple Monte Carlo algorithm for

estimating the value of a state can be defined as:
Vi(st) <= V(st) + B[R — V(s1)] 9)

where is a learning paramete®, = > -, v*r., is the return function at time and~ is a
discount factor. Obviously, the Monte Carlo method has td & the end of the episode (i.e.
end of the time horizon) to updaié(s;). On the other hand, the TD method updalt&s;) after

the next time step as follows:

V(sy) < V(st) + Brigr + 7V (s041) — V(1)) (10)

The TD method has an advantage over the dynamic programmethooh since it does not
require a model of the environment. Also, the TD method isergitable for online learning,
compared to the Monte Carlo method.

Moreover, it has been shown [82] that the value function i) (donverges in the mean 16"
for any fixed policyr if 3 is sufficiently small, and it converges with probabilityif 5 satisfies

the stochastic approximation conditions below:
> Bi(a) = 0o and Y~ Bi(a) < oo, (11)
k=1 k=1

where 3 (a) is the step-size parameter used after executing aetifam the k-th time.

Another reinforcement learning algorithm that has beeriegpo cognitive radios was based
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on the Q-learning [54], [55], [90], [91]. This algorithm @shtes the Q-values)(s,a) of the
joint state-action pairs$s, a). This function represents the return function of actiowhen the

system is in state and is defined as:

Q(s,a) =E {i Yookl s = 5,0, = a} : (12)
k=0

The Q-learning algorithm is one of the most important TD rodththat was developed by

Watkins in1989 [92]. The one-stepQ-learning is defined as follows:

Q81 ar) «— Q(51,a¢) + [Tt+1 + 7Y max Q(8141,a) — Q(sy, Clt)} . (13)

The update function (13) directly approximates the optiG@alvalue. However, it is required that
all state-action pairs need to be continuously updatedderaio guaranteeorrect convergence
This can be achieved by applying argreedy policy that ensures that all state-action pairs are
updated with a non-zero probability, thus leading to anroatipolicy [82].

In [54], the authors applied the Q-learning to derive therif@rence control in a cognitive
network. The problem setup is illustrated in Fig. 5 in whichltiple IEEE 802.22 WRAN cells
are deployed around a Digital TV (DTV) cell such that the agated interference caused by
the secondary networks to the DTV network is below a certareghold. In this scenario, the
cognitive radio (agents) constitutes a distributed netwaord each radio tries to determine how
much power it can transmit so that the aggregated interferem the primary receivers does
not exceed a certain threshold level.

In this system, the secondary base stations form the lepragents that are responsible
for identifying the current environment state, selectiig taction based on the Q-learning
methodology and executing it. The state of thdn WRAN network at timet consists of three

components and is defined as [54]:
sy = {1}, dy, pi} (14)

where ! is a binary indicator specifying whether the secondary nétvgenerates interference
to the primary network above or below the specified threshdldlenotes an estimate of the

distance between the secondary user and the interferemteucoandp; denotes the current
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Fig. 5. System model of [54] which is formed of a Digital TV (DY cell and multiple WRAN cells.

power at which the secondary uselis transmitting. In the case of full state observability,
the secondary user has complete knowledge of the stateoanwent. However, in the partially
observable environment, the ageéritas a partial information of the actual state and uses afbelie
vector to represent the probability distribution of theestealues. In this case, the randomness in
st is only related to the parametéf which is characterized by two elemerits= {b(1),b(2)},
i.e. the values of the probability mass function of

The set of possible actions is the getof power levels that the secondary base station can
assign to the-th user. The cost: denotes the immediate reward incurred due to the assignment

of actiona in states and is defined as:
¢= (SINR! — SINRg;)" (15)

where SINR; is the instantaneous SINR in the control point of WRAN aell

By applying the Q-learning algorithm, the results in [54]Josled that it can control the
interference to the primary receivers, even in the case dfgpatate observability.

In addition to the above system models in [54], [85] desodbiwo different applications of

RL to cognitive radios, there has been many other researckswibat applied RL to cognitive
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radios. The popularity of RL is due to its simplicity, effioigy and perhaps, more importantly,
the ability to learn autonomously, which makes it a perfemhdidate for learning methods
in unknown RF environments. For example, the authors in [88d the multi-armed bandit
problem as a reinforcement learning method to enhance ttierpgnce of SU’'s in dynamic
environments, while providing a semi-dynamic parameteing scheme to achieve an online
update of the multi-armed bandit parameters. The choicén@fniulti-armed bandit model is
to balance simultaneously between 1) exploring the extenmaronment and 2) exploiting the
past acquired knowledge to decide which channel to accets® inpportunistic spectrum access
setup [86]. The authors in [55] proposed an RL framework thase Q-learning to identify
the presence of primary signals and to access the primamnelawhenever they are found
to be idle. In particular, the proposed Q-learning algonitim [55] identifies previously known
primary signals and learns to detect the signals which atisercould not be detected, and helps
for efficient utilization of spectrum. The authors in [93]edsthe RL for routing in multi-hop
cognitive radio networks. The proposed learning technigas based on the Q-learning and it
permits learning the good routes efficiently.

The authors in [94] implemented a cognition cycle (CC) basadthe RL for a cognitive
secondary transmitter and a cognitive secondary recelVer. objective was to maximize the
data throughput between the cognitive transmitter andiveccand minimize the transmission
delay while avoiding the primary traffic. The authors in [®tjalyzed the performance of the
proposed method and justified that RL is a promising tool tplement the CC. The authors in
[94] also investigated the effects of changes on RL paramete network performance.

A channel selection scheme was proposed in [90] for mubr-asd multi-channel cognitive
radio systems. In this paper, the SU’s avoid the negotiatieerhead by applying a multi-
agent RL (MARL) algorithm. As opposed to single-agent RL @kRL), MARL refers to
the RL algorithms implemented on multiple agents in a mag@ent system introduced at the
beginning of Section I. A comprehensive survey of MARL is\pded in [63] with detailed
discussion on the benefits and challenges of MARL. As digaigs[63], including the curse of
dimensionality and the exploration-exploitation tradeséveral common challenges in MARL
are: 1) the difficulty of specifying a learning goal, 2) thenstationarity of the learning problem,

and 3) the need for coordination. The proof of convergendbeproposed algorithm in [90] was
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also provided via similarity between the Q-learning andiRstin-Monro algorithra[96]. In [59],

a machine-learning technique was proposed to ensure ieffempportunistic spectrum access
(OSA) in cognitive radio networks. The model in [59] uses RUegarn by interacting with the
environment. Recognizing the importance of the efficiencg &L process for cognitive radios
and the balancing between exploration and exploitation lin ko novel exploration schemes
were proposed in [60]. A first pre-partitioning exploratischeme that randomly partitions the
action space to ensure faster exploration was presentdowéa by a second weight-driven
exploration scheme in which the action selection is infleehby the knowledge gained during
exploration. In order to provide a measure of how efficiemt ldarning process is, the authors
in [60] defined the learning efficiency as

Useful learning cost

Learning efficiency- Total learning cost

(16)

where the total learning cost is the time consumed by a legragent to finish a task, and the
useful learning cost is the time consumed to exploit the inbthoptimal strategy. Simulation
results were provided in [60] to show that the learning edficies of both the pre-partitioning
and the weight-driven exploration schemes are signifigamproved compared to the traditional
uniform random exploration scheme.

A distributed multi-agent multi-band RL based sensing @olwas proposed in [57] for
ad-hoc cognitive networks. The proposed sensing policyl@yspsecondary user (SU) local
collaborations. The goal is to maximize the amount of atéélaspectrum found for secondary
use given a desired diversity order, i.e. a desired humb&Ux sensing simultaneously each
frequency band. The RL algorithm formulated is employed d&sheSU to update the local action
values. The action value is approximated by a linear fundticorder to reduce the dimensionality
of the spectrum sensing state-action space in a multiagemaso, allowing computationally
efficient learning also in networks with high numbers of setary users and different frequency
bands. The authors in [91] proposed a medium access coOMAL) protocols for autonomous
cognitive radios. The protocol is based on the Q-learning alows learning an efficient
sensing policy in a multi-agent decentralized partiallgetvable Markov decision process (DEC-

2Robinson-Monro algorithm is a stochastic approximatios] [®iethod that functions by placing conditions on iteratstep
sizes and whose convergence is guaranteed under mild icorsd[©6].
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POMDP) [97] environment. The DEC-POMDP framework is a mottelrepresent multiple
agents making decisions under uncertainty. It is an extensi the partially observable Markov
decision process (POMDP) [98], [99] framework and a spedéise of a partially observable
stochastic game (POSG) [100]. The optimal solution of theiB® was derived in [98] by
considering the POMDP as an Markov decision process (MD8)J#&h an infinite state space.
This solution was obtained by following the dynamic prognaimg approach. However, it suffers
from high computational complexity due to the infinite dirsgm of the state space, which
makes it computationally intractable [101]. Hence, appr@ate solutions with low complexity
are usually suggested for POMDP problems in order to avadtgh complexity of the optimal
solution [54], [101]. In particular, several RL algorithm&re shown to provide efficient near-
optimal solutions to the POMDP’s, yet with low complexityd]5[102], [103].

In [104], RL was employed for learning problems in a dynampedrum leasing (DSL)
framework. The algorithms allows to reach an equilibriumttee proposed auction game with
both centralized and distributed cognitive networks aettures. The authors in [105] proposed
a stochastic game framework for anti-jamming defense imitivg radios. In particular, the
minimax Q-learning [106] was used to learn the optimal sdeoy policy so as to maximize the
spectrum-efficient throughput. The minimax Q-learning ssemtially identical to the standard
Q-learning algorithm with a minimax replacing the max inXJB06]. The essence of minimax
is to behave so as to maximize your reward in the worst caseséioetimes, the performance
of an agent depends critically on the actions of the opponrerthe game theory literature, the
resolution to this problem is to eliminate the choice andweata each policy with respect to the
opponent that makes it look the worst. This performance oregsrefers conservative strategies
that can force any opponent to a draw to more daring ones ttati@ a great deal of reward
against some opponents and lose a great deal to others [1€§i6f the minimax Q-learning, the
authors in [105] made the secondary users gradually leaophimal policy, which maximizes
the expected sum of discounted payoffs defined as the speetificient throughput. Simulation
results showed that the optimal policy obtained from theimé&x Q-learning can achieve much
better performance in terms of spectrum-efficient throughpompared to the myopic learning
policy which only maximizes the payoff at each stage withocansidering the dynamics of the

environment and the cognitive capability of attackers.
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B. Non-parametric Learning: The Dirichlet Process Mixtuviodel (DPMM)

A major challenge an autonomous cognitive radio can facéeslack of knowledge about
the surrounding RF environment, in particular, when opegatn the presence of unknown
primary signals. Even in such situations, a cognitive radi@assumed to be able to adapt to
its environment while satisfying certain requirementst Eeample, in DSA, a cognitive radio
cannot exceed a certain collision probability with primaisers, under any circumstance. For
this reason, a cognitive radio should be equipped with thétyalbo autonomously explore
its surrounding environment and to make decisions aboutptireary activity based on the
observed data. In particular, a cognitive radio must be stbkxtract knowledge concerning the
statistics of the primary signals based on measurements.makes unsupervised learning an
appealing approach for cognitive radios in this contexe R has been shown to ensure efficient
learning for cognitive radios in Markovian environmentsthis section, however, we will focus
on non-parametric learning techniques [107] that do not oel the Markovian property of the
environment, yet ensure efficient learning and adaptakioparticular, we will explore a Dirichlet
process prior based [108]-[111] technique as a framewarkda-parametric learning and point
out its potentials and limitations. The Dirichlet proces®pbased techniques are considered
as unsupervised learning methods since they make few asisms)\pbout the distribution from
which the data is drawn [112], [113], as can been seen fromsihib-section.

First, a Dirichlet proces® P(«ay, Gy) is defined to be the distribution of a random probability
measureG that is defined over a measurable sp&eel3), such that, for any finite measurable
partition (A;,--- , A,) of ©, the random vectofG(A,),---,G(A,)) is distributed as a finite
dimensional Dirichlet distribution with parametefg,Go(A1), -, aGo(A,)), whereay > 0
[112]. We denote:

(G<A1>, e, G(AT)) ~ D’iT(OéoG0<A1>, e ,OéoGo(Ar)) y (17)

where G ~ DP(ay, Gy), denotes that the probability measureis drawn from the Dirichlet
processD P(ay, Gy). In other words GG is arandom probability measurerhose distribution is
given by the Dirichlet proces® P(ay, Gy) [112].
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Fig. 6. One realization of the Dirichlet process.

1) Construction of the Dirichlet processfeh [112] describes several ways of constructing
the Dirichlet process. A first method is a direct approach toastructs the random probability
distributionG based on thatick-breakingmethod. Thestick-breakingconstruction ofG can be

summarized as followgl12]:

1) Generate independent i.i.d. sequenfes}y; and {¢,}7>, such that

oo, Gy~ Beta(l, ap)

: (18)
¢k|040, Go ~ Gy

where Betéa, b) is the beta distribution whose probability density funotigdf) is given
o ¢ 1 (1—g)01
by f(xa a, b) - fol ua—l(l_u)b—ldu'
2) Definerm, = 7}, [11= (1 —7}). We can writer = (m;, 7, - - - ) ~ GEM (ay), whereGEM
stands for Griffiths, Engen and McCloskey [112]. TGd/M («) process generates the

vector as described above, given a parameten (18).

3) Define G = > 7, mdy,, Wheredy is a probability measure concentrated ¢at(and

Z;;“;l T — 1).
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In the above constructiafi is a random probability measure distributed according £ «, Go).
The randomness ir stems from the random nature of both the weightsand the weights
positions¢,. A sample distributionz of a Dirichlet process is illustrated in Fig. 6, using the
steps described above in theck-breakingmethod. Since& has an infinite discrete support (i.e.
{01 }32,), this makes it a suitable candidate for non-parametriceBen classification problems
in which the number of clusters is unknowrpriori (i.e. allowing for infinite number of clusters),
with the infinite discrete support (i.€.¢x}52, being the set of clusters. However, due to the
infinite sum inG, it may not be practical to constru€t directly by using this approach in many
applications. An alternative approach to consti@as by using either the Polya urn model [111]
or the Chinese Restaurant Process (CRP) [114]. The CRP msceetli-time stochastic process.
A typical example of this process can be described by a Chinestaurant with infinitely many
tables and each table (cluster) having infinite capacitghEaistomer (feature point) that arrives
to the restaurant (RF spectrum) will choose a table with &adodity proportional to the number
of customers on that table. It may also choose a new table avitertain fixed probability.

A second approach does not defi@eexplicitly. Instead, it characterizes the distribution of
the drawingsd of G. Note thatG is discrete with probabilityl. The Polya urn model [111]
does not constructs directly, but it characterizes the draws froth Let 6,605, --- be i.i.d.
random variables distributed according@o These random variables are independent, given
However, if G is integrated outd;, 0, - - - are no more conditionally independent and they can

be characterized as:

Qp
92|917”' i— 1,0(0,G0NZ 1—’—05 k+’i—1+OZOGO, (19)

where {¢;}&, are theK distinct values off;'s and m;, is the number of values; that are
equal to¢,. Note that this conditional distribution is not necesgadiscrete sincez, might
be a continuous distribution (in contrast with which is discrete with probability). The 6;’s
that are drawn fronG exhibit a clustering behavior since a certain valuedpfs most likely

to reoccur with a nonnegative probability (due to the poirgssfunctions in the conditional
distribution). Moreover, the number of distingt values is infinite, in general, since there is a

nonnegative probability that the nefly value is distinct from the previou&,,--- ,6;_;. This
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conforms with the definition of; as a probability mass function (pmf) over an infinite diseret

set. Since);’s are distributed according t@, given G, we denote:
0;|G ~G . (20)

2) Dirichlet Process Mixture Model (DPMM)The Dirichlet process makes a perfect candidate
for non-parametric classification problems through theddlet process mixture model (DPMM).
The DPMM imposes a non-parametric prior on the parametetiseomixture model [112]. The

DPMM can be modeled as follows:

G ~ DP(O[O, GO)
yilti ~ f(0:)

wheref;’s denote the mixture components and thes drawn according to this mixture model
with a density functionf given a certain mixture componetit

3) Data clustering based on the DPMM and the Gibbs sampli@gnsider a sequence of
observationgy;}%¥, and assume that these observations are drawn from a mixtatelnf the
number of mixture components is unknown, it is reasonabkssume a non-parametric model,
such as the DPMM. Thus, the mixture componehtare drawn fromG ~ D P(«g, Gy), where
G can be expressed &8 = ) .- mi04,, ¢x’S are the unique values @, andr, are their
corresponding probabilities. Denote= (y1, -+ ,yn)-

The problem is to estimate the mixture componénfor each observation;, for all i €
{1,---,N}. This can be achieved by applying the Gibbs sampling [115hot proposed in
[116] which has been applied for several unsupervised alingf problems, such as speaker
clustering problem in [117]. The Gibbs sampling is a techrifpr generating random variables
from a (marginal) distribution indirectly, without havirng calculate the density. As a result,
by using te Gibbs sampling, we are able to avoid difficult gktions, replacing them instead
with a sequence of easier calculations. Although the robtheo Gibbs sampling can be traced
back to at least Metropolis, Rosenbluth, Rosenbluth, fiedled Teller (1953) [115], the Gibbs
sampling became popular after the paper of Geman and Gerd@a)([lL18], who studied image-

processing models. More recently, Gelfand and Smith (1fP1¥)] generated new interest in the
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Gibbs sampler by revealing its potential in a wide varietycohventional statistical problems.
A good tutorial on the Gibbs sampling can be found in [120].

In the Gibbs sampling method proposed in [116], the estis¥teavill be sampled from the
conditional distribution off;, given all the other feature points and the observationoregt

This distribution was obtained in [116] to be

. Jo. (yi)
with Pr. &
ei‘{‘gj}j;éz’; y = J AYi)+221 1120 fo, (Wa) ' (22)

N 4 . Aly:)
h(f|y;) with Pr. TR NS SL I OR

0.

whereh(0;y;) = ﬁf&(yi)Go(ez‘) and A(y) = ao [ fo(y)Go(0)d6.
In order to illustrate this clustering method, consider m@e example summarizing the
process. We assume a set of mixture componemidRk. Also, we assumé, () to be uniform

over the rangéb, .., O] Note that this is a worst-case scenario assumption wherlegee

y—0)2
is no prior knowledge of the distribution & except its range. Lefy(y) = \/2;?6_( 57
Hence’A(y) - Grnawa_oe'min [Q <97”i;_y) o Q (erna;_y)} and
Bosne U5 i O <0, <0
—— 20 . .
0 otherwise
whereB = 1 . Initially, we setf; = y; forall i € {1,--- , N}. The algorithm

Q(emig*yi)_Q<9mazfyi)
is described in Algorithm 1.

Algorithm 1 Clustering algorithm.
Initialize 6; = y;, Vi € {1,--- ,N}.
while Convergence condition not satisfied
for i = shuffle{1,---, N} do
Use Gibbs sampling to obtaif) from the distribution in (22).
end for
end while

If the observation pointg; € R* (with & > 1), the distribution ofh(6;|y;) becomes too
complicated to be used in the sampling proces8;'sf In [116], if Gy(¢) is constant in a large
area around;, h(60|y;) was shown to be approximated by the Gaussian distributgsu(aing that

the observation pdf,(y;) is Gaussian). In our case, assuming a large uniform priariloligion
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Bayesian Non—parametric classifcation with Gibbs sampling evitl, o= 2 after 20000 iterations
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Fig. 7. The observation pointg are classified into different clusters, denoted with déférmarker shapes. The original data
points are generated from a Gaussian mixture model withixture components and with an identity covariance matrix.

on ¢, we can approximaté(f|y) by the Gaussian pdf. Thus, (23) becomes:

h(‘gi‘yi) = N(yz', 2) ' (24)

whereY is the covariance matrix.

In order to illustrate this approach in a multidimensiora@rsario, we may generate a Gaussian
mixture model havingl mixture components. The mixture components have diffemegdns in
R? and they have an identity covariance matrix. We assume lileatdvariance matrix is known.

We plot in Fig. 7 the results of the clustering algorithm lthee DPMM. Three of the clusters
were almost perfectly identified, whereas the forth clustas split into three parts. The main
advantage of this technique is its ability of learning thenber of clusters from the data itself,
without any prior knowledge. As opposed to heuristic or suiged classification approaches that
assume a fixed number of clusters (such asihmean approach), the DPMM-based clustering
technique is completely unsupervised, yet, provides w¥feclassification results. This makes it
a perfect choice for autonomous cognitive radios that relyiasupervised learning for decision-

making.

26



4) Applications of DP to cognitive radiosthe Dirichlet process has been used as a framework
for non-parametric Bayesian learning in cognitive radinos[61], [121]. The approach was
used for identifying and classifying wireless systems i81][l based on the CRP. The method
consists of extracting two features from the observed $sgfa particular, the center frequency
and frequency spread) and to classify these feature paints feature space by adopting an
unsupervised clustering technique, based on the CRP. Tketivk is to identify both the number
and types of primary systems that exist in a certain frequdrand at a certain moment. One
application of this could be when multiple wireless systamsxist in the same frequency band
and try to communicate without interfering with each ottfuch scenarios could arise in ISM
bands where wireless local area networks (WLAN IEEE 802ddexist with personal area
networks (PAN), such as Zigbee (IEEE 802.15.4) and Bluét¢lEEE 802.15.1). In that case,
a PAN should sense the ISM band before selecting its commatioiicchannel so that it does
not interfere with the WLAN or other PAN systems. A practieasumption, in that case, is
that individual wireless users do not know the number of ttieelocoexisting wireless users.
Instead, these unknown variables should be learnt basegpmo@iate autonomous learning
algorithms. Moreover, the designed learning algorithmsusth account for the dynamics of the
RF environment. For example, the number of wireless useghinihange over time. These
dynamics should be handled by an embedded flexibility offdsg non-parametric learning
approaches.

The advantages of the DP-based learning technique in [121hat it does not rely on
training data, making it suitable for identifying unknowigrsals by using unsupervised learning
techniques. In this survey, we do not delve into details afosing and computing appropriate
feature points for the particular application considemedl21]. Instead, our focus is below on
the implementation of the unsupervised learning and dlimgtdechnique.

After sensing a certain signal, the radio extracts a fegtormet that captures certain spectrum
characteristics. Usually, the extracted feature poirgsiaisy and might be affected by estimation
errors, receiver noise, path loss, etc. Moreover, thessizl distribution of these observations
might be unknown itself. It is assumed that feature pointt tre extracted from a particular
system belong to the same cluster in the feature space. Diegeon the feature definition,

different systems might result in different clusters thatlacated at different places in the feature
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space. For example, if the feature point represents thercgrgjuency, two systems transmitting
at different carrier frequencies will result in feature qsi that are distributed around different
mean points.

The authors in [121] argue that the clusters of a certainegysire random themselves and
might be drawn from a certain distribution. That is, not tontien the randomness in the
observed data, given a particular cluster. To illustraie ithea, assume two WiFi transmitters
located at different distances from the receiver that battsUWLAN channel. Although the
two transmitters belong to the same system (i.e. WiFi chlahpeheir received powers might
be different, resulting in variations of the features ectied from the signals of the same system.
To capture this randomness, it can be assumed that theqguosaitid structure of the clusters
formed (i.e. mean, variance, etc.) are themselves drawn fmme distribution.

To be concrete, denoteas the derived feature point and assum tha normally distributed
(i.e. x ~ N(pe, X)) with meanyu, and covariance matriX.. These two parameters characterize
a certain cluster and are drawn from certain distributicor. &ample, it can be assumed that
tie ~ N (par, 2ar) and 3, ~ W(V,n), whereW denotes the Wishart distribution, which can be
used to model the distribution of the covariance matrix oftivariate Gaussian variables.

In the method proposed in [121], a training proddssequired to estimate the parametgss
andX,,;. The estimation is performed by sensing a certain systegn {&Fi, or Zigbee) under
different scenarios and estimating the centers of the ensistesulting from each experiment
(i.e. estimatingu.). The average of all.'s forms a maximum-likelihood (ML) estimate of the
parameter.,, of the corresponding wireless system. This step is equivdte estimating the
hyperparameters of a Dirichlet process [113]. Similarneation method can also be performed
to estimateX,,.

The knowledge ofu,, and X,, helps identify the corresponding wireless system of each
cluster. That is, the maximum a posteriori (MAP) detectian be applied to a cluster center
to estimate the wireless system that it belongs to. Howekierclassification of feature points
into clusters can be done based on the CRP.

3Note that the training process used in [121] refers to thetehformation process. The training used in [121] is dortaouit

data labeling nor human instructions, but done with the CRRI] and the Gibbs sampling [116], thus still qualifies foe th
unsupervised learning schemes.
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The classification of a feature point into a certain clussenade based on the Gibbs sampling
applied to the CRP. The algorithm fixes the cluster assigtsnarall other feature points. Given
that assignment, it generates a cluster index for the cufeature point. This sampling process
is applied to all the feature points separately until cartainvergence criterion is satisfied. Other
examples of the CRP-based feature classification can bel fouspeaker clustering [117] and

document clustering applications [122].

C. Game theory-based Learning

Game theory [123] presents a suitable platform for impleimgnrational behavior among
cognitive radios in CRN’s. There is a rich literature on gattmeoretic applications in cognitive
radio, such as in [124]-[135]. A survey on game theoreticdapghes for multiple access wireless
systems can be found in [136].

Game theory [123] is a mathematical tool that implementsoiteavior of rational entities in
an environment of conflict. This branch of mathematics hasamily been popular in economics,
and was later applied to biology, political science, engimey and philosophy [136]. In wireless
communications, game theory has been applied to data coroatiam networking, in particular,
to model and analyze routing and resource allocation in @&ditige environments. A game
model consists of several rational entities that are dehasethe players. Each player has a set
of available actions and a utility function. The utility foiion of an individual player depends
on the actions taken by all the players, in general. Eacheplaglects its strategy (i.e. action
sequence) in order to maximize its utility function. A Nagjuiéibrium of a game is defined
as the point at which the utility function of each player does increase if the player deviates
from that point, given that the other players’ actions aredix

A key advantage of applying game theoretic solutions to tivgnradio protocols is in
reducing the complexity of adaptation algorithms in larggmitive networks. While optimal
centralized control is computationally prohibitive in m@RN'’s, due to communication overhead
and algorithm complexity, game theory presents a platfarirandle such situation, distributively
[137]. Another reason for applying game theoretic appreadb cognitive radios is the assumed
cognition in the cognitive radio behavior, which inducegionality among cognitive radios,
similar to the players in a game.
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Several types of games have been adapted to model diffeiteatiens in cognitive radio
networks [137]. For example, supermodular games [138] ¢gémmes having an important and
useful property: there exists at least one pure strategy Hgsilibrium) are used for distributed
power control [139], [140] and rate adaptation [141]. Repedagyames were applied for dynamic
spectrum access (DSA) by multiple SU’s that share the saerspn hole [142]. In this context,
repeated games are useful in building reputations and eygpbyinishments in order to reinforce a
certain desired outcome. The Stackelberg game model cardaeas a model for implementing
cognitive radio behavior in cooperative spectrum leasirigene the primary users act as the
game-leaders and secondary cognitive users as the fold&8}.

Auctions are one of the most popular methods used for sedlimgriety of items, ranging
from antiques to wireless spectrum. In auction games thgepdaare the buyers who must select
the appropriate bidding strategy in order to maximize tpenceived utility (i.e., the value of the
acquired items minus the payment to the seller). The aug@mnes were applied to cooperative
dynamic spectrum leasing (DSL) applications, as in [104]well as to spectrum allocation
problems, as in [143]. The basics of the auction games andplea challenges of auction
games to the field of spectrum management are provided in.[144

Stochastic games [145] can be used to model the greedy sedfishvior of cognitive radios
in a cognitive radio network, where cognitive radios try @éarn their best response and improve
their strategies over time [146]. In the context of cogmitradios, stochastic games are dynamic,
competitive games with probabilistic actions played by She game is played in a sequence
of stages. At the beginning of each stage, the game is in aicestate. The SU’s choose their
actions, and each SU receives a reward that depends on bathrient state and its selected
actions. The game then moves to the next stage having a nesvvath a certain probability,
which depends on the previous state and the actions selegtéd SU’s. The process continues
for a finite or infinite number of stages. The stochastic gaaresgeneralizations of repeated

games that only have one single state.

D. Threshold Learning

A cognitive radio can be implemented on a mobile device tia@nges location over time

and switches transmissions among several channels. THigitjpand multi-band/multi-channels
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operability causes a major problem for cognitive radios daging to their RF environments.
A cognitive radio may encounter different noise or intezfeze levels when switching between
different bands or when moving from one place to another.cdgethe operating parameters (e.g.
test thresholds, sampling rate, etc.) of cognitive radesdnto be adapted with respect to each
particular situation. Moreover, cognitive radios may bemping in unknown RF environments
and may not have perfect knowledge of the characteristicth@fother existing primary or
secondary signals, which require special learning algorst to allow the cognitive radio to
explore and adapt to its surrounding environment. In thiged, special types of learning can
be applied to directly learn the optimal setup of certainigftesind operation parameters.
Threshold learningpresents a technique that permits such dynamic adaptatioparating
parameters to satisfy the performance requirements, wbiinuously learning from the past
experience. By assessing the effect of previous paramabees on the system performance, the
learning algorithm optimizes the parameters values inrotdeensure a desired performance.
For example, when considering energy detection, after umgegps the energy levels at each
frequency, a cognitive radio decides on the occupancy oftaingrequency band by comparing
the measured energy levels to a certain threshold. Thehibicekevels are usually designed based
on Neyman-Pearson tests in order to maximize the detectarapility of primary signals, while
satisfying a constraint on the false alarm. However, in gesks, the optimal threshold depends
on the noise level. A bad estimation of the noise levels maghise sub-optimal behavior and
violation of the operation constraints (for example, exiteg a tolerable collision probability
with primary users). In this case, and in the absence of gekfeowledge about the noise levels,
threshold-learning algorithms can be devised to learn fhtanal threshold values. Given each
choice of a threshold, the resulting false alarm rate detersnhow the test threshold should
be regulated to achieve a desired false alarm probability.efample of threshold learning
algorithms can be found in [147] where a threshold learniraggss was derived for optimizing
spectrum sensing in cognitive radios. The resulting atgoriwas shown to converge to the

optimal threshold that satisfies a given false alarm pradibabi
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IV. SUPERVISEDLEARNING

Unlike the unsupervised learning techniques discusseti@nptevious section that may be
used in alien environments without having any prior knowkedsupervised learning techniques
are generally used in certain familiar/known environmegmigh prior knowledge about the
characteristics of the environment. In the following, wadaduce some of the major supervised

learning techniques that have been applied to the cogniigi® literature.

A. Artificial Neural Network (ANN)

The work on ANN has been motivated by the recognition that dnuforain computes in an
entirely different way compared to the conventional digtamputers [148]. A neural network
is defined to bea massively parallel distributed processor made up of stnggbcessing units,
which has a natural propensity for storing experiential wkedge and making it available for
use[148]. An ANN resembles the brain in two respects [148]: 1pwWitedge is acquired by
the network from its environment through a learning processl 2) interneuron connection
strengths, known as synaptic weights, are used to storectgrad knowledge.

Some of the top beneficial properties and capabilities of ANiNcludes: 1) nonlinearity fitness
to underlying physical mechanisms; 2) adaptive to minomgea of surrounding environment;
3) in the context of pattern classification, the ANN providie®rmation not only about which
particular pattern to select, but also the confidence in #@stbn made. However, the disad-
vantages of ANN’s is that 1) they require a large diversityrafning for real-world operations,
which can lead to excessive hardware necessities andf®)rthe training outcome of an ANN
can sometimes be nondeterministic and depend crucialljherchoice of initial parameters.

Various applications of ANN to cognitive radios can be foumdecent literature [149]-[154].
The authors in [149] proposed the use of Multilayered Femediod Neural Networks (MFNN)
as a technique to synthesize performance evaluation ngtn cognitive radios. The benefit of
using MFNNSs is that they provide a general-purpose blackrhodeling of the performance as a
function of the measurements collected by the cognitiveorddrthermore, this characterization
can be obtained and updated by a cognitive radio at run-timis, effectively achieving a certain

level of learning capability. The authors in [149] also derstwated the concept in several IEEE

32



802.11 based environments to show how these modeling daijesbtan be used for optimizing
the configuration of a cognitive radio.

In [150], the authors proposed an ANN-based cognitive enthat learns how environmental
measurements and the status of the network affect its pesfoce on different channels. In
particular, an implementation of the proposed Cognitivat@uler for dynamic channel selection
in IEEE 802.11 wireless networks was presented. Performm@valuation carried out on an
IEEE 802.11 wireless network deployment demonstratedttieCognitive Controller is able to
effectively learn how the network performance is affectgdchanges in the environment, and
to perform dynamic channel selection thereby providingnigicant throughput enhancements.

In [151], an application of a Feedbackward ANN in conjunetiwith the cyclostationarity-
based spectrum sensing was presented to perform spectnsimgeThe results showed that
the proposed approach was appropriate to detect the signdés considerably low signal-to-
noise ratio (SNR) environment. In [152], the authors destha channel status predictor using
a MFNN model. The authors argued that their proposed MFN$&ethgprediction is superior
to the hidden Markov model (HMM) based approaches, by pmjntut that the HMM based
approaches require a huge memory space to store a large nahymest observations with high
computational complexity.

In [153], the authors proposed a methodology for spectruadiption by modeling licensed
user features as a multivariate chaotic time series, wtsctheén given as input to an ANN,
that predicts the evolution of RF time series to decide if tidicensed user can exploit the
spectrum band. Experimental results show a similar tremaid®n predicted and observed values.
This proposed spectrum evolution prediction method wa dgnexploiting the cyclostationary
signal features to construct a RF multivariate time sehas ¢ontain more information than the
univariate time series [155], in contrast to most of the niodemethodologies which focus on
the univariate time series prediction [156].

In [154], a feedforward ANN-based automatic modulatiorssification (AMC) algorithm was
applied for signal sensing and detection of primary usersognitive radio environments. An
eight-dimension feature was used as inputs to the feedfdrwatwork, and 13 neurons at the
output layer corresponding to the number of targets: 12agnahd digital modulation schemes

and noise signal. The results showed the high recogniticoess rate of the proposed classifier
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in additive white Gaussian noise (AWGN) channels. Howetex,classification performance for

AWGN channels with fading and other types of channels wetepnovided.

B. Support Vector Machine
The Support Vector Machine (SVM), developed by Vapnik arttead [157], [158], is used for

many machine learning tasks such as pattern recognitiorobjett classifications. The SVM
is characterized by the absence of local minima, the spessenf the solution and the capacity
control obtained by acting on the margin, or on other dimmmshdependent quantities such
as the number of support vectors [157], [158]. SVM basedriegtes have achieved superior
performances in a wide variety of real world problems duehtirtgeneralization ability and
robustness against noise and outliers [159].

The basic idea of SVM’s is to map the input vectors into a hdghensional feature space in
which they become linearly separable. The mapping from nipati vector space to the feature
space is a non-linear mapping which can be done by using lkiennetions. Depending on the
application different types of kernel functions can be usedommon choice for classification
problems is the Gaussian kernel which is a polynomial keshglfinite degree. When performing
classification, a hyperplane which allows for the largestegalization in this high-dimensional
space is found. This is so-called a maximal margin classiisrshown in Fig. 8, there could
be many possible separating hyperplanes between the taseslaf data, but only one of them
allows for the a maximum margin. A margin is the distance frarseparating hyperplane to
the closest data points. These closest data points are nsupedrt vectors and the hyperplane
allowing for the maximum margin is called an optimal sepagathyperplane. The interested
reader is referred to [160], [161] for insightful coverageS¥/M’s.

Many applications of SVM'’s to cognitive radio can be foundcurrent literatures, including
[44], [51], [159], [162]-[168]. Most of the applications tiie SVM in cognitive radio context,
however, has been in performing signal classifications.

In [165], for example, a MAC protocol classification schemaswproposed to classify con-
tention based and control based MAC protocols in an unknovimgry network based on
SVMs. To perform the classification in an unknown primarywak, the mean and variance of

the received power are chosen as two features for the SVMSé is embedded in a cognitive
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Margin Hyperplanes

Optimal Separating
Hyperplane

Fig. 8. A diagram showing the basic idea of SVM: optimal safian hyperplane (solid red line) and two margin hyperpane
(dashed lines) in a binary classification example; Suppectors are bolded.

radio terminal of the secondary network. A TDMA and a slottddha network were setup as
the primary networks. Simulation results showed that TDM#A alotted Aloha MAC protocol
could be effectively classified by the cognitive radio taraliand the correct classification rate
is proportional to the transmission rate of the primary meks, where the transmission rate
for the primary networks is defined as the new packet gemeyatiriving probability in each
time slot. The reason why the correct classification rateeges when the transmission rate
increases is the following: for slotted Aloha network, thgher transmission rate brings the
higher collision probability, and thus the higher instargeus received power captured by a
cognitive radio terminal; for TDMA network, however, thaseno relation between transmission
rate and instantaneous captured received power. Thereftien the transmission rates of the
primary networks both increase, it makes a cognitive ragliminal easier to differentiate TDMA
and slotted Aloha.

SVM classifiers can not only be a binary classifier as showmpjglication in the previous
exmaple, but also it can be easily used as multi-class filrsdby treating d<-class classification

problem ask two-class problems. For example, in [166] the authors prteskea study of multi-
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class signal classification based on automatic modulat@ssification (AMC) through SVMs.
A simulated model of an SVM signal classifier was implemended trained to recognize
seven distinct modulation schemes; five digital (BPSK, QPSKISK, 16-QAM and 64-QAM)
and two analog (FM and AM). The signals were generated usdadjstic carrier frequency,
sampling frequency and symbol rate values, and realistiseda cosine and Gaussian pulse-
shaping filters. The results show that the implemented iGkxssorrectly classifies signals with
high probabilities.

We summarize the discussed unsupervised learning tedmidjgcussed in Section Il and
supervised learning techniques discussed in this sedatidine table shown in Fig. 9, with their

suitable applications.
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V. CENTRALIZED AND DECENTRALIZED LEARNING IN COGNITIVE RADIO

Since noise uncertainties, shadowing, and multi-pathnfadifects limit the performance of
spectrum sensing, when the received primary SNR is too logretexists a SNR wall, below
which reliable spectrum detection is impossible in somes§$69], [170]. If SU’s cannot detect
the primary transmitter, while the primary receiver is witthe SU’s transmission range, a hidden
terminal problem occurs [171], [172], and the primary us&ansmission will be interfered with.
By taking advantage of diversity offered by multiple indegent fading channels (multiuser
diversity), cooperative spectrum sensing improves thiabiity of spectrum sensing and the
utilization of idle spectrum [173], [174], as opposed to ramoperative spectrum sensing.

In centralized cooperative spectrum sensing [173], [L&4¢entral controller collects local
observations from multiple SU’s, decides the spectrum paoay by using decision fusion rules,
and informs the SU’s which channels to access. In distribat®perative spectrum sensing [41],
[175], on the other hand, SU’s within a cognitive radio netkvexchange their local sensing
results among themselves without requiring a backbonerdraleed infrastructure. On the other
hand, in the non-cooperative decentralized sensing framewo communications are assumed
among the SU’s [176].

In [177], the authors showed how various centralized ancemealized spectrum access
markets (where cognitive radios can compete over time foradycally available transmis-
sion opportunities) can be designed based on a stochastie §atroduced in Section 11I-C)
framework and solved using the proposed learning algorithhe authors in [177] proposed
a learning algorithm to learn the following information inet stochastic game: state transition
model of other SU’s, the state of other SU’s, the policy ofentBU’s, and the network resource
state. The proposed learning algorithm was similar to @nieg. However, the main difference
between this algorithm and Q-learning is that the formerlieily considers the impact of
other SU actions through the state classifications anditi@mgprobability approximation. The
computational complexity and performance are also preseint [177].

In [104] the authors proposed and analyzed both a centdairel a decentralized decision-
making architecture with reinforcement learning for themw®lary cognitive radio network. In
this work, a new way to encourage primary users to lease 8pEctrum is proposed: the

SU’s place bids indicating how much power they are willingsfeend for relaying the primary

37



signals to their destinations. In this formulation, thengary users achieve power savings due
to asymmetric cooperation. In the centralized architegtar secondary system decision center
(SSDC) selects a bid for each primary channel based on dptinamnel assignment for SU'’s.
In the decentralized cognitive radio network architectae auction game-based protocol was
proposed, in which each SU independently places bids fdn pamary channel and receivers
of each primary link pick the bid that will lead to the most pawsavings. A simple and
robust distributed reinforcement learning mechanism igelbped to allow the users to revise
their bids and to increase their rewards. The performanselteeshow the significant impact
of reinforcement learning in both improving spectrum a#lion and meeting individual SU
performance requirements.

In [178], the authors considered dynamic spectrum accessm@roognitive radios from an
adaptive, game theoretic learning perspective, in whidmnitive radios compete for channels
temporarily vacated by licensed primary users in order tisfyatheir own demands while
minimizing interference. For both slowly varying primangsar activity and slowly varying
statistics of fast primary user activity, the authors aggblan adaptive regret based learning
procedure which tracks the set of correlated equilibriahedf game, treated as a distributed
stochastic approximation. The proposed approach is dedieet in terms of both radio aware-
ness and activity; radios estimate spectral conditionsedas their own experience, and adapt
by choosing spectral allocations which yield them the gaultility. Iterated over time, this
process converges so that each radio’s performance is amabptsponse to others’ activity.
This apparently selfish scheme was also used to deliverrsystde performance by a judicious
choice of utility function. This procedure is shown to penfowell compared to other similar
adaptive algorithms. The results of the estimation of ckeamontention for a simple CSMA
channel sharing scheme was also presented.

In [179], the authors proposed an auction framework for dognradio networks to allow
SUs to share the available spectrum of licensed primarysuséty and efficiently, subject to
the interference temperature constraint at each PU. Theetition among SU’s was studied by
formulating a non-cooperative multiple-PU multiple-SlWcaan game. The resulting equilibrium
was found by solving a non-continuous two-dimensional raation problem. A distributed

algorithm was also developed in which each SU updates #segly based on local information
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to converge to the equilibrium. The proposed auction fraorewas then extended to the more
challenging scenario with free spectrum bands. An algoritiias developed based on the no-
regret learning to reach a correlated equilibrium of thetiancgame. The proposed algorithm,
which can be implemented distributively based on local olz®n, is especially suited in
decentralized adaptive learning environments. The astdemonstrated the effectiveness of the
proposed auction framework in achieving high efficiency &aidness in spectrum allocation
through numerical examples.

There has always been a trade-off between the centralizédecentralized control for radio
networks in general. This is also true for cognitive radiowweks. While the centralized scheme
ensures efficient management of the spectrum resourcefteit suffers from signaling and
processing overhead. On the other hand, a decentralizesingchan reduce the complexity of
the decision-making in cognitive networks. However, raditat act according to a decentralized
scheme adopt a selfish behavior and try to maximize their diktias, at the expense of the sum
utility of the network, leading to an overall network effin®y. This problem can become more
severe especially when considering heterogeneous netvionkhich different nodes belong to
different types of systems and have different objectivesélly conflicting objectives). To resolve
this problem, [180] proposes a hybrid approach for hetaregas cognitive radio networks where
the wireless users are assisted in their decisions by theorletcenter. At some states of the
system, the network manager imposes his decisions on us#re network. In other states, the
mobile nodes may take autonomous actions in response tafthrieniation sent by the network
center. As a result, the model in [180] avoids the completiglgentralized network, due to the
inefficiency of the non-cooperative network. Neverthelessarge part of the decision-making
is delegated to the mobile nodes to reduce the processirpena at the central node.

In the problem formulation of [180], the authors considerieelgss network composed 6f
systems that are managed by the same operator. The set @nalg systems is denoted by
S ={1,---,5} and it corresponds to different serving systems. Since hheughput of each
serving system drops in function of the distance of betweemtobile and the base station, the
throughput of a mobile changes within a given cell. To cagptinis variation, each cell is split
into N circles of radiusi,, (n € N = {1,---, N}). Each circle area is assumed to have the same

radio characteristics. In this case, all mobile systems dha located in circle: € A/ and are
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served by system € S achieve the same throughput. The network state matrix istddrby

M € F, where F = NV*5, The (n, s)-th element)$ of the matrixM denotes the number of
users with radio conditiom € N which are served by systeme S in the circle. The network
is fully characterized by its stat®l, but this information is not available to the mobile nodes
when the radio resource management (RRM) is decentralireithis case, by using theadio
enablerproposed by IEEE 1900.4, the network reconfiguration man@dgBM) broadcasts to
the terminal reconfiguration manager (TRM) an aggregatad laformation that takes values
in some finite setC = {1,---, L} indicating whether the load state at mobile terminals are
either low, medium or high. The mappinj: M — L specifies a macro-statg M) for each
network micro-statdVl. This state encoding reduces the signaling overhead, vgailisfying
the IEEE 1900.4 standards which state tiit network manager side shall periodically update
the terminal side with context informatigh81]. Given the load informatioh= f(M) and the
radio conditionn € N, the mobile makes its decisiafi,; € S, specifying which system it will
connect to, and the user’s decision vector is denote®by [P - -, Py] € P.

The authors in [180] find the association policies by follogvithree different approaches:

1) Global optimum approach.

2) Nash equilibrium approach.

3) Stackelberg game approach.

The global optimum approach finds the policy that maximitesdlobal utility of the network.
However, since it is not realistic to consider that indiatlusers will seek the global optimum,
another policy (corresponding to the Nash equilibrium) liamned such that it maximizes the
users’s utilities. Finally, a Stackelberg game formulaticas developed for the operator to control
the equilibrium of its wireless users. This leads to maxingzhe operator’s utility by sending
appropriate load informatiohe L.

The authors analyzed the network performance under these different association policies.
They demonstrated by means of Stackelberg formulation, th@voperator can optimize its
global utility by sending appropriate information abou thetwork state, while users maximize
their individual utilities. The resulting hybrid architeice achieves a good trade-off between the
global network performance and the signaling overheadchvinakes it a viable alternative to

be considered when designing cognitive radio networks.
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Fig. 10. Different approaches for solving Markovian and \Merkovian problems.

VI. LEARNING IN NON-MARKOVIAN ENVIRONMENTS

While reinforcement learning (RL) can lead to an optimaligoffor the Markov decision
process (MDP) problem, different studies have shown thatuéenary algorithms (EAS) can
outperform the RL in non-Markovian environments [65], [68bmpared to theralue-function
method [66], [67]. Non-Markovian environments arise infeliént situations, such as in the
partially observable MDP (POMDP) problem. In addition, Jlg67] suggested that methods
that adoptpolicy-searchalgorithms also have higher advantage in non-Markoviakstashese
methods search directly for optimal policies in the polipase, without having to estimate the
actual states of the systems [66], [67]. By adopting gradsearch algorithms, these methods
allow updating certain policy vector to reach optimalityigim be local optima). Moreover,
the value-function approach has several limitations:tFitss restricted to obtain deterministic
policies. Second, any small changes in the estimated vdla® @ction can cause that action
to be, or not to be selected [66]. This would affect the oplityaf the resulting policy since
optimal actions might be eliminated due to an underestonatf their value functions. We
illustrate in Fig. 10 the adequate solution methods thaukhbe applied under each of the
Markovian and non-Markovian frameworks discussed above.

To illustrate the policy-search approach, we give a brigfresew of policy-gradient algorithms,
as described in [67]. Consider a class of stochastic pslitiat are parameterized By R*. By
computing the gradient with respect doof the average reward, the policy could be improved
by adjusting the parameters in the gradient direction. Tocdwecrete, assume(X) to be a

reward function that depends on a random variabld_et ¢(0, =) be the probability of the event
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{X = z}. The gradient with respect t of the expected performanegd) = E{r(X)} can be
expressed as:

Vn@) =E {T(X)%} . (25)

An unbiased estimate of the gradient can be obtained vialation by generatingv indepen-
dent identically distributed (i.i.d.) random variablég, - - - , Xy that are distributed according
to ¢(, z). The unbiased estimate &7 (¢) is thus expressed as:

1 & vqe)()
Ng 6. X) (26)

By the law of large numbersyn(0) — Vn(#) with probability one. Note that the quantity

Vq(evXL)
Q(evXL)

reward gradient, the policy parametee R” can be updated by following the gradient direction,

is referred to as thdikelihood ratio or score function By having an estimate of the

such that:
8k+1 — Hk + akvn(e) y (27)

for some step sizey.

Note that, the estimation of the gradieW;(d) is not straight-forward, especially in the
absence of simulators that generate ¥&s. To resolve this problem, special algorithms can be
designed to obtain reasonable approximations of the gradéestraight-forward approach is to
modify some elements in the parameter ved&ar R* and to observe its effect on the reward
r(X). This is known as the Monte-Carlo method, but it is prohieily inefficient for most of

the problems.

VIlI. CONCLUSION

In this survey paper, we have characterized the learningl@moin cognitive radios and stated
the importance of machine learning in developing real dbognradios. We have presented the
state-of-the-art learning methods that are applied to itwgmadios and classified those methods
under supervised and unsupervised learning. A descripfitine major learning algorithms was
provided, and we presented their related applications éencibgnitive radio domain. We also

showed some of the challenging learning problems for cognitadios and we showed their
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possible solution methods.
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