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Abstract

It is observed that previously proposed cooperative
communication schemes do not increase throughput in
the high Signal-to-Noise Ratio (SNR) region although
they improve the outage probability. In this paper
we introduce a new cooperative communications pro-
tocol for direct-sequence code-division-multiple-access
(DS-CDMA) systems that increases the SNR range
over which there is no significant throughput loss com-
pared to direct transmission. This eliminates the ne-
cessity for switching between more than one scheme
which leads to higher system complexity. The pro-
posed new scheme has a high spectral efficiency (reach-
ing one asymptotically with the SNR and block size)
at the cost of extra spreading sequences. However the
channels are allowed to be non-orthogonal, and we an-
alyze the effect of that on cooperative diversity under
the LMMSE receiver. We present both achievable and
outage throughput analysis under different cross corre-
lations between user codes. From our results we show
that the proposed scheme improves the throughput and
the outage throughput performance in high SNR at
the expense of only a negligible loss in the low SNR
region compared to the previously proposed reference
scheme.

1. Introduction

Demand for better wireless quality of service (QoS)
and higher efficiencies are further fueled due to prolifer-
ation of new systems such as Bluetooth, WiFi and wire-
less sensor networks. One of the main issues in wireless
communications is fading, and this can be overcome by
extracting diversity gain in time, frequency and space.
Cooperative communication has emerged as a promis-
ing technique in extracting the spatial diversity. The
enormous potential of space diversity through multiple
antennas were pointed out in [1] and [2]. The concept of
cooperative diversity was introduced in [3], [4] and [5]

as an approach to achieve virtual MIMO communica-
tion [6, 7] via relay channels. It has been shown that
due to the loss in multiplexing gain cooperative diver-
sity is not effective in achieving high throughput in the
high SNR regime [3], [4], [5]. The fundamental tradeoff
between diversity and multiplexing for MIMO systems
and for cooperative channels was discussed in [8] and
[9], respectively. Cooperative diversity under decode-
and-forward (DF) relaying in the low SNR regime was
analyzed in [3] and [4]. In [5] the cooperative diversity
was analyzed in both high and low SNR regimes. In
both cases, however, frequency flat slow fading chan-
nels were considered. The schemes discussed in [5] ex-
ploit the full diversity available. But, they are not op-
timal in achieving the diversity-multiplexing tradeoff
(DMT). In [10] efficient protocols which achieves the
optimal DMT, especially for a smaller number of re-
lays, for low multiplexing gains were proposed. In [11] a
protocol called bursty-amplify-and-forward (BAF) that
achieves the outage capacity under low SNR and low
probability of outage was presented.

In this paper we consider non-orthogonal communi-
cation systems with binary modulation and propose a
new cooperative communication scheme that achieves
the single-antenna multiplexing gain asymptotically
with block size L. We consider two performance crite-
ria, namely the achievable and outage throughputs, and
compare them with that of no cooperation (denoted by
NC), and the scheme proposed in [4] with full cooper-
ation (denoted by CS1). We analyze and compare the
performance of these schemes with the linear minimum-
mean-squared-error (LMMSE) receivers. Results show
that our proposed scheme improves the performance
for high SNR values at the expense of only a negligible
loss in the low SNR region compared to that of CS1.

The rest of this paper is organized as follows: Sec-
tion 2 presents the transmission model and derives
the throughput of all three schemes under the linear
minimum-mean-squared-error (LMMSE) receiver. In



section 3 achievable and outage throughput results are
presented. Section 4 concludes the discussion by sum-
marizing our results.

2. System model
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Figure 1: System model.

We consider a DS-CDMA wireless communication
system with a single base station (BS) and two full-
duplex cooperative sources. The signalling structure is
as shown in Fig.1. We assume BPSK transmission un-
der a slow Rayleigh fading flat channel and analyze
the system under the symmetric situation in which
both users need the same throughput. The received
baseband signals at the BS, and node j, for j = 1, 2,
(two users) can be written as, Y0(t) = h0j(t)Xj(t) +
h0j′(t)Xj′ (t) + Z0(t), Yj(t) = hjj′ (t)Xj′ (t) + Zj(t),
where Y0(t), Y1(t) and Y2(t) are the received signals
at the BS, node 1 and node 2, respectively, Xj(t) for
j = 1, 2 is the transmitted signal of user j that is sub-
jected to the same average transmit power constraint
P , and Z0(t) and Zj(t) are the additive white Gaus-
sian channel noise at the BS and node j, respectively.
It is assumed that Zj(t), for j = 0, 1, 2, is zero mean
complex white Gaussian with variance σ2

j . The fad-
ing coefficient hjj′ from node j′ to node j is zero-mean
complex Gaussian with variance σ2

jj′ and is assumed to
remain constant over a block of L symbol periods. We
assume that the fading coefficients are known only at
the respective receivers. The nominal SNR is defined
as SNR = P

σ2
0
.

2.1. Direct transmission scheme (No coopera-
tion)

Under no cooperation, in discrete time, the se-
quence of symbols transmitted by node j, for j = 1, 2, is
simply given by Xj = {aj,1bj(1)cjj , aj,2bj(2)cjj , . . .}
where bj(i) is the i-th bit of user j, cjj′ is the spread-
ing code of user j for transmitting user j′’s data, and

aj,i is the amplitude of the i-th symbol of user j with
a2

j,i ≤ P for ∀i. The cross-correlation between any
two signalling codes is denoted by ρ and the spread-
ing sequences are normalized to have unit energy. For
the symbol period i, the discrete time received signals
at the BS after matched filtering and despreading can
be written in matrix form as (assuming synchronous
transmissions)

y(nc)
0

(i) = RAb(i) + σ0n(i), (1)

where
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0
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with Cov(n(i)) = R and ync
0j (i) is the output at sym-

bol time i of the matched-filter matched to cjj at the
base station, for j = 1, 2. We assume that the BS
is equipped with a linear MMSE detector, so that the

symbol decisions are given by b̂
(nc)

0 (i) = sgn(My(nc)
0

(i))
where [12],

M = (R + σ2
0A

−2)−1. (3)

The resultant probability of error at the BS for user j
is

Pe
(nc)
0j =

1

2
Q

(

Bj + Bj′

νj

)

+
1

2
Q

(

Bj − Bj′

νj

)

, (4)

where

Bk = Ak,k[MR]jk, kǫ{1, 2}, (5)

and ν2
j = σ2

0 [MRM]jj . (6)

2.2. Cooperative transmission scheme 1 (CS1)

This refers to the cooperative communication
scheme proposed in [4] with full cooperation. For com-
pleteness, here we briefly describe this scheme. Each
node receives an attenuated and noisy version of its
partner’s transmitted signal and retransmits a com-
bination of the estimated symbols of the other node
and its own data. We denote by Lc the number
of periods over which the combined bits are sent in
one block of length L. Thus full cooperation im-
plies Lc = L

2 . For L = 2 and Lc = 1 the se-
quence of symbols transmitted by node j is Xj =
{

aj,ibj(i)cjj , aj,i+1bj(i)cjj + âj,i+1b̂j′(i)cjj′

}

where

âj,i is the amplitude of the estimated bit transmis-

sions and b̂j(i) is the estimated bits by the part-
ner j′. Note that, in this scheme cjj′ = cj′j′

for j, j′ǫ{1, 2}. The power constraint for node j is
[Lc(a

2
j,i + a2

j,i+1 + â2
j,i+1)] ≤ LP. Both the destina-

tion and the partner receive the symbols during the



odd periods, i = 2m − 1, and only the destination
receives the cooperatively sent symbols during the
even periods, i = 2m, for m = 1, 2, 3, .. where m
is the symbol index. Thus, discrete time transmit-
ted and received signals during odd periods are given

by Xj(2m − 1) = aj,2m−1bj(m)cjj , Y
(cs1)
j′ (2m − 1) =

hj′jXj(2m− 1) + Zj′(2m− 1), and Y
(cs1)
0 (2m− 1) =

h0jXj(2m− 1) + h0j′Xj′(2m− 1) + Z0(2m− 1). After
chip matched filtering and despreading, the received

signal Y
(cs1)
0 (2m− 1) can be written in matrix form as

y(cs1)
0

(2m − 1) = ync

0
(2m − 1) where ync

0
(i) is given in

(1). During even periods, the transmitted signal of user

j is Xj(2m) = aj,2mbj(m)cjj + âj,2mb̂j′(m)cjj′ , and the

received signal at the BS is Y
(cs1)
0 (2m) = h0jXj(2m)+

h0j′Xj′ (2m) + Z0(2m). After chip matched filtering

the received signal Y
(cs1)
0 (2m) can be written in ma-

trix form as y(cs1)
0

(2m) = [y
(cs1)
01 (2m) y

(cs1)
02 (2m)]T =

RA(cs1)(θ1, θ2, m)b(2m) + σn(2m) where

A
(cs1)

(θ1, θ2, m) =

0

@

h01a1,2m + θ1h02â2,2m 0

0 θ2h01â1,2m + h02a2,2m

1

A ,

and θ1, θ2ǫ{+1,−1} are Bernoulli with parameters de-
termined by the error probability of the detector used
at each cooperating node to detect partner’s symbols.
Suppose that we are interested in decoding of user
j’s data, for jǫ1, 2. During odd periods the part-
ner j′ makes a hard estimate of the received sym-

bol, b̂
(cs1)
j (2m − 1) = sgn(y

(cs1)
j′ (2m − 1)) with an

error probability of Pe
(cs1)
j′j = Q

(

hj′jaj,2m−1

σj′

)

where

y
(cs1)
j′ (2m − 1) is the signal after matched filtering of

Y
(cs1)
j′ (2m − 1). During the odd periods the received

signal at the base station after the matched filtering is
y(cs1)
0

(2m − 1). The output of the LMMSE filter is

z
(cs1)
j

(2m − 1) = [My
(cs1)

0
(2m − 1)]j

= Bjbj(m) + Bj′ bj′ (m) + ñj(2m − 1),

where ñj(2m−1) ∼ N (0, σ2
0 [MRM]jj) and M and Bj

are given in (3) and (5)) respectively. During even peri-
ods the output of the matched filter bank is y(cs1)

0
(2m).

The output of the LMMSE filter is then given by

z
(cs1)
j (2m) = [My

(cs1)

0
(2m)]j = B

′

jbj(m) + B
′

j′ bj′ (m) + ñj(2m),

(7)

where M(cs1) = ((R + σ2
0A

(cs1)(θ, θ′, m))−2)−1,

ñj(2m) ∼ N (0, σ2
0 [M(cs1)RM(cs1)]jj and B

′

k(θ1, θ2) =

A(cs1)(θ1, θ2, m)k,k[M(cs1)R]jk, for kǫ{1, 2}. Next,

z
(cs1)
j (2m− 1) and z

(cs1)
j (2m) are linearly combined to

obtain

ξj(m) = [Bj λB
′

j(θ1, θ2)][z
(cs1)
j

(2m − 1) z
(cs1)
j

(2m)]T , (8)

where 0 ≤ λ ≤ 1 is a parameter. The final decisions at
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Figure 2: Proposed cooperative scheme (CS2)

the BS are then given by, for j = 1, 2,

ˆ̂
bj(m) = sgn(ξj(m))

= sgn(B̂j(θ1, θ2)bj(m) + B̃j(θ1, θ2)bj′(m) + ñT )

where B̂j(θ1, θ2) = (B2
j + λB

′2
j (θ1, θ2)),

B̃j(θ1, θ2) = (BjBj′ + λB
′

j(θ1, θ2)B
′

j′ (θ1, θ2))

and ñT (θ1, θ2) = Bj ñ1 + B′

j(θ1, θ2)ñ
′

j ∼

N (0, σ2
0(B2

j [MRM]11 + B
′2
j [M(cs1)RM(cs1)]11). Let

σ2
T (θ1, θ2) = σ2

0(B
2
j [MRM]11 + B

′2
j [M(cs1)RM(cs1)]11.

The probability of error for user j averaged over θ1
and θ2 becomes,

P e
(cs1)
0j

= (1 − Pe
(cs1)

j′j
)(1 − Pe

(cs1)

jj′
)P e++,j + (1 − Pe

(cs1)

j′j
)P e
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jj′
Pe+−,j+

P e
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j′j
(1 − P e

(cs1)

jj′
)P e

−+,j + Pe
(cs1)

j′j
P e

(cs1)

jj′
P e

−−,j ,

where Pes1s2,j , for s1, s2ǫ{+1,−1} and jǫ{1, 2} are
given by

P es1s2,j =
1

2
Q

 

B̂j(s1, s2) + B̃j(s1, s2)

σT (s1, s2)

!

+
1

2
Q

 

B̂j(s1, s2) − B̃j(s1, s2)

σT (s1, s2)

!

.

(9)

2.3. Proposed cooperative communication
scheme (CS2):

The proposed scheme uses two new spreading
sequences for relaying of cooperative symbols. Con-
sequently, we need four different codes, namely
c11, c22, c12 and c21, as opposed to only two in the
CS1 scheme above. The difference in this scheme,
compared to CS1, is that in every symbol period
a new symbol is introduced. When Lc = 1 the
sequence of symbols transmitted by node j is Xj =
n

aj,1bj(1)cjj , aj,2bj(2)cjj + âj,2b̂j′(1)cjj′ , âj,3b̂j′(2)cjj′

o

.

The relationship between cooperative symbol periods
and the total number of symbol periods in a block is
given by L = Lc + 2. In general, the power constraint
for the node j becomes a2

j,1+Lc(a
2
j,2+â2

j,2)+â2
j,3 ≤ LP.

In an L-length block, the error probabilities for the
symbols i = 1 and i = L− 1 (Note that there are L− 1
symbols in a block of L transmission periods) are the
same and different from that of the rest. In the follow-
ing we derive the error probability of symbol b

(i)
j , for

iǫ{1, . . . , L−1}\{1, L− 1}, and j = 1, 2. The received
signal at node j′ 6= j after matched filtering is given



in matrix form as y
(cs2)
j′ (i) = RA

(cs2)
j′ (i)b̃

(cs2)
(i) + n(i)

where
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!
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!

,

and y
(cs2)
j,j′k (i) is the output of the matched filter at

node j matched to cj′k. After LMMSE filtering
the detection of symbol i of user j is obtained as

b̂j(i) = sgn([M
(cs2)
j′ y

(cs2)
j′ (i)]j) where M

(cs2)
j′ = (R +

σ2
j′ (A

(cs2)
j′ (i))−2)−1. The resultant error probability is
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1

2
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Q

(
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)

+ Q

(

B̃j − B̃j′
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))

(10)

where B̃k = [A
(cs2)
j′ ]kk[M

(cs2)
j′ R]jk, kǫ{j, j′} and ν2

j =

σ2
j′ [M

(cs2)
j′ RM

(cs2)
j′ ]jj .

The signal received at the BS during period
i after matched filtering is given by y(cs2)

0
(i) =

R(cs2)A
(cs2)
0 (i)b(cs2)(i) + n(i) where A
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0 (i) =
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After LMMSE filtering the received signal vector

at the BS, we get z
(cs2)
0j (i) = M

(cs2)
0 y(cs2)

0
(i) where

M
(cs2)
0 = (R(cs2) + σ2

0(A
(cs2)
0 )−2)−1. To detect b

(i)
j ,

we linearly combine [z
(cs2)
0j (i)]1 and [z

(cs2)
0j (i + 1)]4

as
ˆ̂
bj(i) = sgn(vT

λ [[z
(cs2)
0j (i)]1 [z

(cs2)
0j (i + 1)]4]

T )

where vλ = [B̃1,1,1 B̃4,4,4]
T and B̃k,l,m =

[A
(cs2)
0 ]kk[M

(cs2)
0 R(cs2)]lm, for k, mǫ{1, 2, 3, 4}

and lǫ{1, 4}. Note that strictly speaking the
residual interference plus noise component in

vT
λ [[z

(cs2)
0j (i)]1 [z

(cs2)
0j (i + 1)]4]

T may not be Gaus-
sian. However, in the following we use a version of
the central limit theorem for sums of independent but
non-identical random variables (Lyapunov’s central
limit theorem [13], [14]) to approximate it as being
Gaussian (Proof is omitted here due to space). With
the Gaussian assumption on residual interference the

probability of error becomes,
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where, for sǫ{+,−}, we have let

σ
2
s = σ

2
0([M

(cs2)
0 R

(cs2)
M

(cs2)
0 ]11B̃

2
1,1,1 + λ

2[M
(cs2)
0 R

(cs2)
M

(cs2)
0 ]44B̃

2
4,4,4)+

(B̃1,1,1B̃4,1,4)2 + λ
2(B̃4,4,4B̃1,4,1)2 + λ

2(B̃4,4,4B̃3,4,3)2+

(B̃1,1,1B̃3,1,3 + sλB̃4,4,4B̃2,4,2)2.

3. Performance analysis

3.1. Achievable average throughput
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Figure 3: Throughput variation with SNR for ρ = 0.8
with the LMMSE receiver

Similar to [4], we define throughput η as the ca-
pacity of a binary symmetric channel (BSC), with
bit error rate (BER) of the receiver as the transition
probability, multiplied by an asymptotic spectral ef-
ficiency factor µ: η = µ(1 − H(p)), where H(p) =
−p log2(p) − (1 − p) log2(1 − p) is the binary entropy
function, p is the receiver BER and µ (in bits-per-
channel-use) is defined as µ = r/W, where r is the
rate of transmission (in bits/symbol) and W is the av-
erage number of channel uses per symbol. It is easy
to show that for the three schemes of interest, we have
that µnc = 1, µcs1 = Lc

L
= 1

2 and µcs2 = L−1
L

. By sub-
stituting these we obtain the throughput of the three
cooperative schemes discussed above. The achievable
throughputs of the three schemes for ρ = 0.8 with



the LMMSE multiuser detector is shown in Fig. 3.
From Fig. 3 it is seen that in low SNR region, none
of the schemes has a considerable gain over the oth-
ers in the symmetric rate situation. As SNR increases
we see that the performance of CS1 is severely lim-
ited due to the loss in multiplexing. However, the
proposed scheme continues to perform as well as the
direct transmission scheme. For asymptotically high
SNR’s the CS1 throughput reaches its upper bound
of 0.5 while CS2 throughput reaches its upper bound
of 0.875 (NC throughput is bounded by the maximum
limit of 1). Consequently, we see that NC performs bet-
ter than both CS2 and CS1 in terms of throughput for
high SNR values. This, of course, is due to the domi-
nance of smaller µ factors corresponding to cooperative
schemes, as compared to that of direct transmission,
in determining the throughput η in the high SNR re-
gion. Therefore, from Fig. 3 it is evident that the SNR
range, below which cooperation is useful in terms of
throughput, has been significantly increased with the
proposed scheme CS2 even with non orthogonal sig-
nalling. Moreover, for non-symmetric rates, the CS1
scheme performs slightly better in low SNR. However,
for medium SNR values CS2 outperforms others and
even for large SNR’s its performance is only slightly
inferior to that of direct transmission.

3.2. Outage throughput

However, throughput itself is not a fair criterion for
comparing the performance of communication systems
as it does not take channel outage into consideration.
Consequently, it is also of interest to investigate the
reliability of these schemes. A suitable criterion for
this is the outage throughput, ηǫ, which we define via
maxηǫ

Pr(η ≤ ηǫ) ≤ ǫ.
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Figure 4: Throughput CCDF for ρ = 0.8 with the
LMMSE receiver
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Figure 5: Throughput CCDF for ρ = 0.4 with the
LMMSE receiver

Figure 4 depicts the throughput complementary-
cumulative-distribution-function (CCDF) of the pro-
posed (CS2) and CS1 cooperative communication
schemes and direct transmission with the LMMSE re-
ceiver for ρ = 0.8. From Fig. 4 we observe that unless
the required outage probability is very low CS2 out-
performs CS1 in high SNR region and have almost the
same performance in the low SNR region. For exam-
ple, even when P (η > ηǫ) = 0.99, CS2 outperforms
CS1 for high SNR and no significant loss is observed
in the low SNR region. This shows that the proposed
scheme can be used over a large range of SNR values
compared to the direct transmission and the scheme
CS1 (for small enough outages both schemes outper-
form the direct transmission). From Fig. 4 we no-
tice that for very low required outage probabilities CS1
scheme performs better than CS2. However, the gain
in CS1 in this region over CS2 is very small. On the
other hand, as outage probability is increased there is a
significant gain in CS2 over CS1 (for example, observe
P (η > ηǫ) = 0.9).

As can be seen from Fig. 5 when ρ is reduced,
the claims made for the case of ρ = 0.8 becomes more
profound. From Fig. 5 we see that the outage through-
put gain of CS1 scheme over CS2 scheme for very
low outage probabilities becomes almost diminished for
ρ = 0.4. Moreover, from Figs. 5 and 4 we notice that
the performance of direct transmission is significantly
better than both schemes for high outages and high
SNR values. However as either SNR or outage require-
ment is increased (low outage) its performance severely
degrades.

4. Conclusion

In this paper we proposed a new cooperative com-



munication scheme and analyzed, along with two ref-
erence protocols, under non-orthogonal signalling and
the LMMSE receiver. In terms of achievable through-
put we observed that the proposed scheme increases,
compared to the CS1 reference scheme, the SNR range
over which the loss compared to NC is small leading
to a scheme that is effective over a wide range of SNR
values. We also showed that the proposed scheme of-
fers significant gains over the other two schemes in high
SNR values for not too small outage probabilities, in
terms of outage throughput. It was observed that this
gain becomes more significant as ρ decreases. In the
very low SNR region the loss that CS2 incurs com-
pared to that of CS1 in terms of outage throughput is
shown to be negligible. In addition, direct transmission
performance is found to be very poor unless both the
allowed outage and the SNR are very high.
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