
Maximizing Throughput in Wireless
Multi-Access Channel Networks

J. Crichigno∗,†, M. Y. Wu‡, S. K. Jayaweera†, W. Shu†

∗Department of Engineering, Northern New Mexico C., Espanola - NM, USA
† Electrical & Computer Engineering Dept., University of New Mexico, Albuquerque - NM, USA

‡Dept. of Computer Science & Engineering, Shanghai JiaoTong University, Shanghai, China
∗jcrichigno@nnmc.edu, †{jayaweera, shu}@ece.unm.edu, ‡wu-my@cs.sjtu.edu.cn

Abstract—Recent advances in the physical layer have enabled
the simultaneous reception of multiple packets by a node in
wireless networks. In this paper, we present a generalized model
for the throughput optimization problem in multi-hop wireless
networks that support multi-packet reception (MPR) capabil-
ity. The model incorporates the multi-access channel, which
accurately accounts for the achievable capacity of links used
by simultaneous packet transmissions. The problem is modeled
as a joint routing and scheduling problem. The scheduling
subproblem deals with finding the optimal schedulable sets,
which are defined as subsets of links that can be scheduled or
activated simultaneously. We demonstrate that any solution of
the scheduling subproblem can be built with |E| + 1 or fewer
schedulable sets, where |E| is the number of links of the network.
This result contrasts with a conjecture that states that a solution
of the scheduling subproblem, in general, is composed of an
exponential number of schedulable sets. Due to the hardness of
the problem, we propose a polynomial time scheme based on a
combination of linear programming and greedy paradigms. The
scheme guarantees the operation of links at maximum aggregate
capacity, where the sum of the capacity of the links is maximized
and the multi-access channel is fully exploited.

I. INTRODUCTION

Current communication protocols and architectures for
multi-hop wireless networks are mostly based on a single
user channel model. In this model, only one transmission can
be achieved in a disk of a radio proportional to the distance
between the sender and the receiver, centered at the receiver
node [1]. As a result, the number of concurrent transmissions
in the network is very limited. The seminal paper by Gupta and
Kumar [1] demonstrated that the throughput in a connected
random wireless network of a set V of nodes adhering to

such communication paradigm scales as Θ
(

1√
|V | log |V |

)
.

To overcome the above limitation, recently researchers stud-
ied an alternative paradigm to the single user channel, called
multi-packet reception (MPR). In MPR-capable networks,
multiple nodes around a receiver can simultaneously transmit
to it, and the receiver node can decode multiple packets by
exploiting multiuser techniques such as successive interference
cancellation (SIC) and CDMA. As a main result, Garcia-Luna-
Aceves [2] et al. demonstrated that this paradigm increases
the network capacity by a factor Θ(log |V |) with respect to
the single user paradigm. Driven by these results, subsequent
work considered alternative schemes to approximate to the
asymptotic bounds under homogeneous assumptions, such as

nodes transmit to a single base station or access point [3],
or nodes are equipped with a single omni-directional antenna
[4]. To further reduce complexity, previous work considered
the packet as the only unit of transmission, neglecting natural
restrictions imposed by information theoretic limits of the
multi-access channel, or assuming unit link capacities [3],
[4], which implies suboptimal channel usage [5]. Celik et
al. [3] studied the negative implications of reusing legacy
MAC protocols in MPR-capable networks, and how alternative
backoff mechanisms can improve throughput and fairness.
Karande et al. [6] showed that the network capacity can
be further increased if nodes can also transmit to multiple
receivers at the same time.

In this paper, we present a throughput optimization model
for multi-hop wireless networks with MPR-capability. The
model incorporates several features not included in previous
work, namely: i) the use of the multi-access channel to
accurately accounts for the capacity of links used by simul-
taneous packet transmissions; ii) general formulation, valid
for networks with single or multiple directional or omni-
directional transmit antennas per node; iii) a characterization
of the scheduling subproblem as a convex optimization; iv) a
further convex analysis that demonstrates that any solution of
the scheduling subproblem can be built with |E|+ 1 or fewer
schedulable sets, which are defined as subsets of links that can
be scheduled or activated simultaneously; and v) a polynomial
time scheme to solve the problem based on a combination of
linear programming and greedy paradigms.

The paper is organized as follows. Section II presents
the antenna and channel models. Section III formulates the
throughput optimization problem in MPR networks, and Sec-
tion IV presents a polynomial time scheme. Section V shows
performance studies, and Section VI concludes our work.

II. ANTENNA AND CHANNEL MODELS

Let G = (V,E) be a wireless network, where V is the set of
nodes and E the set of links. Let rij be the distance between
two nodes i and j. There is a link (i, j) ∈ E from i ∈ V to
j ∈ V if rij ≤ R, where R is the receiver range [7].

A. Antenna Model

The antenna model considered in this paper is the one used
in [8]. Sidelobes and backlobes are ignored. We assume that: i)
the gain of the antenna is a function of the azimuth angle only;
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Fig. 1. (a) Radiation pattern model. (b) Simultaneous transmissions to node b. (c) Capacity region of the multi-access channel for receiver node b in (b).
The region is upper bounded by solid lines. For a single user channel model (TDMA), the capacity region is upper bounded by the dashed line.

it is constant (greater than zero) inside the main lobe, and zero
outside it. The beamwidth is denoted as β; and ii) the axis of
the main lobe, the boresight, can be directed to one direction
at a time. Fig. 1(a) shows the radiation pattern, where node i
transmits to node j. αij′ is the angle between the boresight
of the transmit antenna at node i and the direction of an
arbitrary node j′. When a link (i, j) is scheduled, node i points
out its transmit antenna so that αij = 0. To account for the
case where a node transmits to multiple receivers at the same
time through multiple antennas [6], we denote the number of
transmit antennas as M . Let S ⊆ E be a schedulable set
consisting of links which are scheduled at a time. Thus, if

Ri = {j|(i, j) ∈ S} (1)
denotes the set of nodes receiving from node i, we will require
that |Ri| ≤ M .

B. Multi-Access Channel
Let P0 be the uniform fixed power level used for any

transmission. For an active link (i, j), the received power Pij

at node j decays exponentially with rij , Pij = P0r
−γ
ij , where

γ is the path loss exponent. Consider the following scenario:
let Tj be the set of nodes transmitting to node j:

Tj = {i|(i, j) ∈ S}. (2)

Similarly, let Ψj be the set of simultaneous transmitters
interfering with node j, which point out their transmit antenna
such that node j lies inside the main lobe of them:

Ψj =
{
i′|(i′, j′) ∈ S, j 6= j′, and −β

2
≤ αi′j ≤ β

2

}
. (3)

Then, assuming an Additive White Gaussian Noise (AWGN)
channel, the total noise at receiver node j is:

ηj = η +
∑

i′∈Ψj

Pi′j , (4)

where η is the variance of the channel noise. ηj is referred
as destructive interference [9]. Define the capacity function
of a single user of an AWGN channel with bandwidth W and
signal to interference plus noise ratio SINR as: ϕ(SINR) =
W log2(1 + SINR). Let cij(S) be the capacity in bits per
second (bps) of a link (i, j) ∈ S, when all links in S are
activated. For a set Tj , the link capacities can be represented as
a link capacity vector (ci1j(S), ci2j(S), ..., ci|Tj |j

(S)), where
nodes i1, i2, ..., i|Tj | transmit to j. For receiver j, the capacity
region is the convex hull of link capacity vectors satisfying:

∑
ih∈T

cihj(S) ≤ ϕ

(∑
ih∈T

Pihj

ηj

)
, (5)

for all T ⊆ Tj [5]. The region is characterized by 2|Tj | − 1
constraints, each corresponding to a nonempty subset of
transmitters, and has precisely |Tj |! vertices in the positive
quadrant, each achievable by SIC.

Example 1. Consider the scenario in Fig. 1(b), where S =
{(a, b), (c, b), (e, d), (f, d)}, nodes a and c transmit to node b
(Tb = {a, c}), and node e interferers with node b (Ψb = {e}
and ηb = η + Peb). The capacity region for node b is shown
in Fig. 1(c). The vertices are labeled with vector notations,
~ci = (cab(S), ccb(S)), i ∈ {1, ..., 4}. The aggregate capacity,
cab(S)+ccb(S), is maximized when a link capacity vector lies
in the segment line between ~c2 and ~c3. The points ~c2 and ~c3

can be achieved by using SIC and CDMA. For example, ~c2

can be obtained in a two-stage SIC decoding process. In the
first stage, node b decodes packet p1 from node c, considering
the transmission from node a as part of noise. Therefore, ccb

can be ϕ
(

Pcb

ηb+Pab

)
. In the second stage, after packet p1 has

been decoded, it can be subtracted out, thereafter packet p2

from node a can be decoded. Thus, the link capacity can be
ϕ

(
Pab

ηb

)
. For a general number of transmitters, the points in

the capacity region that maximize the sum of the capacity of
the links are defined as follows.

Definition 1: Let Tj = {i1, i2, ..., i|Tj |} be a set of nodes
transmitting to a receiver node j. The corresponding links
(i1, j), (i2, j), ..., (i|Tj |, j) are said to operate at max-capacity

iff
∑

ih∈Tj
cihj = ϕ

(∑
ih∈Tj

Pihj

ηj

)
.

In practice, a receiver node can decode only a finite number
of packets [2], [3]. Interference models for MPR-capable
networks [2] restrict the number of transmissions inside the
disk of radio R centered at a receiver node j (independently
of whether transmissions are intended for node j or not) to a
certain value K. This constraint is given by Eq. (7):

T ′j = Tj ∪ {i|i ∈ Ψj and rij ≤ R}, (6)
|T ′j | ≤ K. (7)

To be consistent with previous works [2], [3], [4], we will
assume that Eq. (7) is satisfied for a receiver j to decode
packets. We will refer to K as the decoding capability.

C. Scheduling in MPR-Capable Networks
Denote as (M, K, β)-network a network where every node

has a decoding capability of K, and M transmit antennas with
beamwidth β. Let S ⊆ E be a set of links simultaneously



scheduled. For any (i, j) ∈ S, Ri, Tj , and T ′j are defined by
Eqs. (1), (2) and (6). Then, we have the following definition.

Definition 2: Given an (M, K, β)-network, a set S ⊆ E is
a schedulable set iff ∀ (i, j) ∈ S:

|Ri| ≤ M, (8)
|T ′j | ≤ K, (9)

∑
i′∈T

ci′j(S) ≤ ϕ

(∑
i′∈T

Pi′j

ηj

)
, ∀T ⊆ Tj . (10)

III. PROBLEM FORMULATION

To formulate the problem succinctly, we first present the
routing subproblem, followed by the scheduling subproblem.
Then, we formulate the joint routing and scheduling problem.

A. Routing
Let N be the set of flows. Each flow is characterized by a

3-tuple (sn, dn, fn), which denotes the source, the destination,
and the flow1 in bps transmitted from sn to dn respectively.
Let xn

ij be a variable representing the amount of the nth

flow routed on link (i, j). The routing linear program (RT-
LP) is defined in Fig. 2. Eq. (11) is the throughput. Eq. (12)
represents the flow conservation constraints. Eq. (13) states
that the total amount of flow routed through a link (i, j) cannot
exceed ϕ

(
Pij

η

)
, which is an upper bound of its capacity.

max FRT -LP =
∑

n∈N

fn (11)

∑

j:(i,j)∈E

xn
ij −

∑

j:(j,i)∈E

xn
ji =





fn; i = sn

−fn; i = dn

0; otherwise
(12)

n ∈ N∑

n∈N

xn
ij ≤ ϕ

(
Pij

η

)
; (i, j) ∈ E(13)

fn, xn
ij ≥ 0; n ∈ N, (i, j) ∈ E (14)

Fig. 2. Routing linear program (RT-LP).

B. Scheduling
A schedule specifies the schedulable sets and the fraction of

time allocated to each set. Let Γ = {S1, S2, ..., S|Γ|} be the
set of all schedulable sets. Let λk, 0 ≤ λk ≤ 1, be a fraction
of time allocated to the set Sk. We may write the time interval
[0, 1] as ∪k[tk, tk+1], where links in Sk are activated for the
activity period tk+1−tk = λk, k ∈ {1, 2, ..., |Γ|}. We will call
the variable λk as activity period variable corresponding to the
schedulable set k. The schedule restriction can be written as:∑

k:Sk∈Γ

λk = 1. (15)

Since a link may be activated during multiple activity periods,
the amount of flow routed through it must not exceed the sum
of its capacity on those periods:∑

n∈N

xn
ij ≤

∑
∀k∈{1,2,...,|Γ|}|(i,j)∈Sk

λkcij(Sk). (16)

1Although a flow is characterized by (sn, dn, fn), we will also use the
term flow to informally refer to fn.

max
Γ′⊆Γ

FRTSCH-LP =
∑

n∈N

fn (17)

∑

j:(i,j)∈E

xn
ij −

∑

j:(j,i)∈E

xn
ji =





fn; if i = sn

−fn; if i = dn

0; otherwise
(18)

n ∈ N∑

n∈N

xn
ij ≤

∑

∀k|(i,j)∈Sk

λkcij(Sk);

(i, j) ∈ E (19)∑

k:Sk∈Γ′
λk = 1 (20)

fn, xn
ij , λk ≥ 0;n ∈ N, (i, j) ∈ E, k ∈ {1, ..., |Γ′|} (21)

Fig. 3. Routing and scheduling linear program (RTSCH-LP).

C. Joint Routing and Scheduling

By incorporating Eqs. (15) and (16) into RT-LP and opti-
mizing over all possible set Γ′ ⊆ Γ of schedulable sets, the
joint routing and scheduling problem is shown in Fig. 3.

The complexity of the routing and scheduling linear pro-
gram (RTSCH-LP) is mainly determined by the scheduling
subproblem. Thus, a key issue is the characterization of it. A
schedulable set can be characterized by a schedulable vector
~S of size |E|. The jth element of this vector is set to one
if the link ej ∈ E is a member of ~S, and to zero otherwise.
Any schedulable vector ~S can be regarded as a point in an |E|-
dimensional space, which also becomes a vertex of the convex
hull of the set of schedulable vectors. Let ~u = (u1, u2, ..., u|E|)
be an |E|-dimensional utilization vector, where ui indicates
the total fraction of time allocated to link ei ∈ E. By regarding
the utilization vector as a point in {0, 1}|E|, then we have the
following theorem.
Theorem 1: Let Co(Γ) be the convex hull of all schedulable
vectors. A solution to the scheduling subproblem given by a
set Γ′ = {S1, S2, ..., S|Γ′|} ⊆ Γ with corresponding activity
periods λ1, λ2, ..., λ|Γ′| is feasible iff the resulting utilization
vector ~u lies within Co(Γ).
For the proof of Theorem 1, please refer to [7]. Hereafter,
Co(Γ) and allocation polytope will be used interchangeably.
Example 2. Consider Fig. 4(a) and assume a half-duplex
network with K = 1. Assume also the existence of two end-

Fig. 4. (a) Network topology with three links: (a, b), (c, b), and (b, d). (b)
Allocation polytope, for K = 1 and half-duplex operation of network in (a).
The schedulable vectors are: ~S0 = (0, 0, 0), ~S1 = (1, 0, 0), ~S2 = (0, 1, 0),
and ~S3 = (0, 0, 1). (c) Allocation polytope, for K = 2, of network in
(a). The schedulable vector ~S4 = (1, 1, 0) is included, since node b can
simultaneously decode packets from nodes a and c.



to-end flows: flow 1, from node a to d routed through node
b; and flow 2, from node c to d routed through node b. The
conservation constraints (Eq. (18)) state that the amount of
flow at node b must be zero, while the amount of flow leaving
nodes a and c must be maximized. The only schedule that
activates the three links includes S1 = {(a, b)}, S2 = {(c, b)},
and S3 = {(b, d)}. The constraints given by Eq. (19) are:

x1
ab ≤ λ1ϕ

(
Pab

ηb

)
, x2

cb ≤ λ2ϕ

(
Pcb

ηb

)
, x1

bd + x2
bd ≤ λ3ϕ

(
Pbd

ηd

)
,

where ηb = ηd = η. The scheduling constraint given by
Eq. (20) is expressed as: λ1 + λ2 + λ3 = 1. It requires
the scheduling algorithm to allocate time to each schedulable
set, such that the resulting utilization vector lies inside the
allocation polytope shown in Fig. 4(b). Assume now a multi-
access channel with K = 2. The set S4 = {(a, b), (c, b)} is
now a schedulable set, and the capacities of links (a, b) and
(c, b) are restricted to lie inside the capacity region shown in
Fig. 1(c), where ηb = η. Let ~c2 be the operation point, and
Γ′ = {S3, S4}. Then, the constraints given by Eq. (19) are:

x1
ab ≤ λ4ϕ

(
Pab

ηb

)
, x2

cb ≤ λ4ϕ

(
Pcb

ηb + Pab

)
, x1

bd+x2
bd ≤ λ3ϕ

(
Pbd

ηd

)
,

where ηb = ηd = η, and λ3 + λ4 = 1. Since S4 is now
a schedulable set, it is included as a vertex of the allocation
polytope in Fig. 4(c). From this example, we can see that links
(a, b) and (c, b) are activated for λ4 seconds, and link (b, d)
for λ3 seconds. In general, we may be interested on activating
every link ei ∈ E for certain fraction of time ui. Theorem 2
bounds the number of schedulable sets to achieve this.
Theorem 2: Any ~u can be represented as a convex combina-
tion of |E|+ 1 or fewer schedulable vectors in Co(Γ).
Proof: Theorem 2 can be demonstrated by applying
Caratheodorys’s theorem on convex sets [5]. Let Γ1 =
{S1, S2, ..., S|Γ1|} ⊆ Γ be a schedule with corresponding allo-
cation times λ1, λ2, ..., λ|Γ1| greater than zero, and utilization
vector ~u = (u1, ..., u|E|). We will assume that |Γ1| > |E|+1,
and show that there is a solution Γ2 that produces the same
utilization vector with no more than |E|+ 1 schedulable sets.
Denote the ith scalar component of the schedulable vector
~Sk as Ski. Then, for any ei ∈ E, the component ui of
~u is:

∑
k:Sk∈Γ1

λkSki = ui; ei ∈ E. We can formulate a
linear program where the optimization variables are activity
period variables λ′1, λ

′
2, ..., λ

′
|Γ1|, as shown in Fig. 5. The

fundamental theorem of linear programming states that every
feasible linear program has a basic feasible solution. In a basic
feasible solution, only the basic variables are nonzero. The
linear program of Fig. 5 has |E|+ 1 basic variables (one per
equality constraint). Thus, it has a basic feasible solution with
|E|+1 positive variables, which naturally corresponds to a set
Γ2 = {Sk|Sk ∈ Γ1 and λ′k > 0}. ¦

Example 3. Consider Fig. 4(a) and allocation polytope of
Fig. 4(c). Let Γ1 = {S0, S1, S2, S3, S4} be a schedule with
allocation times λi = 1

5 for all Si. The schedule produces a
vector ~u =

∑4
i=0 λi

~Si = ( 2
5 , 2

5 , 1
5 ), activating links (a, b) and

(c, b) for 2
5 s, and link (b, d) for 1

5 s. According to Theorem
2, we can build a schedule with no more than |E| + 1 = 4
schedulable sets that produces the same utilization vector. A

∑

k:Sk∈Γ1

λ′kSki = ui; ei ∈ E (22)

∑

k:Sk∈Γ1

λ′k = 1; (23)

λ′k ≥ 0; k ∈ {1, 2, ..., |Γ1|} (24)

Fig. 5. Linear program to obtain Γ2 = {Sk|Sk ∈ Γ1 and λ′k > 0}.

possible solution is Γ2 = {S0, S3, S4} with corresponding
allocation times of λ0 = 2

5 , λ3 = 1
5 , and λ4 = 2

5 . The
allocation of 2

5 s to S0 implies that the network is idle for
2
5 s. Notice also that |Γ2| = 3 < |E| + 1. In general,
however, the number of schedulable sets we should expect
is |E| + 1. For example, for the allocation polytope of Fig.
4(b) and for an utilization vector ~u = ( 1

4 , 1
4 , 1

4 ), the only set
that produces the desired ~u is Γ3 = {S0, S1, S2, S3} with
allocation times λi = 1

4 for all i. Thus, |Γ3| = |E| + 1.
Theorem 2 contrasts with a conjecture that states that a solution
of the scheduling subproblem is composed of an exponential
number of schedulable sets [10]. The complexity of finding
the optimal schedule arises from the large solution space.

IV. JRS SCHEME

We present a polynomial time Joint Routing and Scheduling
(JRS) scheme for RTSCH-LP. The scheme consists of three
steps: i) solve RT-LP; ii) with a Greedy Scheduler (GS)
algorithm, create a set ΓGS ⊆ Γ of schedulable sets; and iii)
solve RTSCH-LP by only considering schedulable sets in ΓGS .
1) Step 1: This step solves RT-LP and is intended to identify
good paths for each flow, such that FRT -LP is maximized.
The output of step 1 is the set of links assigned a positive flow
value by RT-LP, i.e., ERT -LP = {(i, j) ∈ E|∑n∈N xn

ij > 0}.
2) Step 2: GS algorithm is shown in Fig. 6. The algorithm
schedules, one by one, all links in ERT -LP until a maximal
set is created. Once the set becomes maximal, GS creates
a new schedulable set with those links not scheduled yet in
previous sets. Line 12 selects the receiver node, denoted by
j, with the largest number of transmitters to that node. Then,
lines 15-26 schedule as many links with node j as receiver as
possible, so that the multi-access channel at node j is fully
exploited. At line 16, a link (i, j) is chosen in decreasing
order of distance between nodes i and j, to compensate
the inferior capacity of the link (first links to be scheduled
experience less interference, as explained below). The noise
ηij experienced by a link (i, j) is computed in line 20 and
consists of destructive interference (first term) and constructive
interference (second term). The latter refers to the power from
the links previously scheduled to the same schedulable set,
which also have j as receiver. Line 21 computes the capacity
cij(Sk) the link (i, j) will operate at. It can be shown that any
set of links scheduled simultaneously operates at max-capacity.
For this proof, please refer to [11].
3) Step 3: This step solves RTSCH-LP by considering the
schedulable sets in ΓGS only. The solution gives the amount
of flow xn

ij routed through each link (i, j), and establishes the
fraction of time λk allocated to each set Sk ∈ ΓGS .



Greedy Scheduler (GS)
1: INPUT: ERT -LP , G(V, E);
2: OUTPUT: Set ΓGS = {S1, S2, ..., S|ΓGS |} of schedulable sets, and link

capacity cij(S), ∀(i, j) ∈ S, ∀S ∈ ΓGS ;

3: ΓGS = {};
4: k = 0;
5: for all j ∈ V do
6: ntj = |{i|(i, j) ∈ ELP−RT }|; // # of remainder transmitters to node j
7: end for
8: while ELP−RT 6= {} do
9: k = k + 1;

10: Sk = {};
11: while ∃ (i, j) ∈ ERT -LP and E(Sk ∪ {i, j}) do
12: j = arg max{ntj | ∃ (i, j) ∈ ERT -LP and E(Sk ∪ {i, j})};
13: Ψj = {i′|(i′, j′) ∈ Sk, j 6= j′, and −β

2 ≤ αi′j ≤ β
2 };

14: ηj = η +
∑

i′∈Ψj
Pi′j ;

15: while ∃ (i, j) ∈ ERT -LP and E(Sk ∪ {i, j}) do
16: (i, j) = arg max{rij | ∃(i, j) ∈ ERT -LP and E(Sk ∪ {i, j})};
17: Sk = Sk ∪ {(i, j)};
18: ERT -LP = ERT -LP − {(i, j)};
19: ntj = ntj − 1;
20: ηij = ηj +

∑
t:(t,j)∈Sk

Ptj ;

21: cij(Sk) = ϕ

(
Pij
ηij

)
;

22: for all (i′, j′) ∈ Sk|j 6= j′ and −β
2 ≤ αij′ ≤ β

2 do
23: ηi′j′ = ηi′j′ + Pij′ ; // link (i, j) adds noise to (i′, j′)

24: ci′j′ (Sk) = ϕ

(
P

i′j′
η

i′j′

)
;

25: end for
26: end while
27: end while
28: ΓGS = ΓGS ∪ Sk;
29: end while

Fig. 6. Scheduling algorithm. E(S) stands for the event E(S) = {Eqs. (8)
and (9) are satisfied for all (i, j) ∈ S}.

V. PERFORMANCE STUDIES

We present a numerical example based on the scheme
presented in Section IV, which was implemented as a solver
in C language. Although we focus on (M,K, β)-networks,
we also evaluated the performance of half-duplex (HD)
networks for comparison purposes. Since Eqs. (8) and
(9) model networks where nodes can send and receive
simultaneously through different interfaces, they should be
substituted for the following constraint in HD networks:
|Ri| +

⌈
|T ′i |
K

⌉
≤ 1, for every node i scheduled in S as

transmitter or receiver. We set the channel bandwidth W = 1
MHz, transmission power P0 = 100 mW, receiver range
R = 30 meters, path loss exponent γ = 3, and channel noise
η = −10 dB. We generated 4 random flows such that all
links of a 30-node random network shown in Fig. 7 were
scheduled by JRS. The results include the impact of different

Fig. 7. A 30-node random network. There is a link (solid line) between two
nodes if the distance between them is less than or equal to R = 30.

parameters on the average node degree of the schedulable
sets found by JRS, which is denoted as g(M, K, β). It is
defined as the number of links per node activated on average:
g(M,K, β) = 1

|V |
∑|ΓGS |

i=1 λi|Si|.

Impact of the number of transmit antennas. Figs. 8(a) and
8(b) show the throughput obtained with two different values
of M . For comparison purposes, the results in both figures
are normalized to the maximum throughput found by JRS,
which is obtained when M = 2,K = 5, β = π

4 . As expected,
the throughput increases with K. However, for high values of
K, the throughput remains approximately constant and does
not improve any further, independently of the beamwidth.
The number of links simultaneously scheduled at any time is
limited by the number of transmit antennas. This constitutes a
transmission-oriented bottleneck; as K increases, transmitting
nodes cannot generate enough transmissions to exploit the
decoding capability. This fact is illustrated in Figs 8(c) and
8(d), where the average node degrees for M = 2 and
M = HD approach 1.5 and 0.53 as K increases. The size
of schedulable sets cannot get larger, unless M is increased.
Impact of the beamwidth. Referring back to Fig. 8(a) and Fig.
8(b), note that for both H = 2 and H = HD, and for high
values of K, the results obtained with β = π

4 , β = π
3 , and

β = π
2 converge to the same throughput. The disadvantage

of having wider beamwidth antennas may be compensated
by increasing the decoding capability. However, we should
also highlight the impact of omnidirectional transmissions.
Consider the results of Figs. 8(b) and 8(d) for β = 2π. For
K ≥ 9, even though the average node degree is about the
same for all β, the throughput with omnidirectional antennas
is notoriously inferior. A reason of this poor performance
is the cumulative noise experienced at any receiver node;
all transmissions not directed to a given receiver represent
additional noise to that receiver. Figs. 8(e) and 8(f) compare
the performance of networks with β = π

3 and β = 2π. The
results are normalized to the maximum throughput, obtained
with M = 9, K = 10, β = π

3 . Note that, with β = π
3 ,

the throughput clearly increases with both K and M . On
the other hand, with β = 2π, increments in M only do not
lead to significant improvement. The better spatial reuse when
β = π

3 leads to larger schedulable sets than those obtained
with β = 2π. Consequently, larger average node degrees are
obtained with the former, as shown in Fig 8(g). For K < 6
and M > 1, g(M, K, π

3 ) is more than 3 times g(M,K, 2π).
Impact of the decoding capability. Increasing K may improve
throughput. However, independently of β and for a fixed
value of K, increments on M may not result on better
performances because of a receiver-oriented bottleneck; i.e.,
receiver nodes cannot decode more than K simultaneous
transmissions, even though transmitting nodes may increase
the number of transmissions. For a decoding capability of
4 (K = 4), Fig. 8(h) shows the throughput as a function
of β and M , normalized to the throughput obtained with
M = 5,K = 4, β = π

4 . For any value of β and small
values of M , say M ≤ 4, the throughput increases almost
monotonically. On the other hand, incrementing M beyond 5
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Fig. 8. Numerical results.

does not affect the performance. To quantify the throughput
gain produced by a unitary increment on the number of
transmit antennas, define throughput improvement (TI) as:

TI(M2, M1) =
FRTSCH−LP (M2)− FRTSCH−LP (M1)

FRTSCH−LP (M1)
,

where FRTSCH−LP (M) is the throughput obtained with M
transmit antennas. Fig. 8(i) shows that, for any beamwidth,
incrementing the number of transmit antennas from HD to 1
implies a throughput improvement of at least 20%. Increments
on M have more impact when they are combined with narrow
beamwidths; for example, increasing M from 1 to 2 has no
impact when β = 2π. On the other hand, an improvement of
at least 40% is obtained when β ≥ π

2 .

VI. CONCLUSION

We have presented a generalized formulation for the
throughput optimization problem in multi-hop MPR-capable
wireless networks. To the best of our knowledge, the proposed
model is the first joint routing and scheduling formulation that
considers the capacity region of the multi-access channel in
a network. The model accurately accounts for the capacity
of the links used to simultaneously transmit to a common
receiver. Additionally, we have proposed a polynomial time
scheme that guarantees the operation of links at max-capacity,
where the sum of the capacity of the links is maximized and
the multi-access channel is fully exploited. Finally, we have

demonstrated that any solution of the scheduling subproblem
can be built with |E|+1 or fewer schedulable sets. Future work
includes the incorporation of power control to our model.
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