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Abstract

The cognitive radios (CRs) have opened up new ways of better utilizing the scarce

wireless spectrum resources. The CRs have been made feasible by recent advances

in software-defined radios (SDRs), smart antennas, reconfigurable radio frequency

(RF) front-ends, and full-duplex RF front-end architectures, to name a few. Gener-

ally, a CR is considered as a dynamically reconfigurable radio capable of adapting

its operating parameters to the surrounding environment. Recent developments in

spectrum policy and regulatory domains also allow more flexible and e�cient uti-

lization of wider RF spectrum range in the future. In line with the future direc-

tions of CRs, a new vision of a future autonomous CR device, called Radiobots,

was previously proposed. The goals of the proposed Radiobot surpass the dynamic

spectrum access (DSA) to achieve wideband operability and the main features of

cognition. In order to ensure the practicality and robust operation of the Radiobot
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structure, the research focus of this dissertation includes the following aspects: 1)

robust spectrum sensing and operability in a centralized CR network setup; 2) robust

multivariate non-parametric quickest detection for dynamic spectrum usage track-

ing in an alien RF environment; 3) joint physical layer and medium access control

layer (PHY/MAC) decision-making for wideband bandwidth aggregation (simultane-

ous operation over multiple modes/networks); and 4) autonomous spectrum sensing

scheduling solutions in an alien ultra wideband RF environment.

The major contribution of this dissertation is to investigate the feasibility of the

autonomous CR operation in heterogeneous RF environments, and to provide novel

solutions to the fundamental and crucial problems/challenges, including spectrum

sensing, spectrum awareness, wideband operability, and autonomous PHY/MAC

protocols, thus bringing the autonomous Radiobot one step closer to reality.
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Chapter 1

Introduction

The increasing demand for mobile wireless services, including web browsing, video

telephony, and video streaming, with various constraints on delay and bandwidth re-

quirements, challenges the future generation wireless communication networks. Un-

fortunately, on the other hand, recent radio frequency (RF) spectrum measurement

studies have shown that the licensed spectrum bands are severely under-utilized at

any given time and location [1, 2], mainly due to the traditional static spectrum

regulation. Under such a spectrum regulation, each spectrum band is assigned to a

designated party, which is given an exclusive spectrum usage right for a specific type

of service and radio device. This has resulted in an awkward situation, in which,

radio devices with high demands of bandwidth are not allowed to utilize the under-

utilized spectrum bands, if they are not licensed to those bands. This situation has

naturally led us to consider whether it is possible to make changes to the regulation

rules of the limited wireless spectrum resource.

Cognitive radio (CR) has opened up a new way of better utilizing the scarce

wireless spectrum resource. The concept of CR was first proposed in 1999 by Joseph

Mitola III, in his pioneering work [3]. The CRs are proposed to help mitigate the
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spectrum scarcity problem by enabling dynamic spectrum access (DSA), which al-

lows unlicensed users/devices to identify the under-utilized portions of licensed spec-

trum and utilize them opportunistically as long as they do not cause any harmful

interference to the communications of the licensed users. A CR may accomplish

this goal if it is capable of dynamically adapting its operating parameters accord-

ing to the surrounding dynamic RF environment. The temporarily unused portions

of spectrum are called spectrum white spaces that may exist in time, frequency,

and space domains. In the context of DSA, the licensed users are called primary

users (PUs) and the CR users are called secondary users (SUs). There has been a

rapidly increasing interest in CR due to its potential for reshaping the way of utiliz-

ing spectrum resources. The CR has also been made feasible by recent advances such

as software-defined radio (SDR), smart/reconfigurable antennas, and reconfigurable

radio frequency (RF) front-ends.

On the other hand, recent developments in spectrum policy and regulatory do-

mains, notably the release of the National Broadband Plan (NBP) [4] from the

Federal communications commission (FCC), the publication of final rules for TV

white spaces, and the ongoing proceeding for secondary use of the 2360-2400 MHz

band for medical body area networks, will allow more flexible and e�cient use of

spectrum in the future. These important changes open up exciting opportunities for

CR to enable and support a variety of emerging applications [5], ranging from smart

grid, public safety and broadband cellular, to medical applications. To address the

pressing shortage of spectrum to meet the ever increasing communication demands,

the NBP recommends further freeing up 500MHz of spectrum for broadband use in

the next 10 years with 300MHz being made available for mobile use in the next five

years [4]. The plan proposes to achieve this goal in a number of ways: incentive auc-

tions, repacking spectrum, and enabling innovative spectrum access models that take

advantage of opportunistic spectrum access (OSA) and cognitive techniques. The

plan urges the FCC to initiate further developments on OSA beyond the already

2
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completed TV white space allocation.

In-line with the above vision of wideband application of CRs, the Radiobot ar-

chitecture proposed in [6–11] envisions broadband CRs that are not limited to a

single radio network. The Radiobot is defined as: an intelligent wireless communica-

tion device that has the ability to autonomously reason and learn from the observed

RF environment to self-decide optimal communications mode for existing conditions

and to achieve current performance objectives, and can optimally self-reconfigure its

hardware to physically realize the selected mode of communication. The Radiobot is

envisioned to be able to evaluate and choose among many optimality criteria, such as

communication delay constraints, power consumption constraints, sensing accuracy

requirements, and security requirements, etc. Also, we do not rule out the possi-

bility that a Radiobot may develop its own optimality criteria by trading o↵ pros

and cons of multiple conflicting requirements. The Radiobot concept aims at future

autonomous and self-reconfigurable wideband CRs, which indeed puts up challenges

to RF hardware, analog/digital circuits, and signal processing software industries.

In order to achieve the desired goals of the wideband operable Radiobot, we

may project the following five fundamental challenges of the Radiobot: 1) spectrum

sensing; 2) spectrum decision; 3) spectrum sharing; 4) wideband operability; and 5)

Autonomous cognition. The spectrum sensing refers to the capability of identification

of spectrum opportunities (or white spaces) and the onset of other radio activities

in the operating frequency range. The spectrum decision refers to the capability of

selecting and utilizing the most appropriate available spectrum band to fulfill the

communication demands, as well as the capability of adjusting the physical layer

and/or medium access control layer (PHY/MAC) in order to communicate more re-

liably and e�ciently. The spectrum sharing involves the actions of cooperation with

other radios in order to maintain an organized and e�cient spectrum access fashion,

in either a centralized network or a decentralized network. The wideband operability

3



Chapter 1. Introduction

involves both RF hardware reconfigurations and signal processing capabilities, with

which, the Radiobot may achieve flexible and robust wideband operations. Finally,

the autonomous cognition refers to the capabilities of self learning and reasoning in

order to autonomously and e↵ectively perform all the previously mentioned function-

alities to survive in an alien RF environment. Although some self-learning aspects

are indeed present in this dissertation, the research focus is mainly on the first four

aforementioned challenges.

In the following, we introduce each of the covered topics in this dissertation. Note

that the aforementioned challenges/functionalities of the Radiobot closely interact

with each other and the interaction among the functionalities itself is, in fact, of

our research interest. As a result, each of the topics covered in this dissertation

is essentially scenario-based and may address multiple or all of the aforementioned

challenges/functionalities.

1.1 Myopic Spectrum Sensing in Centralized CR

networks

Spectrum sensing has been identified as a major task for CRs in order to achieve

awareness of their dynamic RF environments and to capture the spectrum opportuni-

ties [12,13]. Many sensing techniques have been proposed over the last decade based

on matched filter, energy detection, cyclostationary detection, wavelet detection and

covariance detection [13–20]. Cooperative spectrum sensing was also proposed as a

means of improving the sensing accuracy and relaxing the sensing burdens of each

individual CR.

In this topic, we consider a DSA problem in a centralized CR network with

multiple cognitive SUs. The network of the SUs are supposed to perform spectrum

4
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sensing cooperatively in order to find spectrum opportunities. In this CR network, we

assume a central unit, named the secondary system decision center (SSDC), that is

responsible for organizing the rest of the SUs in the same network. In particular, the

SSDC is responsible for making decisions on which SUs should sense which channels,

as well as the decisions on which SUs should access which channels, based on the

sensing history and the dynamics of the RF environment. The individual sensing

results from each and every SUs are supposed to be transmitted to the SSDC through

control channels to facilitate the above mentioned decision-making at the SSDC. The

objective of the SSDC is to maximize the overall network communication throughput.

The centralized optimal myopic channel sensing and access policy are derived based

on the assumption of the Markov properties of the communication channels. Note

that, by optimal myopic policy, we refer to the policy that is optimal within the

class of myopic policies. By myopic policies, we refer to the class of policies that

aim at maximizing the instantaneous rewards (or in our case, the communication

throughput) as opposed to the long term reward by considering the impacts of current

action to future reward. Note that, although this DSA problem can be formulated

as a a Partially observable Markov decision process (POMDP) problem [21] if one

desires the optimal solution, the motivation of finding the optimal myopic solution

rather than the optimal solution is due to the high computational complexity because

of the continuum of the state space in a POMDP formulation, as also noted in [22–26].

Many schemes presented in literature such as in [22–26] have previously proposed

and derived the myopic channel sensing solutions under certain assumptions and con-

ditions. For example, assuming that the state transition probabilities are partially

known, [22,23,25] developed a myopic channel sensing strategy and proved that this

myopic policy is the optimal POMDP solution under the assumption of a certain

ordering of the state transition probabilities. However, this myopic policy was de-

rived for a single SU without explicitly considering multiple SUs with transmission

collisions and their possible cooperations. In [24], as a follow-up work of [22, 23],
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the proposed myopic policy is extended to any number of primary channels with no

limitation on the number of the primary channels the SU can sense at each time,

which means that multiple channel selection is considered. However, possible SU

cooperations and SU allocation issues are not discussed. On the contrary, our pro-

posed optimal myopic solution is applicable to any number of primary channels, any

number of SUs, and any primary channel Markov model parameters. Our proposed

solution is more realistic since our solution explicitly assigns SUs to sense specific pri-

mary channels by taking into account the spatial and temporal variations of channel

fading on di↵erent primary channels. Moreover, to support our optimal myopic sens-

ing solution, we also proposed an e↵ective Markov parameter estimation algorithm

when the channel Markov properties are unknown.

1.2 Cyclostationarity-based Spectrum Sensing

In this topic, we propose a cyclostationarity-based signal feature extraction algo-

rithm for spectrum sensing. In particular, this signal feature extraction algorithm

is used to detect the signal cyclic frequency components in a communication chan-

nel or multiple signal features in a set of communication channels. Compared to

other existing cyclostationarity-based spectrum sensing algorithms [], our proposed

algorithm does not require any a priori signal knowledge, which makes it a suitable

technique for autonomous Radiobots that is assumed to be able to operate in alien

RF environments. Note that the extracted cyclostationary signal features may corre-

spond to the symbol duration, and coding rates, etc. The robustness of this proposed

signal feature extraction algorithm is evaluated under multi-path channel fading and

Doppler e↵ects. For a set of communication channels, we show analytically that

the proposed feature extraction algorithm can potentially capture the features of

multiple superposed signals.
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Note that the proposed cyclostationarity-based signal feature extraction algo-

rithm also plays an important role in the topic discussed in Chapter 4, the multi-

variate non-parametric quickest detection.

1.3 Multivariate Non-parametric Quickest detec-

tion

Spectrum awareness is one of the most critical elements of any CR system [6]. Pre-

vious work on CRs and dynamic spectrum sharing (DSS) often assumes that the

CR networks are time-slotted as assumed in Chapter 2 (also see [27] and references

therein). In time-slotted CR networks, the primary users (PUs) become active or

idle at the start of a time slot. During one time slot, the PUs state is not changed.

Therefore, the secondary users (SUs) can spend a short sensing period at the be-

ginning of each time slot to determine the spectrum availability. At the end of the

sensing period, SUs may transmit their data if the inferred spectrum state is idle,

otherwise they must remain silent. However, in more general cases, primary networks

may not be time-slotted. Even when they are time-slotted, autonomous CRs may

not be able to be synchronized with the primary networks due to the absent of the

knowledge of the primary signaling. As a result, the PUs may change their states

at any time from the point of view of autonomous CRs, and thus the CR networks

are non-time-slotted. Performing traditional periodic spectrum sensing is no longer

su�cient to keep track of the state changes of the communication channels in non-

time-slotted CR networks. Instead, one may have to resort to the quickest detection

(QD) methods.

In this topic, a novel non-parametric, multi-variate QD method is proposed for

CRs using both energy and cyclostationary features. The proposed approach can
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be used to track state dynamics of communication channels. This capability can be

useful for both DSS and future CRs, as in practice, centralized channel synchroniza-

tion may not be always valid and the prior information of the statistics of channel

usage can be sometimes hard to obtain. The proposed multi-variate non-parametric

average sample power and cyclostationarity-based QD scheme is shown to achieve

better performance compared to traditional energy-based QD schemes. We also de-

velop a parallel on-line QD/o↵-line change-point detection algorithm to achieve self-

awareness of detection delays and false alarms for higher level automation. Compared

to traditional energy-based QD schemes, the proposed multi-variate non-parametric

QD scheme has comparable computational complexity. The simulated performance

shows improvements in terms of small detection delays and significantly higher per-

centage of spectrum utilization.

Note that, the proposed non-parametric QD scheme in this topic can be used

for detecting both state transitions from idle to busy, and those from busy to idle.

Since the only transmission opportunities for a CR happen when the channel is idle,

it is desirable to actually utilize the channel while the QD is in progress detecting

a state change from idle to busy. However, this may not be possible when a CR

uses traditional half-duplex radio front-ends since they do not support simultaneous

transmission and reception of di↵erent signals in the same channel. As a result, it is

advantageous to consider a possible full-duplex RF front-end in this context. Several

full-duplex proposals haven been shown in literature [28–31] due to recent advances

in RF front-ends. Note that although the full-duplex radio front-ends can provide

benefits in terms of transmission, the proposed QD method does not depend on

the full-duplex radio front-ends and works equally well with traditional half-duplex

front-ends. In this topic, full-duplex radio front-ends are not discussed any further.

The incorporation is left as a future task.
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1.4 Wideband PHY/MAC Bandwidth Aggrega-

tion Optimization For CRs

The simultaneous transmission over multiple radio interfaces by a single mobile ter-

minal has been previously discussed in the literature under the term of the bandwidth

aggregation (BAG) [32–37] (also known as channel aggregation), which aims at per-

forming simultaneous use of multiple interfaces to improve transmission quality or

throughput depending on specific architectural designs. A similar idea called Carrier

aggregation (CA) can also be found in recent literature on the Third Generation

Partnership Project Long Term Evolution-Advanced (3GPP LTE-A) [38–41]. With

CA, mobile users can access a much wider transmission bandwidth up to 100 MHz

compared with LTE Release 8 standard (up to 20 MHz) [38]. This is achieved by

aggregating two or more individual component carriers (CCs) belonging to contigu-

ous or non-contiguous frequency bands [38], essentially scheduling a mobile user on

multiple CCs simultaneously.

In [32] the authors proposed the Earliest Delivery Path First (EDPF) scheduling

algorithm that partitions the tra�c onto di↵erent interfaces such that the quality of

service (QoS) requirements of the application are met. In [33] an adaptive medium

access control (A-MAC) layer was proposed to address the heterogeneities posed

by the next generation wireless networks. The proposed A-MAC introduced a two-

layered MAC framework that performs medium access to multiple networks without

requiring any additional modifications in the existing network structures. In [34]

the authors proposed a multi-path transmission control scheme combining BAG and

packet scheduling for real-time streaming in a multi-path environment, in which the

packet scheduling scheme was aimed at arranging the transmission sequence in order

to e↵ectively minimize the impact of packet reordering at the receiver. In [35], the

authors investigated the BAG problem under certain practical limitations and cost
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issues such as switching delays and transmission delays, but without considering the

power consumption. It is not realistic, however, to ignore the power consumption of

the CR since it can be a crucial limitation for many radio devices operating on lim-

ited energy sources such as batteries. Moreover, the practical issue of time-varying

channel coe�cients was also not considered in [35]. In [36], the BAG problem was

studied without considering hardware limitations, switching costs and delays, chan-

nel coe�cients, and power consumptions. In [37], a spectrum assignment strategy

was proposed to increase the BAG-aware access capacity and to decrease channel

switching times. However, this was again obtained without considering essential

practical issues such as power consumption and channel fading.

In this topic, in order to develop the wideband operability of the Radiobot, we

propose a CR PHY/MAC decision-making strategy that may simultaneously uti-

lize multiple radio networks across a wide spectrum band. The whole spectrum

range is assumed to be divided into several sub-bands in performing spectrum sens-

ing. Each of the sub-bands may have an arbitrary bandwidth, depending on the

spectrum sensing capability of the CR. We derive an optimal wideband bandwidth

aggregation (BAG) strategy for the energy and frequency e�cient communication

problem: a multi-objective optimization problem is formulated, one objective is the

communication throughput of the mobile cognitive radio device and the other is en-

ergy consumption of the device. The proposed multi-objective optimization problem

takes into account the essential practical issues including imperfect spectrum sens-

ing, time varying channel coe�cients, hardware reconfiguration time delay, hardware

reconfiguration power consumptions, and communication power consumptions. The

optimal BAG strategy is solved using a combination of the Hungarian algorithm

and convex optimization. In this topic, we show that by self-adjusting the weight-

ing coe�cients of two objectives, the CR may achieve autonomous operation. The

formulation can also be easily extended to multi-objective problems that have more

than two objectives.
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1.5 Learning aided scheduling for wideband spec-

trum sensing

In order to achieve wideband operability, we propose, in this topic, the wideband

spectrum sensing scheduling solutions for CRs that are equipped with reconfigurable

RF front-ends. The wide frequency spectrum of interest is assumed to be segmented

into frequency sub-bands due to software and hardware limitations. These sub-bands

can be non-contiguous, and each may contain an arbitrary number of channels from

an arbitrary number of systems. It is assumed that the CR can only sense one

sub-band at a time.

Note that many schemes presented in CR literature, such as in [25, 27, 42], have

previously proposed and derived the channel sensing algorithms for narrow-band

scenarios. As opposed to the wideband spectrum sensing, in narrow-band spectrum

sensing problems, hardware reconfigurations are generally not considered. For ex-

ample, the authors in [27] developed an optimal myopic1 sensing scheduling policy

in a centralized multi-agent setup for a group of traditional narrow-band CRs with a

given set of channels. In [25], assuming that the channel state transition probabilities

are partially known, the authors developed a myopic channel sensing strategy for the

narrow-band CRs and proved that this myopic policy is the optimal Partially Observ-

able Markov Decision Process (POMDP) solution under the assumption of a certain

ordering of the state transition probabilities of individual channels. In [42], the au-

thors developed stationary optimal spectrum sensing and access policies under the

framework of POMDP to maximize the CRs throughput on a given set of channels in

a narrow-band setup with battery life constraints. However, these spectrum sensing

1Myopic policies aims at maximizing an instantaneous reward at each time step, as
opposed to a long-term reward as considered in a Partially Observable Markov Decision
Process (POMDP) setup [21,43]. The optimal myopic solution refers to the optimal solution
within the class of myopic policies.
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policies cannot be easily applied in a wideband spectrum sensing scenario since the

reconfigurable RF front-end is not considered and the reconfiguration costs (both

energy and the incurred time delays by performing RF front-end reconfiguration)

are not taken into account to jointly optimize the performance. As a result, we pro-

pose the wideband spectrum sensing scheduling policies with realistic reconfigurable

RF front-end considerations. In [44], the authors investigated optimal sensing time

and power allocation strategies in order to maximize the transmission throughput in

a wideband sensing setup. However, there is a fundamental di↵erence between our

system setup and the one in [44]. In particular, what is meant by ‘wideband’ in our

system is di↵erent from that of [44], and all similar previous work. In [44], wideband

sensing refers to simultaneous sensing of a frequency band containing multiple nar-

rowband channels. The term wideband is justified because the spectrum spanned by

these channels can be larger compared to a single narrowband channel. However, the

wideband system assumed in this work is conceivably much wider than that of [44].

In fact, the wide spectrum band considered in [44] is somewhat equivalent to a single

sub-band assumed in our setup. In [44] and other similar previous work, the wide-

band operation is limited by the RF front-end and the A/D circuits, whereas our

wideband CRs are presumed to be equipped with real-time reconfigurable RF front-

ends covering a set of wide spectrum ranges in each mode of operation, and each of

these spectrum ranges are divided into a set of sub-bands that are still wide and may

contain multiple (narrowband) channels [6, 8, 45]. Clearly, given the state-of-the-art

wideband antenna/RF front-end designs [46–49], and the signal processing burdens,

the wideband assumption in those previous proposals can only imply something akin

to one of the sub-bands assumed in our work. As a result, while spectrum sensing

decisions in many of the previous proposals are concerned with channel selection,

our focus is on the problem of which subset of channels (i.e. the sub-band) to sense.

Three sub-band selection policies are proposed to find spectrum opportunities

taking into account realistic hardware reconfiguration energy consumptions and time
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delays. Two of the proposed policies rely on the individual channel Markov proper-

ties and the sub-band Markov properties, respectively. Although these two policies

may achieve good performance, they rely on complete knowledge of RF environment

dynamics and thus may become computationally demanding. The third sub-band

selection policy based on Q-learning is proposed to circumvent this. Performance of

the three policies are compared and discussed against a performance upper-bound of

the optimal solution to the corresponding partially observable Markov decision pro-

cess formulation. The suitability of the Q-learning technique is validated by showing

that it achieves good performance through numerical results in both simulated and

real measured RF environments.

1.6 Dissertation Contributions

The main contributions of this dissertation can be summarized as follows:

• 1) The formulation of a centralized spectrum sensing/access architecture that

allows exploitation of all available primary spectrum opportunities; 2) propos-

ing the optimal myopic spectrum sensing policy; and 3) proposing sub-optimal

myopic sensing policies with low-complexity implementations and performance

close to the myopic policy. We also show that our proposed sensing/access poli-

cies are close to the optimal POMDP solution and outperforms other existing

strategies. We also propose a Hidden Markov Model based algorithm to esti-

mate the parameters of primary channel Markov models when the knowledge

is absent. This parameter estimation algorithm runs with a linear complexity.

• The propose of a non-parametric cyclostationarity-based signal feature extrac-

tion algorithm that is able to extract multiple superposed RF signals and iden-

tify their associated cyclostationary features. Unlike existing cyclostationarity-
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based spectrum sensing algorithms, the proposed algorithm does not rely on

the prior knowledge of the target signals. The robustness of this algorithm is

also evaluated under the impact of channel fading and the Doppler e↵ect.

• 1) The proposal of the average sample power and cyclostationarity-based mul-

tivariate non-parametric quickest detection (QD) strategy for CRs; and 2) the

proposal of the parallel on-line QD/o↵-line change-point detection strategy that

is used to provide information of detection delays and false alarm rates as feed-

back for possible machine learning techniques to achieve future autonomous

operation. Note that originally multivariate non-parametric QD strategy was

proposed in [50]. The computational complexities of the energy-based uni-

variate non-parametric QD method and the multivariate non-parametric QD

method are also compared. We show that the multivariate QD method has

a comparable complexity to the uni-variate case, depending on the choice of

time window length of each sensing step. The simulation also shows that the

proposed multivariate QD method outperforms the energy-based uni-variate

case, in terms of the detection delays and the percentage of idle channel usage.

• We propose a CR PHY/MAC decision-making strategy that may simultane-

ously utilize multiple radio networks across a wide spectrum band. We derive

an optimal wideband bandwidth aggregation (BAG) strategy for the energy

and frequency e�cient communication problem: a multi-objective optimiza-

tion problem is formulated, one objective is the communication throughput

of the mobile CR device and the other one is energy consumption of the de-

vice. The proposed multi-objective optimization problem takes into account

the practical issues including imperfect spectrum sensing, time varying chan-

nel coe�cients, hardware reconfiguration time delay, hardware reconfiguration

power consumptions, and communication power consumptions. The optimal

BAG strategy is solved using a combination of the Hungarian algorithm and
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convex optimization. We show that by self-adjusting the weighting coe�cients

of two objectives, the CR may achieve autonomous operation. The formulation

can also be easily extended to similar optimization problems with more than

two objectives.

• We propose wideband spectrum sensing scheduling solutions for CRs that are

equipped with reconfigurable RF front-ends. Three sub-band selection poli-

cies are proposed to find spectrum opportunities taking into account realistic

hardware reconfiguration energy consumptions and time delays. Two of the

proposed policies rely on the individual channel Markov properties and the

sub-band Markov properties, respectively. Although these two policies may

achieve good performance, they rely on complete knowledge of RF environ-

ment dynamics and thus may become computationally demanding. The third

sub-band selection policy based on Q-learning is proposed to circumvent this.

Performance of the three policies are compared and discussed against a per-

formance upper-bound of the optimal solution to the corresponding POMDP

formulation. The suitability of the Q-learning technique is validated by showing

that it achieves good performance through numerical results in both simulated

and real measured RF environments.

1.7 Structure of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 proposes an

optimal myopic spectrum sensing policy in centralized CR networks. In Chapter 3,

we present the proposed cyclostationarity-based signal feature extraction algorithm.

We also evaluate its robustness under channel fading and Doppler e↵ect. In Chapter

4, we propose the multivariate non-parametric quickest detection algorithm for CRs.

In Chapter 5, we present the general framework and solution for the wideband band-
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width aggregation problem. In Chapter 6, we present the proposed Machine-learning

aided sub-band selection scheduling in wideband spectrum sensing problems. Finally,

we conclude the dissertation in Chapter 7.

1.8 Notation

Throughout this dissertation, we use bold characters to refer to vector and matrix

quantities.
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Chapter 2

Optimal Myopic Sensing and

Dynamic Spectrum Access in CR

Networks

2.1 Introduction

In this chapter, we consider a centralized CR network in which multiple cognitive

secondary users (SUs) with limited spectrum sensing capabilities cooperatively find

and access spectrum white-spaces on multiple primary channels. The objective is to

design the combined optimal channel sensing and access policy. This combined opti-

mal policy maximizes the total secondary system throughput accrued over time over

all primary channels. This policy is also required to satisfy a constraint on the prob-

ability of collisions with licensed transmissions. We assume that the decision-making

(both sensing and access) in the CR network is centralized: a central unit, called the

secondary system decision center (SSDC), gathers all channel sensing results from

SUs over a dedicated control channel; the decisions of sensing and access are made
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at the SSDC and informed to the distributed SUs over the same dedicated control

channel. We model each primary channel occupancy dynamics as a two-state (idle

and busy) independent identically distributed (i.i.d.) Markov chain. This Markov

model, also known as the Gilbert-Elliot model [51], has been commonly used to

abstract physical primary channels with memory (see, for example [22–26, 52, 53]).

Note that under our formulation, primary channels can easily be generalized to be

non-identical in terms of their Markov parameters.

Although this DSA problem can be formulated as a Partially Observable Markov

Decision Process (POMDP) problem, as was discussed previously in [22–26], the

optimal solution to the POMDP is computationally prohibitive because of the con-

tinuum of the state space. Many schemes presented in literature such as in [22–26]

have previously proposed and derived the myopic channel sensing solutions under

certain assumptions and conditions. For example, assuming that the state transi-

tion probabilities are partially known, [22,23,25] developed a myopic channel sensing

strategy and proved that this myopic policy is the optimal POMDP solution under

the assumption of a certain ordering of the state transition probabilities. However,

this myopic policy was derived for a single SU without explicitly considering mul-

tiple SUs with transmission collisions and their possible cooperations. In [24], as a

follow-up work of [22,23], the proposed myopic policy is extended to any number of

primary channels with no limitation on the number of the primary channels the SU

can sense at each time, which means that multiple channel selection is considered.

However, possible SU cooperations and SU allocation issues are not discussed.

In this chapter, we derive the centralized optimal myopic channel sensing policy

and the access policy that jointly maximize instantaneous total secondary system

throughput on the primary channels, without considering the impact on future ex-

pected total secondary system throughput. Note that, by optimal myopic policy we

refer to the policy that is optimal within the class of myopic policies. The proposed
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myopic channel sensing policy is applicable for any number of primary channels,

any number of SUs, and any channel state transition probabilities. To support our

solutions, we also propose a Hidden Markov Model (HMM) based algorithm that

e�ciently estimates the channel transition probabilities when they are assumed un-

known, with a linear complexity only in the number of primary channels. Under the

formulation in our paper, we show that the optimal myopic channel sensing policy

depends on the probability of white-space detections. Thus, we explicitly character-

ize the channel access policy based on a Neyman-Pearson (NP) detector, taking into

account the interference constraint imposed by the primary users (PUs).

The remainder of this chapter is organized as follows: In Section 2.2 we introduce

the system model. In Section 2.3, the access and sensing decisions are derived. The

algorithm with linear complexity that is used to estimate the primary channel state

transition probabilities is introduced in Section 2.4. In Section 2.5 we show the

simulation results. In Section 2.6 we conclude by summarizing our results.

2.2 Problem Formulation

2.2.1 Primary channel state model

We denote by k = {0, 1, 2, · · · } the indices of a semi-infinite slotted time horizon.

We assume a group of N SUs, and a collection of M primary channels. The primary

channels are modeled as statistically identical and independent two-state Markov

chains. As shown in Fig. 2.1, the state busy (state 1) indicates the channel is occupied

by PUs; the state idle (state 0) indicates no PU transmissions over that channel and

it is available for SUs to access. We denote by Sm(k) 2 {0, 1} the true state of the

m-th primary channel in time slot k. We assume that the state of a primary channel

does not change within a single time slot. The stationary transition probability of
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the Markov model from state i to state j is defined as

pij = Pr{Sm(k + 1) = j | Sm(k) = i}, 8i, j 2 {0, 1}. (2.1)

The transition probability matrix of the Markov model is denoted by

P =

 

p00 p01

p10 p11

!

. (2.2)

We denote the vector ⇡ = [⇡0, ⇡1] as the stationary distribution vector, such that

⇡ = ⇡P with ⇡0 and ⇡1 being the stationary distribution of idle and busy, respectively.

When a SU successfully accesses a primary channel that is actually free during a given

time slot, the SU is assumed to receive a reward proportional to the bandwidth of

that channel. If a SU accesses a primary channel that is in state busy, it causes a

collision with PU transmission and the SU gets a zero reward. The accumulated

total reward of all SUs is used as a measure of the secondary system throughput over

the primary channels.

Figure 2.1: Model for primary channel state dynamics: Two-state Markov chain

2.2.2 Secondary system sensing and access decisions

In order to detect spectrum opportunities, SUs perform spectrum sensing. We as-

sume that each SU is equipped with a single antenna, such that when a SU is per-

forming channel sensing, no simultaneous communication can be performed. Also
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Figure 2.2: Slotted time horizon with Sensing Periods and Transmitting Periods.

assume that a single SU can only sense one primary channel at a time, but multiple

SUs may simultaneously sense the same primary channel. As shown in Fig. 2.2,

SUs sense primary channels during the designated sensing periods at the beginning

of each time slot and we assume that if a PU intends to use its channel during a

transmitting period, it starts to transmit from the beginning of that time slot.

The SSDC collects all channel sensing results from the SUs over a dedicated con-

trol channel to decide whether to access each of the channels and to make decisions

on future sensing allocations. This centralized structure may incur some delay due to

the need for exchanging sensing reports and decisions. There is a tradeo↵ between

allocating a larger bandwidth for control channels to achieve a smaller delay and

the bandwidth available for actual communications. However, this is not addressed

due to the focus of this work. We use the M ⇥ N matrix Yk to denote the sensing

reports from SUs at time k with Yk(m,n) = ym,n(k), where ym,n(k) denotes the sens-

ing report from n-th SU of the state of m-th primary channel at time k. We use the

M⇥N matrix Ak to denote the sensing decision made by the SSDC at time k, where

Ak(m,n) 2 {0, 1}, with Ak(m,n) = 1 or 0 representing n-th SU should or should not

sense primary channel m at time k respectively. Since we assume that one SU can

only sense one channel at a time, we have the constraint
PM

m=1 Ak(m,n) = 1, 8n.

We denote by Nm(k) = {n : Ak(m,n) = 1} the set of indices of SUs that are as-

signed to sense the m-th channel at time k. We assume that whenever a particular

channel is identified as idle at the SSDC, one SU is assigned to access that chan-
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nel. The SSDC is responsible for balancing accessing opportunities among the SUs

(fairness), or assigning SUs with any particular priorities. These fairness issues are

not addressed due to the focus of this work, although they can be integrated into

our decision-making framework as an optimization problem with constraints. The

sensing and access decisions at the SSDC are further derived in Section III.

2.2.3 Secondary user sensing models and local sensing re-

ports

For all (m,n) pairs such that Ak(m,n) = 1, we denote by rm,n(k) the L-length

complex-valued observation vector on the m-th channel, from SU n in time slot k:

rm,n(k) = Sm(k)hm,n(k)xm(k) +w, (2.3)

where Sm(k) 2 {0, 1} is the m-th channel state in time slot k, xm(k) 2 CL is the

complex-valued primary signal vector, w = [w1, · · · , wL]T 2 CL is a complex ran-

dom vector of L zero-mean i.i.d. Gaussian random variables with real and imaginary

parts, each N(0, �2
w/2). Thus, each wi 2 w is circularly symmetric and denoted by

CN(0, �2
w). Denote hm,n(k) = ↵m,n(k)ej✓m,n(k), the complex channel gain of the pri-

mary channel between the primary transmitter on the m-th primary channel and the

n-th SU in time slot k, with amplitude ↵m,n(k) and phase ej✓m,n(k). We assume that

each SU has perfect knowledge of their own channel gain in each time slot for each of

the primary channels. In practice, it can be assumed that the primary transmitter, if

active, would periodically send training sequences/preambles to primary receivers for

the purpose of synchronization and channel estimation [54]. The SUs may overhear

and make use of these training sequences to estimate the fading coe�cients between

the primary transmitters and the secondary receivers. When a primary channel is

idle, the secondary system may rely on the database service [55] maintained through

learning at the SSDC to obtain the channel knowledge. We consider two models for
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xm(k) which can be considered as two extreme cases: 1) secondary system has no

knowledge about the primary signaling; 2) secondary system has perfect knowledge

about the primary signaling.

In the CR context, when communication opportunities are scarce (limited band-

width and large amount of SUs), it is reasonable to assume that instead of trans-

mitting raw data vector rm,n(k)’s, the SUs can only transmit quantized versions as

reports to the SSDC. Without loss of generality, we assume the simplest case: the

reports from SUs to the SSDC are compressed/quantized to 0’s and 1’s which can

also be considered as estimates of the state of primary channels. For both afore-

mentioned xm(k) models, we use ym,n(k) 2 {0, 1} to denote the report of the m-th

primary channel state from the n-th SU to the SSDC, in time slot k. We assume

that these ym,n(k)’s are received error free at the SSDC. As shown in Fig. 2.3, the

m-th channel true state Sm(k) and the report ym,n(k) can be modeled as the input

and output of a Binary Asymmetric Channel (BAC), respectively.

Figure 2.3: SUs’ reports of observations on primary channels can be modeled as
Binary Asymmetric Channels.

The two hypotheses on them-th channel areH1 : Sm(k) = 0, andH0 : Sm(k) = 1,

respectively. We use �1
m,n(k), and �0

m,n(k) to denote the crossover probabilities under
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H1, andH0, respectively. The maximum a posteriori probability (MAP) decision rule

used to determine ym,n(k) is given by

ym,n(k) = arg max
i2{0,1}

Pr{Sm(k) = i | rm,n(k))}, (2.4)

which can be shown to be equivalent to the following likelihood ratio test:

L(rm,n(k)) =
fr|0(rm,n(k) | Sm(k) = 0)

fr|1(rm,n(k) | Sm(k) = 1)

H1

R
H0

⌘m(k) =
Pr{Sm(k) = 1}
Pr{Sm(k) = 0} =

⇡1

⇡0
, (2.5)

where fr|s denotes the conditional likelihood function of the complex-valued vector

r given the state s.

1)When the secondary system has no knowledge about the primary signaling In

general, we assume that the elements of xm(k) are correlated and having a complex

zero-mean Gaussian distribution with an unknown covariance matrix ⌃x. We denote:

x0
m(k) =

⇥

<{xT
m(k)} ={xT

m(k)}
⇤T

(2.6)

and

x̃m,n(k) =
⇥

<{hm,n(k)x
T
m(k)} ={hm,n(k)x

T
m(k)}

⇤T
, (2.7)

where xm(k) ⇠ CN (0,⌃x). It can be shown that x̃m,n(k) is Gaussian and thus

we denote x̃m,n(k) ⇠ N (0,⌃x̃) , where ⌃x̃ denotes the unknown covariance ma-

trix of x̃m,n(k). We also denote Rm,n(k) = [<{rTm,n(k)} ={rTm,n(k)}]T , and W =

[<{wT} ={wT}]T . Then the complex-valued observation vector model (2.3) can be

written as: Rm,n(k) = Sx̃m,n(k) + W , where W ⇠ N
⇣

0, �
2
w

2 I
⌘

and Rm,n(k) ⇠

N
⇣

0, S⌃x̃ +
�2
w

2 I
⌘

. In this case, the MAP rule can be shown [56] to be equivalent to

the following decision rule:

ym,n(k) =

8

<

:

0 , if RT
m,n(k)Qm,n(k)Rm,n(k)  ⌘⇤m,n(k)

1 , if RT
m,n(k)Qm,n(k)Rm,n(k) > ⌘⇤m,n(k)

, (2.8)
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where Qm,n(k) = 2|hm,n(k)|2�2
x

�2
w(�2

w+|hm,n(k)|2�2
x)
I and ⌘⇤m,n(k) = 2

⇣

ln ⌘m(k)(�2
w+|hm,n(k)|2�2

x)
L

�2L
w

⌘

in

case the elements of xm(k) are assumed i.i.d. 1. Then, we have

Rm,n(k)
TQm,n(k)Rm,n(k) = Qm,n(k)r

H
m,n(k)rm,n(k),

where the superscript H denotes the conjugate transpose and

rm,n(k) ⇠ CN

✓

0,
S|h|2�2

x + �2
w

2
I

◆

. (2.9)

Then, the MAP rule can be shown to be equivalent to the following decision rule:

ym,n(k) =

8

<

:

0 , if rHm,n(k)rm,n(k)  ⌘0m,n(k)

1 , if rHm,n(k)rm,n(k) > ⌘0m,n(k)
, (2.10)

where ⌘0m,n(k) = ⌘⇤m,n(k)
�2
w(�2

w+|hm,n(k)|2�2
x)

2|hm,n(k)|2�2
x

. The quantity
2rHm,n(k)rm,n(k)

�2
w

(under H1),

and
2rHm,n(k)rm,n(k)

�2
w+|hm,n(k)|2�2

x
(under H0) can be shown distributed as �2

2L, thus the crossover

probabilities can be obtained as

�1
m,n(k) = 1� 1

�(L)
�

✓

L,
⌘0m,n(k)

�2
w

◆

, �0
m,n(k) =

1

�(L)
�

✓

L,
⌘0m,n(k)

�2
w + |hm,n(k)|2�2

x

◆

,(2.11)

where the gamma function �(z) =
R1
0 tz�1e�tdt and the lower incomplete gamma

function �(s, x) =
R x

0 ts�1e�tdt. We assume that the threshold ⌘m(k) =
⇡1
⇡0

is informed

from the SSDC.

2) When the secondary system has perfect knowledge about the primary signaling

It is assumed that xm(k) = x is known and the matched-filter [56] based sensing is

1Note that the assumption of the components of xm(k) being i.i.d. is shown to be
optimal for detecting zero-mean constellation signals when there is no knowledge about
the primary signal [57]. In this case, the matrix Qm,n(k) is found to be a scalar and the
su�cient test statistic Rm,n(k)TRm,n(k) can be considered as a measure of the primary
signal energy, also known as the energy detection [56].
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employed. The optimal MAP rule (2.4) can then be derived as [56]

ym,n(k) =

8

<

:

0 , if <(rm,n(k)x0H
m,n(k)) 

x0
m,n(k)x

0H
m,n(k)��2

w ln(⌘m(k))

2

1 , if <(rm,n(k)x0H
m,n(k)) >

x0
m,n(k)x

0H
m,n(k)��2

w ln(⌘m(k))

2

(2.12)

where <(·) denotes the real part operation, and x0
m,n(k) = hm,n(k)x. Now, given

Sm(k) = 0,

<(rm,n(k)x0H
m,n(k))

q

x0
m,n(k)x

0H
m,n(k)

⇠ N(0, �2
w/2), (2.13)

whereas given Sm(k) = 1,

<(rm,n(k)x0H
m,n(k))

q

x0
m,n(k)x

0H
m,n(k)

⇠ N
⇣

q

x0
m,n(k)x

0H
m,n(k), �

2
w/2

⌘

. (2.14)

Thus, the resulting crossover probabilities are given as

�1
m,n(k) = Q

 

|hm,n(k)|2xHx� �2
w ln(⌘m(k))p

2|hm,n(k)|�w

p
xHx

!

, (2.15)

�0
m,n(k) = Q

 

|hm,n(k)|2xHx+ �2
w ln(⌘m(k))p

2|hm,n(k)|�w

p
xHx

!

, (2.16)

where function Q(·) is the tail probability of the standard normal distribution and

the superscript H denotes the conjugate transpose.

2.3 Channel Access and Sensing Decisions at the

SSDC

2.3.1 Channel access decisions at the SSDC

To meet the constraint of collision probability with PUs on every channel, the optimal

access decisions at the SSDC must be based on a classical NP detector [56]. Note
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that we refer to the ‘access decision’ as the decision at the SSDC about whether

a primary channel is idle or not, whereas the decision on which SU should access

which primary channel is called the ‘access assigning decision’. Let the variable

length vector yk(m, :) = {ym,n(k) : 8n 2 Nm(k)} denote all channel sensing reports

corresponding to the m-th channel at time k and the variable length vector y0:k(m, :

) = {y0(m, :), · · · ,yk(m, :)} denote the sensing history on the m-th primary channel,

from time 0 to k. Let Sm
0:k denote the historic state of m-th channel from time 0 to

k. The set of all possible historic channel state vectors is denoted by Sc = {0, 1}k+1.

At time k, for them-th primary channel, the SSDC chooses one of the two possible

hypotheses based on y0:k(m, :):

H1( channel idle, y0:k(m, :) ⇠ Pm,1) (2.17)

H0( channel busy, y0:k(m, :) ⇠ Pm,0) (2.18)

where Pm,1, and Pm,0 denote the conditional distributions of y0:k(m, :) given Sm(k) =

0, and Sm(k) = 1, respectively. The likelihood ratio for the m-th channel is given by

L(y0:k(m, :)) = Pm,1(y0:k(m,:))
Pm,0(y0:k(m,:)) , which is generally di�cult to obtain as a useful closed-

form expression due to the fact that at each time k, the number of SUs on m-th

channel changes and thus as time evolves, the complexity increases. To simplify the

access decision structure, we assume that the access decisions regarding the m-th

channel are based only on the current observations yk(m, :). The likelihood ratio at

the SSDC can then be found as

L(yk(m, :)) =
Pm,1(yk(m, :))

Pm,0(yk(m, :))

=
Y

n2Nm(k)

"

✓

�1
m,n(k)

1� �0
m,n(k)

◆ym,n(k)✓1� �1
m,n(k)

�0
m,n(k)

◆1�ym,n(k)
#

. (2.19)

Note that in order to obtain the knowledge of �0
m,n(k) and �1

m,n(k) at the SSDC, the

SUs are required to send the quantity |hm,n(k)| to the SSDC in each time slot. Along
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with the sensing report ym,n(k), a total number of 2N messages are needed at the

SSDC in each time slot k, where N is the number of SUs in the secondary system.

The log-likelihood ratio can be found as

LLR(yk(m, :)) =
X

n2Nm(k)

ym,n(k)cm,n(k) + dm(k), (2.20)

where

cm,n(k) = ln

✓

�1
m,n(k)

1� �0
m,n(k)

·
�0
m,n(k)

1� �1
m,n(k)

◆

, (2.21)

and

dm(k) =
X

n2Nm(k)

ln

✓

1� �1
m,n(k)

�0
m,n(k)

◆

. (2.22)

The su�cient statistic for access decision at the SSDC regarding the m-th channel

is then given by

Tm(k) =
X

n2Nm(k)

ym,n(k)cm,n(k), (2.23)

and the test is equivalent to

Tm(k)
H1

R
H0

⌧m(k)� dm(k) = ⌧ 0m(k), (2.24)

where ⌧m(k) and ⌧ 0m(k) are the thresholds for the log-likelihood ratio test and the test

of the su�cient statistic Tm(k), respectively. Let f i
m,k and F i

m,k denote the conditional

probability mass function (pmf) and the conditional cumulative distribution function

(cdf) of the random variable Tm(k) under hypothesis Hi, respectively. We denote

the variable set Cm(k) as the set of discrete values that Tm(k) takes at time k. The
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optimal access-decision regarding the m-th channel is then given by the randomized

decision rule:

�̃NP (yk(m, :)) =

8

>

>

<

>

>

:

1

�m(k) if Tm(k) T ⌧ 0m(k)

0

. (2.25)

This randomized decision rule says: 1) access the m-th channel if Tm(k) > ⌧ 0m(k);

2) do not access the m-th channel if Tm(k) < ⌧ 0m(k); and 3) access the m-th channel

with probability �m(k) if Tm(k) = ⌧ 0m(k). We denote by ⇣ the collision probability

constraint on each individual primary channel. It can be shown that the threshold

⌧ 0m(k) must be chosen such that Pr{Tm(k) > ⌧ 0m(k) | H0}  ⇣ < Pr{Tm(k) > ⌧
0�
m (k) |

H0}, where we denote by Pr{Tm(k) > ⌧ 0m(k) | H0} the probability of colliding with

primary user on the m-th channel at time k. The quantity ⌧
0�
m (k) = max{⌧ : ⌧ 2

Cm(k), ⌧ < ⌧ 0m(k)} is defined to be the maximum value in Cm(k) that is less than

⌧ 0m(k). The choice of ⌧ 0m(k) is illustrated in Fig. 2.4 where it can be seen that ⌧ 0m(k)

is unique, given the monotonicity of the complementary cdf Pr{Tm(k) > ⌧ | H0}.

We can see that this is equivalent to choosing ⌧ 0m(k) such that 1 � F 0
m,k(⌧

0
m(k))

 ⇣ < 1 � F 0
m,k(⌧

0�
m (k)) (note that Pr{Tm(k) > ⌧ | H0} = 1 � F 0

m,k(⌧)). The

randomization variable �m(k) is then given by

�m(k) =
⇣ �

�

1� F 0
m,k(⌧

0
m(k))

�

F 0
m,k(⌧

0
m(k))� F 0

m,k(⌧
0�
m (k))

. (2.26)

Note that, the structure of the optimal access decision at the SSDC is independent

of what type of local sensing rules were used at the distributed SUs. In turn, the

above access decision rule at the SSDC is valid for any assumptions on the knowledge

of primary signals by the SUs, including the considered two extreme cases, since as

long as the local sensing decisions are quantized as 0 or 1 before transmitting to

the SSDC, all that matters are the crossover probabilities �1
m,n(k) and �0

m,n(k) in
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Figure 2.4: The choice of of the threshold ⌧ 0m(k), given a false alarm probability ⇣.

terms of the access decision-making at the SSDC. The probability of detection of

white-spaces is then given by

PD,m(k,Ak) = Pr {Tm(k) > ⌧ 0m(k) | H1}+ �m(k)Pr {Tm(k) = ⌧ 0m(k) | H1}

= 1� F 1
m,k(⌧

0
m(k)) + �m(k) · f 1

m,k(⌧
0
m(k)), (2.27)

Note that this is used in the sensing decision-making at the SSDC as described next.

2.3.2 Optimal and sub-optimal myopic sensing decisions at

the SSDC

The sensing decision at the SSDC determines which primary channel each SU should

sense at each time. We define b0(m, k) = Pr{Sm(k) = 0 | y0:k�1(m, :)} and b1(m, k) =
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1 � b0(m, k) as the belief of the m-th channel being idle and busy at time k re-

spectively. We denote the belief vectors as b0(k) = [b0(1, k), · · · , b0(M, k)]T and

b1(k) = [b1(1, k), · · · , b1(M, k)]T .

Assuming the sensing observations of SUs at time k are mutually independent,

the belief that the m-th channel being idle in next time slot k + 1 is updated at the

SSDC using the Bayes’ formula:

b0(m, k + 1) =

P

i2{0,1} pi0

h

Q

n2Nm(k) fi(ym,n(k))
i

bi(m, k)

P

i2{0,1}

h

Q

n2Nm(k) fi(ym,n(k))
i

bi(m, k)
, (2.28)

where fi(ym,n(k)) = Pr{Ym,n(k) = ym,n(k) | Sm(k) = i}, 8i 2 {0, 1} is the conditional

pmf of the local decisions from the n-th SU and Ym,n(k) is a random variable denoting

the report from the n-th SU about the m-th channel at time k (note that ym,n(k) is

a realization of the random variable Ym,n(k)). For those primary channels that were

not sensed by any SU, the belief is updated simply based on the Markovian evolution

of primary channels: [b0(m, k+1), b1(m, k+1)] = [b0(m, k), b1(m, k)]P, where P is the

state transition probability matrix. The belief vectors b0(1), and b1(1) are initialized

with the stationary distribution ⇡ = [⇡0 , ⇡1] of the Markov model.

We denote by the random vector Ŝ(k) =
h

�̃NP (1, k), · · · , �̃NP (M, k)
iT

the vector

of NP detector outcomes at the SSDC at time k. Given a sensing assignment Ak,

the probability of Ŝ(k) = s 2 {0, 1}M can be found as

Pr{Ŝ(k) = s} =
M
Y

m=1

{b0(m, k)PD,m(k,Ak) + (1� b0(m, k))⇣}I{s(m)=0}

{b0(m, k)(1� PD,m(k,Ak)) + (1� b0(m, k))(1� ⇣)}�I{s(m)=1}
,

(2.29)

where IE is the indicator function of event E and ⇣ is the predefined collision prob-

ability. We define the M by N matrix H0
k such that H0

k(m,n) = h0
m,n(k), 8 m,n,

where h0
m,n(k) denotes the channel coe�cient of the channel between the n-th SU

and its desired receiver on channel m. Note that the optimal secondary access as-

signing decisions can be obtained by an integer programming problem which can
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be solved using a graph matching algorithms2, as suggested in [58]. Due to space

limitations, we omit details of the algorithm. Let us denote by nm(s,Ak,H0
k) the

index of the SU that is assigned to access the m-th channel, after sensing in time

slot k, according to this optimal secondary access assigning decisions. We denote

by h0
m(s,Ak,H0

k) , h0
m,nm(s,Ak,H

0
k)
(k) the channel coe�cient on the m-th channel

from the SU that is assigned to access that channel. Let rm(k, Ŝ(k),Ak,H0
k) be the

secondary transmission rate on the m-th channel which can be written as:

rm(k, Ŝ(k),Ak,H
0
k) = Bm log2

 

1 +
Pnm(Ŝ(k),Ak,H

0
k)
|h0

m(Ŝ(k),Ak,H0
k)|2

N0Bm

!

, (2.30)

if
P

n Ak(m,n) � 1, Sm(k) = 0, and �̃NP (m, k) = 1, and rm(k, Ŝ(k),Ak,H0
k) = 0

otherwise, with Bm being the bandwidth of the m-th primary channel, Pn being the

transmit power of the n-th SU and N0 is the single-sided power spectrum density of

the secondary receiver noise. The expected total transmission rate/reward on all the

primary channels in time slot k is then:

E
(

M
X

m=1

rm(k, Ŝ(k),Ak,H
0
k)

)

=
M
X

m=1

BmEŜ(k)

(

log2

 

1 +
Pnm(Ŝ(k),Ak,H

0
k)
|h0

m(Ŝ(k),Ak,H0
k)|2

N0Bm

!)

⇥

⇥PD,m(k,Ak)b0(m, k), (2.31)

where EŜ(k) denotes the expectation with respect to the vector Ŝ(k) so that

EŜ(k)

(

log2

 

1 +
Pnm(Ŝ(k),Ak,H

0
k)
|h0

m(Ŝ(k),Ak,H0
k)|2

N0Bm

!)

=
X

Ŝ(k)=s

log2

 

1 +
Pnm(s,Ak,H

0
k)
|h0

m(s,Ak,H0
k)|2

N0Bm

!

Pr{Ŝ(k) = s}. (2.32)

2A graph matching problem finds the optimal one-to-one matching between the elements
of two bipartite sets such that it optimizes the sum-weights of the connecting edges.
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Let S(k) = [S1(k), · · · , SM(k)] 2 S = {0, 1}M denote the state of the system at

time k. Then the value of state s 2 S at time 0 is

V A0:1(s) = E
( 1
X

k=0

M
X

m=1

�krm(k, Ŝ(k),Ak,H
0
k) | S(0) = s

)

, (2.33)

which can also be expressed as

E
(

M
X

m=1

rm(0, Ŝ(0),A0,H
0
0) | S(0) = s

)

+ �
X

s02S

P (s, s0)V A0:1(s0), (2.34)

where A0:1 denotes the SSDC sensing decisions from time k = 0 to 1, � 2 (0, 1)

is a discount factor and P (s, s0) is the probability of state transition from s to s0.

Note that, the value function is the expected discounted reward over all primary

channels. When the SUs do not have perfect knowledge of the states of the primary

channels, the resultant problem is a Partially Observable Markov Decision Process

(POMDP) for which the e↵ective state of the system can be taken as the belief

vector. An algorithm to obtain optimal decisions for a POMDP problem was derived

in [21]. However, unless the number of primary channels is very small, the algorithm

leads to very high computational complexity rendering it impractical [23]. As an

alternative, an optimal channel sensing decision within the class of myopic policies

can be obtained by maximizing the total secondary transmission rate/reward over

all primary channels at each time step: i.e. making the channel sensing decisions

to obtain the instantaneous highest reward, rather than attempting to optimize the

average reward accrued over all times. This optimal myopic sensing decision A⇤
k can

be expressed as:

A⇤
k = argmax

PM
m=1 Ak(m,n)=1

M
X

m=1

E
n

rm(k, Ŝ(k),Ak,H
0
k)
o

. (2.35)

This optimal sensing decision is designed to jointly maximize the expected secondary

system throughput taking into account the impact from the access assigning decision-

making. Note that this problem can be cast as a constrained nonlinear 0-1 pro-

gramming problem [59]. Since the objective function in (2.35) is non-separable, the
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solution is generally hard to find. The direct search solution has an exponential

complexity of MN .

On the other hand, in order to perform this joint optimization at the SSDC, it is

required that the SSDC has perfect knowledge of the channel coe�cients h0
m,n(k)’s

between the secondary transmitters and receivers. However, unlike the channel coef-

ficients from the primary radios to the SUs, it might not be realistic to assume that

the SSDC has the knowledge of these secondary sender-receiver channel coe�cients,

since it is assumed that the SUs are sensing primary signals, but not SU signals.

This makes it reasonable to instead focus on finding an optimal myopic sensing pol-

icy in the sense of maximizing the secondary system transmission opportunities on

the primary channels, other than the transmission throughput, similar to [26]. The

optimal myopic sensing decisions in terms of maximizing the secondary transmission

opportunities can be found as

A⇤
k = argmax

PM
m=1 Ak(m,n)=1

M
X

m=1

E{rm(k,Ak)}

= argmax
PM

m=1 Ak(m,n)=1

M
X

m=1

Bmb0(m, k)PD,m(k,Ak). (2.36)

In Section 2.5 we will show that the maximization in (2.35) gives only a marginal

performance improvement compared to the performance obtained with the objective

function in (2.36), especially when the number of SUs is large compared to the

number of primary channels.

As an alternative with much lower computational complexity, we propose a sub-

optimal algorithm for solving (2.36) based on an iterative Hungarian algorithm [60].

For simplicity, we drop the time indices from the algorithm description and let Bm =

1. We assume that the crossover probabilities of the BAC are known. We define

the M ⇥ N matrix �(m,n) such that �(m,n)(m0, n0) = 1 if (m0, n0) = (m,n), and

�(m,n)(m0, n0) = 0 otherwise. We use Algorithm 1 below to find the channel sensing
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assignment A, which provides a sub-optimal solution to (2.36). In contrast with the

Hungarian algorithm solution which forms the optimal one-to-one matching between

two bipartite sets, our sensing policy allows multiple SUs to sense a single channel

at a time. Thus, an intuitive solution would be to apply the Hungarian algorithm

repeatedly among the primary channels with the available SUs that have not yet

been assigned. In this algorithm, we set a weighting matrix �P between the set of

SUs and the primary channels. Each weight or element �P(m,n) of this matrix is

defined as the increase in the detection probability on a particular channel m if an

additional SU n senses that channel. This is reflected in:

�P(m,n) =
⇥

PD,m(A+�(m,n))� PD,m(A)
⇤

b0(m), (2.37)

where A +�(m,n) is the new sensing assignment if an available SU n is assigned to

sense the m-th channel, given the current sensing assignment A. Therefore, if there

are more than M �1 unassigned SUs at an iteration, the proposed algorithm assigns

exactly M SUs to sense the primary channels. At each iteration, the Hungarian

algorithm assigns the SUs such that it maximizes the sum of �P(m,n) over all

m = 1, · · · ,M . Note that, at each iteration, the SUs are assigned in a one-to-one

mapping. Note that the above sensing decision making procedure applies to both

optimization problems in (2.35) and (2.36), except when using (2.35), the extra term

in (2.32) needs to be computed firstly.

The complexity of the Hungarian algorithm is (max{M,N})3 for anM⇥N bipar-

tite graph, whereas the complexity of the proposed iterative Hungarian algorithm is

in the order of dN
M
e(max{M,N})3 since the Hungarian algorithm is used iteratively

dN
M
e times. In brief, the proposed algorithm solves the channel sensing assignment

problem with roughly an order 4 polynomial complexity. Note that, in particular, if

N  M , Algorithm 1 is equivalent to the Hungarian algorithm. Next, we propose

a heuristic algorithm that reduces the above complexity to be linear in number of

secondary users N . This algorithm, as detailed in Algorithm 4, picks randomly a
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Algorithm 1 Iterative Hungarian Algorithm
A = 0M⇥N and N̄ = {1, · · · , N}

while N̄ 6= ; do

�P = 0M⇥N

for m 2 {1, · · · ,M} and n 2 N̄ do

�P(m,n) =
⇥

PD,m

�

A+�(m,n)
�

� PD,m (A)
⇤

b0(m)

end for

Run the Hungarian algorithm for the M ⇥N bipartite graph whose edge weights are

given in �P to obtain the maximum sum matching.

Remove the assigned vertices from the set N̄.

Append the new assignments to matrix A.

end while

secondary user n and assigns it to the m-th channel for which it has the highest

detection probability. Also, we allow at most dN
M
e SUs to sense each channel so that

the SUs sense evenly all channels and keep information about the belief of the state

of every channel.

Algorithm 2 Heuristic Sensing Assignment
A = 0M⇥N and N̄ = {1, · · · , N}.

while N̄ 6= ; do

Pick randomly n 2 N̄.

m⇤ = argmaxm2{1,··· ,M}Bmb0(m)PD,m(�(m,n))

s.t.
P

n2{1,··· ,N}A(m,n)  dNM e

A A+�(m⇤,n)

N̄ N̄\n

end while
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2.4 Primary channel Markov model parameter es-

timation

The classical algorithm used to estimate the Markov model parameters was provided

in [61], which deals with the case of fixed number of observations, but not the case

when the number of observations increases with time as in our problem. This classical

algorithm has a linear computational complexity in M ⇥ T , i.e. the product of

the number of channels and the time length. This leads to a high computational

complexity as T increases, since all the variables have to be re-initialized and flushed

every time for new observations. As a result, in this section, we propose an algorithm

to estimate the primary channel Markov model dynamically as time evolves, with a

linear computational complexity only in M .

We firstly familiarize the readers with the following concepts introduced in [61].

We denote P̂(m, t) =

 

p̂00(m, t) p̂01(m, t)

p̂10(m, t) p̂11(m, t)

!

as the estimated Markov model tran-

sition matrix of the m-th primary channel at time t. The estimated stationary

state distribution vector is denoted by ⇡̂(m, t) = [⇡̂0(m, t) ⇡̂1(m, t)]T with ⇡̂(m, t) =

P̂(m, t)⇡̂(m, t). For convenience, we use the compact notation

�̂(m, t) = (P̂(m, t), ⇡̂(m, t)), (2.38)

to indicate the estimated parameter set. We denote pm,n(j, i, k) = Pr{ym,n(k) =

j|Sm(k) = i}, 8i, j 2 {0, 1} as the n-th SU observation symbol probability distribu-

tions of the m-th channel at time k. Note that pm,n(j, i, k) = �i
m,n(k), 8j 6= i. At

each time t, for the m-th channel, consider the forward variable ↵m,i(k, t) and the
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backward variable �m,i(k, t) defined as

↵m,i(k, t) = Pr{y0:k(m, :), Sm(k) = i | �̂(m, t� 1)}, 8k 2 {1, · · · , t}, (2.39)

�m,i(k, t) = Pr{yk+1:t(m, :) | Sm(k) = i, �̂(m, t� 1)},

8k 2 {1, · · · , t� 1}. (2.40)

The forward variable ↵m,i(k, t), 8m 2 {1, ...,M} is evaluated inductively, as follows

[61]: 1) Initialization: ↵m,i(0, t) = ⇡̂i(t�1)pm(y0(m, :), i, 0), 8i 2 {0, 1}; 2) Induction:

↵m,j(k, t) =

2

4

X

i2{0,1}

↵m,i(k � 1, t)p̂ij(m, t� 1)

3

5 pm(yk(m, :), j, k),

8k 2 {1, · · · , t}, j 2 {0, 1},

where pm(yk(m, :), j, k) is defined as pm(yk(m, :), j, k) = Pr{yk(m, :) | Sm(k) = j}.

The backward variable �m,i(k, t),8m 2 {1, ...,M} is also evaluated inductively, as fol-

lows [61]: 1) Initialization: �m,i(t, t) = 1; 2) Induction: �m,i(k, t) =
P

j2{0,1} p̂ij(m, t�

1)pm(yk+1(m, :), j, k + 1)�m,j(k + 1, t), 8k 2 {1, · · · , t� 1}, i 2 {0, 1}.

After the SSDC gets the observation yt(m, :) of channel m at time t � 1, we

define ⇠m,i,j(k, t), 8k 2 {0, ..., t� 1} as the probability of channel m being in state i

at time k, and in state j at time k + 1 given the estimated model �̂(m, t � 1) and

the observation sequence y0:t(m, :), i.e.: ⇠m,i,j(k, t) = Pr{Sm(k) = i, Sm(k + 1) =

j | y0:t(m, :), �̂(m, t� 1)}. Thus, ⇠m,i,j(k, t) =
↵m,i(k,t)p̂ij(t�1)pm(yk+1(m,:),j,k+1)�m,j(k+1,t)

Pr{y0:t(m,:)|�̂(m,t�1)} ,

where Pr{y0:t(m, :) | �̂(m, t� 1)} =
P

i2{0,1}
P

j2{0,1} ↵m,i(k, t)p̂ij(t� 1)pm(yk+1(m, :

), j, k + 1)�m,j(k + 1, t). The summation of ⇠m,i,j(k, t) over k can be interpreted as

an estimate (at time t) of the expected number of transitions from state i to state

j:
Pt�1

k=0 ⇠m,i,j(k, t) = E{number of transitions from i to j}. Let �m,i(k, t) denote

the probability of channel in state i at time k given the model �̂(m, t � 1) and the
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observation sequence y0:t(m, :), for k 2 {0, ..., t� 1}:

�m,i(k, t) = Pr{Sm(k) = i | y0:t(m, :), �̂(m, t� 1)}

=
↵m,i(k, t)�m,i(k, t)

P

i2{0,1} ↵m,i(k, t)�m,i(k, t)
. (2.41)

The summation of �m,i(k, t) over k 2 {0, ..., t� 1} can be interpreted as an estimate

(at time t) of the expected number of times that state i was visited, or equivalently,

the expected number of transitions made from state i, so that
Pt�1

k=0 �m,i(k, t) =

E{number of transitions from i}. Thus, a set of re-estimated transition probabilities

p̂ij(m, t) =
Pt�1

k=0 ⇠m,i,j(k,t)Pt�1
k=0 �m,i(k,t)

, 8i, j and the stationary state distribution vector ⇡̂(m, t) are

obtained, resulting in the new parameter set �̂(m, t) = (P̂(m, t), ⇡̂(m, t)). For each

time t, it has been proven in [62], [63] that either 1) the model �̂(m, t � 1) defines

a critical point of the likelihood function, in which case �̂(m, t) = �̂(m, t� 1); or 2)

model �̂(m, t) is more likely than model �̂(m, t� 1) in the sense that Pr{y0:t(m, :) |

�̂(m, t)} > Pr{y0:t(m, :) | �̂(m, t � 1)}. Thus, at every time step t, if we iteratively

use �̂(m, t) in place of �̂(m, t�1) and repeat the estimation process, then we improve

the probability of y0:t(m, :) being observed from the model until a limiting point is

reached [61]. Due to the high complexity of the method (linear in M ⇥ T ), we

propose Algorithm 3 that has a linear complexity only in M . Algorithm 3 drops the

backward variable and does not re-initialize ↵m,i(0, t) at each time t > 0 and use

↵m,i(t � 1, t) = ↵m,i(t � 1, t � 1) for further induction of the forward variable. The

variables ⇠m,i,j and �m,i are then computed only for the pair (t � 1, t) at each time

t. Then the updated estimation �̂(m, t) = (P̂(m, t), ⇡̂(m, t)) is obtained as shown in

Algorithm 3. The performance of this algorithm is simulated in Section V.
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Algorithm 3 Estimation of primary channel Markov model

Initialization: Pick �̂(m, 0) randomly 8m = {1, · · · ,M}, compute ↵m,i(0, 0) with

⇡̂(m, 0).

while t � 1 do

for m = 1 : M do

↵m,i(t� 1, t) ↵m,i(t� 1, t� 1), 8i 2 {0, 1}

↵m,j(t, t) 
h

P

i2{0,1} ↵m,i(t� 1, t)p̂ij(m, t� 1)
i

pm(yt(m, :), j, t), 8j 2 {0, 1}

Compute ⇠m,i,j(t� 1, t) = ↵m,i(t�1,t)p̂ij(m,t�1)pm(yt(m,:),j,t)

Pr{y0:t(m,:)|�̂(m,t�1)}
, 8i, j 2 {0, 1}

Compute �m,i(t� 1, t) = ↵m,i(t�1,t)P
i2{0,1} ↵m,i(t�1,t) , 8i 2 {0, 1}

Update �̂(m, t) = (P̂(m, t), ⇡̂(m, t)) with p̂ij(m, t) =
Pt

k=1 ⇠m,i,j(k�1,k)Pt
k=1 �m,i(k�1,k)

, 8i, j 2 {0, 1}

end for

end while

2.5 Simulation Results and Discussions

In this section, we first show the performance of our proposed sensing/access strate-

gies including comparison to those proposed in [26]: in each time slot, all SUs sense

the single primary channel with the highest belief of being idle. Next, we show the

performance of the primary channel Markov model parameter estimation when they

are assumed unknown.

2.5.1 Performance of the proposed myopic spectrum sensing

In order to directly compare the performance of our proposed myopic sensing solution

with the results of [26], we first simulate the discounted secondary system reward

under the same assumptions as in [26]: 1) perfect knowledge about the primary

signaling; 2) the signal-to-noise ratio (SNR) at the n-th SU when sensing the m-th

channel at each time k: SNR = 1
�2
w
; 3) the discount factor is 0.999 for time horizon

from 0 to 10000; 4) the SUs sensing reports to the SSDC are directly the observations
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rm,n(k)’s (i.e. no quantizations at local nodes); 5) all channel coe�cients hm,n(k)’s

are set to 1’s for all time (i.e. no fading); 6) unit bandwidth for all primary channels;

7) allowed probability of collisions with PUs is ⇣ = 0.1; and 8) primary channels

have i.i.d. Markovian evolutions with the transition matrix: P =

 

0.9 0.1

0.8 0.2

!

. In

Fig. 2.5, we show the discounted reward in two cases: 1) 2 primary channels and 1

SU; 2) 2 primary channels and 2 SUs. The performance of the approach in [26] is

exactly regenerated in this figure (2 primary channels, 1 SU). When there is only a

single SU, the two competing strategies are equivalent and have the same results.

However, when there are 2 SUs (the rest of the assumptions staying the same), we

see that our proposed approach leads to a higher discounted reward. This is because

when all SUs are allocated to sense a single channel, as suggested in [26], SUs lose

access opportunities on the other channel.

Next, we compare the resulting percentage of primary channel usage of our pro-

posed sensing/access strategy to the one proposed in [26]. We define the percentage

of primary channel usage as:

U =

PM
m=1

PT
k=1(1� ŝm(k))(1� Sm(k))

PM
m=1

PT
k=1(1� Sm(k))

, (2.42)

where T is the simulation time. The primary SNR at the n-th SU when sensing the

m-th channel is: SNR = �2
x

�2
w
for the energy detection case, and SNR = ⇡1⇡0

�2
w

matched

filter detection case. Other assumptions are: 1) no discount factor (i.e. � = 1); 2)

channel coe�cients are standard Gaussian distributed: hm,n(k) ⇠ N(0, 1) and known

at each time; 3) unit bandwidth for all primary channels; 4) allowed probability of

collisions with PUs is ⇣ = 0.1; and 5) the primary channels have the same Markov

model: P =

 

0.9 0.1

0.8 0.2

!

. Fig. 2.6 shows the percentage of primary channel usage

for both cases: 1) Energy-detector based sensing; 2) matched-filter based sensing.

As expected, when perfect knowledge about the primary signaling is assumed, higher

percentage of primary channel usage is achieved. We also see that, under both cases,

41



Chapter 2. Optimal Myopic Sensing and Dynamic Spectrum Access in CR Networks

our proposed myopic channel sensing strategy outperforms the strategy of [26]. In the

case of perfect knowledge about the primary signaling, the two resulting percentage

of primary channel usage deviate significantly after -5 dB. Again, this is because

the strategy used in [26] constraints all the SUs on a single primary channel with the

highest believe of being idle to sense and access at each time. As the received primary

SNR becomes higher, fewer SUs on a single primary channel are needed to achieve

an “accurate enough” estimation of the state of that primary channel. As a result, if

all the SUs are allocated to a single primary channel at each time, the opportunities

on the other channel are lost entirely. When a su�cient number of SUs are available,

the more opportunities are lost using the strategy in [26]. In the case of no prior

knowledge about the primary signaling, similar performance results are observed

for higher primary SNR regions. From Fig. 2.6, we can also see that the the sub-

optimal algorithms (iterative Hungarian algorithm with polynomial complexity and

the heuristic algorithm with linear complexity) give sub-optimal (very close to the

optimal myopic solution) performance at much lower computational complexities.

To address the problem of the performance gap of the optimal myopic sensing

solution and the optimal solution to the POMDP, an upper-bound is obtained by

assuming that SUs perform the proposed optimal myopic sensing, but after obtaining

the sensing and access decisions in the current time slot, the current true states of

all the channels are revealed to the secondary system in order to obtain the most

accurate belief update for next time slot, and this procedure repeats. Note that the

true state information in any time slot is not used to make the sensing and assess

decision in that time slot, but only for the purpose of belief update for the next time

slot. This process yields an upper-bound for the optimal POMDP solution because

the optimal myopic policy guarantees the maximum possible reward in each current

time slot given the information obtained from the past, whereas revealing the current

true states of all channels gives the most accurate belief update, such that no other

sensing policy gives better performance than this combined procedure. Fig. 2.8

42



Chapter 2. Optimal Myopic Sensing and Dynamic Spectrum Access in CR Networks

−5 −4 −3 −2 −1 0 1 2 3 4 5
100

200

300

400

500

600

700

800

900

Time steps = 10000, 2 channels, ζ=0.1

SNR (dB)

D
is

co
u

n
te

d
 R

e
w

a
rd

 

 

Myopic Allocation of 1 SU

SUs are assigned on one channel

Myopic Allocation of 2 SUs

SUs are assigned on one channel

2 SUs

1 SU

Figure 2.5: Discounted reward comparison.

and 2.9 show the performance comparison between the optimal myopic solution and

the obtained upper-bound (both using the energy based detection): 1) in the first

simulation set, as shown in Fig. 2.8, we set p00 = 0.1, p01 = 0.9, p10 = 0.2, p11 = 0.8

and simulated 4 channels with 1, 2, 3, and 4 SUs respectively. We see that the

performance gap is quite tight. We also plotted the ratio of the myopic performance

to the upper bound, which increases with SNR and is bounded below by roughly 0.88;

2) in the second simulation set, as shown in Fig. 2.9, we set p00 = 0.9, p01 = 0.1,

p10 = 0.02, p11 = 0.98, and the gap is larger compared to the first simulation set,

this is due to the extreme choices of the state transition probabilities. Note that the

transition probabilities indicate that it is highly probable that channel will stay in

either idle or busy for a long period of time and it is not likely to change either from

busy to idle or from idle to busy, such that the assumption on the true state revealing

at the end of each time slot is significantly more critical than the previous case. Due

to this reason, we observe a larger performance gap. We also plotted the ratio of
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Figure 2.6: Comparisons of percentage of primary channel usage with 2 primary
channels and 3 SUs.

the myopic performance to the upper-bound and found out that the ratio behaves

similarly to the previous case and is bounded below by roughly 0.35. Although the

performance gap is large at the low SNR when there are only few SUs, we can see

that the ratio increases as the number of SUs increases. When there are 4 SUs, the

ratio is bounded from below by roughly 0.7. In practical cases, the number of SUs is

usually much larger than the number of primary channels, as a result, we conclude

that the myopic solution is not far from the upper-bound. These results suggest that

the proposed optimal myopic solution and its sub-optimal algorithms are practical

and e�cient.

Fig. 2.10 justifies the simplification of the objective function in (2.35) to the one

in (2.36). The secondary system throughput obtained from the objective function in
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Figure 2.7: Comparisons of percentage of primary channel usage with 10 primary
channels and 10 SUs.

(2.35) provides only a marginal performance improvement and as the number of SUs

increases, the performance gap becomes negligible. Note that practice, the number

of SUs is indeed likely to be larger than the number of primary channels which may

justify the use of the objective function provided in (2.36).

2.5.2 Estimation of primary channel Markov model param-

eters

As shown in Fig. 2.11, we performed Algorithm 3 for the case of one primary channel,

one SU and compared it to the algorithm presented in [61] which we denote as

method I. We denote Algorithm 3 as method II. In this simulation we assumed
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Figure 2.8: Comparisons of performance gap between the proposed optimal myopic
sensing policy and the upper-bound of the optimal POMDP sensing policy, for the
case of the following transition probabilities: p00 = 0.1, p01 = 0.9, p10 = 0.2, and
p11 = 0.8. To illustrate clearly in the plot, this simulation is based on the energy
based detection. Other sensing techniques give similar results.

the following: 1) the crossover probabilities of the observation BAC channel are:

�1
1,1(k) = �0

1,1(k) = 0.1; 2) the true values of the channel state transition probabilities

are: p00 = 0.9, p01 = 0.1, p10 = 0.2, p11 = 0.8. From Fig. 2.11 we see that there is no

significant di↵erence between the convergence times of these two methods (method I

gives comparatively smoother convergence performance though). Also, both methods

converge very close to the correct true values but Method II has a linear complexity

only with M (method I has a linear complexity with M ⇥ T ).
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Figure 2.9: Comparisons of performance gap between the proposed optimal myopic
sensing policy and the upper-bound of the optimal POMDP sensing policy, for the
case of the following transition probabilities: p00 = 0.9, p01 = 0.1, p10 = 0.02, and
p11 = 0.98. To illustrate clearly in the plot, this simulation is based on the energy
based detection. Other sensing techniques give similar results.

2.6 Chapter Summary

In this chapter, we have presented a universal myopic channel sensing and access

policy for a centralized CR communication system in which the channel sensing and

access decisions are made at a central unit. By using the word universal, we mean

that our proposed myopic policy is applicable to any number of primary channels,

any number of SUs, and any primary channel Markov model parameters, such as

the state transition probabilities and stationary distributions. Unlike other existing
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Figure 2.10: Acheived secondary system throughput comparison of the energy based
detector at the SSDC with two di↵erent objective functions: 1) maximizing the sec-
ondary sysstem throughput jointly with sensing decision and the access assigning
decision, assuming the channel coe�cients of the secondary sender-receiver chan-
nels are known at the SSDC; 2) maximizing the spectrum opportunities without
considering the access assigning decision-making.

approaches proposed in literature, our universal myopic channel sensing policy is

more realistic because our policy explicitly assigns SUs to sense specific primary

channels by taking into account the spatial and temporal variations of channel fading

coe�cients on di↵erent primary channels. As alternatives to the high complexity

optimal myopic channel sensing policy, we proposed two algorithms to obtain sub-

optimal policies with low complexities: The first is based on the iterative Hungarian

algorithm and it has fourth-order complexity while the second algorithm is based

on a heuristic method with a linear complexity. The simulation results showed that

the two proposed low-complexity algorithms achieve performance very close to the

optimal myopic solution, but with much smaller computational e↵orts. We also

showed that under realistic conditions our approach outperforms previously proposed
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Figure 2.11: Estimations of channel Markov model state transition probabilities
(Methods I and II).

approaches. To support our myopic sensing policy, we also proposed an e↵ective

algorithm with linear complexity to estimate unknown channel Markov model.

49



Chapter 3

Cyclostationarity-based Feature

Extraction and Practical Concerns

3.1 Cyclostationarity-based Feature Extraction

In order to detect active RF signals, we propose to identify their carrier frequencies

and the associated cyclic frequencies that are induced by the underlying periodicities

of those signals. Note that, it is well-known that almost all man-made signals exhibit

such underlying periodicities due to, for example, their symbol rates, coding schemes,

packet/frame header structures and training symbol sequences, etc. [64]. In the

following discussion, however, we will explicitly focus on the cyclic properties induced

by the symbol and coding rates1. Using the discrete-frequency smoothing method [64]

described below, we compute an estimate of the Spectral Correlation Function (SCF)

S↵
x (t, f) for a general discrete signal {x(t�kTs)}M�1

k=0 , where Ts is the sampling period,

and M is the number of samples.

1It is fairly straightforward to generalize the method to include other periodicities that
might be present in any given signal.
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The fast Fourier transform (FFT) X̃(t, f) of the sequence {x(t � kTs)}M�1
k=0 is

defined in (3.1) over the set of frequencies {�fs
2 ,�

fs
2 + Fs, · · · , fs2 � Fs,

fs
2 }, where

fs =
1
Ts

is the sampling rate and Fs =
1

MTs
is the frequency increment and a(t) is a

triangular data tapering window [64].

X̃(t, f) =
M�1
X

k=0

a(t� kTs)x(t� kTs)e
�j2⇡f(t�kTs). (3.1)

An estimate of the SCF can then be obtained based on the discrete-frequency smooth-

ing method [64]:

S̃↵
x (t, f) =

1

LT

(L�1)/2
X

⌫=�(L�1)/2

X̃(t, f +
↵

2
+ ⌫Fs)X̃

⇤(t, f � ↵

2
+ ⌫Fs),

where T = MTs is the time length of the data segment, ↵ is the cyclic frequency and

L (an odd number) is the spectral smoothing window length. By setting ↵ = 0, we

first obtain an estimation of the power spectral density (PSD) of the discrete signal

{x(t� kTs)}M�1
k=0 :

S̃0
x(t, f) =

1

LT

(L�1)/2
X

⌫=�(L�1)/2

�

�

�

X̃(t, f + ⌫Fs)
�

�

�

2

. (3.2)

The active carrier frequencies in the spectrum sub-band of interest is determined

by setting a threshold on the above PSD. According to [65], the threshold ⌘PSD

shown below can be derived based on the Neyman-Pearson test:

⌘PSD =
��1 (L; (1� ↵F )�(L))Pn

TsL
, (3.3)

where ↵F is the false alarm probability, ��1 is the inverse lower incomplete gamma

function (where �(k, x) =
R x

0 tk�1e�tdt and the inverse is w.r.t. the second argument),

�(k) =
R1
0 tk�1e�tdt is the gamma function and Pn is the noise power that can be

estimated as P̂n = Ts

Pfs/2
f=�fs/2

S̃0
x(t, f), similar to the method discussed in [66].

The impact of noise power uncertainty was discussed and analyzed in [67,68] where
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the deterioration of the detector performance was upper-bounded by an expression

involving the peak-to-peak range of noise uncertainty [67]. The carrier frequencies

are estimated as the midpoints of the segments formed by the intersection between

the PSD curve and the threshold line ⌘PSD, as shown in Fig. 3.1. We denote by A

the set of all detected carrier frequencies in the sub-band of interest.

!!"" !#"" !$"" !%"" " %"" $"" #"" !""
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Figure 3.1: Carrier frequencies are estimated as the midpoints of the intersections
between the PSD curve and the threshold line.

Next, an estimate of the spectral autocoherence function magnitude [64] is com-

puted as:

|C̃↵
x (t, f)| =

|S̃↵
x (t, f)|

q

S̃0
x(t, f + ↵/2)S̃0

x(t, f � ↵/2)
. (3.4)

Note that |C̃↵
x (t, f)| is normalized to be between 0 and 1. Due to the fact that for
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each carrier, the associated cyclic components show up peaks in a close range of the

carrier, we define the cyclic sub-domain profile of carrier fc 2 A as:

Ĩx(t,↵, fc) = max
f2[fc��fL(fc),fc+�fU (fc)]

|C̃↵
x (t, f)| , (3.5)

where the lines f = fc � �fL(fc) and f = fc + �fU(fc) (8fc 2 A) partition the

(f,↵)-plane into Voronoi cells whose point sites [69] are located at the detected

carrier frequency points {(fc, 0) : fc 2 A}.

In [70], it is shown that digital signals exhibit cyclostationarity at multiples of

their baud rates. Moreover, the digital signals may exhibit other periodicities as well,

for example, due to coding. We denote the RF signature of the signal centered at

fc as RF(fc) = {↵ 6= 0 : IE Ĩx(t,↵, fc) � ⇣}, where IE denotes the indicator function

of event E = {Ĩx(t,↵, fc) is a local maximum}, and ⇣ 2 (0, 1) is a threshold for the

peak detection in the cyclic sub-domain profile.

3.2 Impact of Time-varying Channel Fading on

the cyclostationary features

In this section, we show that the cyclostationary features of signals can essentially be

preserved even in the presence of channel fading. In other words, we show that the

proposed cyclostationarity based detection method is robust against channel fading

e↵ects.

A continuous-time real-valued stochastic process x(t) is said to be second-order

cyclostationary in the wide sense if its mean E{x(t)} and autocorrelation function

Rxx(t, ⌧) , E{x(t+ ⌧)x(t)} are periodic with some period, say T0:

E{x(t+ T0)} = E{x(t)}, Rxx(t+ T0, ⌧) = Rxx(t, ⌧), (3.6)
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for all t and ⌧ [71]. We consider a cyclostationary digital signal x(t) and an linear

time-varying (LTV) fading channel2, having an impulse response of h(⌧ 0, t). Accord-

ing to the definition of cyclostationarity, we know that the autocorrelation function

of x(t) is a periodic function of t, such that Rxx(t+T0, ⌧) = Rxx(t, ⌧), for some period

T0. The received signal y(t) through the LTV fading channel can be expressed as:

y(t) =

Z 1

0

x(t� ⌧ 0)h(⌧ 0, t)d⌧ 0 + w(t), (3.7)

where w(t) is an additive wide sense stationary (WSS) noise process. The autocor-

relation function of the received signal y(t) can then be expressed as:

Ryy(t, ⌧) = E {y(t+ ⌧)y(t)}

= E
⇢

Z 1

0

x(t+ ⌧ � ⌧ 01)h(⌧
0
1, t+ ⌧)d⌧ 01 + w(t+ ⌧)

�

⇥

⇥


Z 1

0

x(t+ ⌧ � ⌧ 02)h(⌧
0
2, t)d⌧

0
2 + w(t)

��

= E
⇢

Z 1

0

Z 1

0

x(t+ ⌧ � ⌧ 01)x(t+ ⌧ � ⌧ 02)h(⌧
0
1, t+ ⌧)h(⌧ 02, t)d⌧

0
1d⌧

0
2

�

+

+E {w(t+ ⌧)w(t)}

=

Z 1

0

Z 1

0

E {x(t+ ⌧ � ⌧ 01)x(t+ ⌧ � ⌧ 02)}⇥⇥E {h(⌧ 01, t+ ⌧)h(⌧ 02, t)} d⌧ 01d⌧ 02 +

+Rww(t, ⌧)

=

Z 1

0

Z 1

0

Rxx(t, ⌧ � ⌧ 01 + ⌧ 02)Rhh(⌧
0
1, ⌧

0
2; t+ ⌧, t)d⌧ 01d⌧

0
2 +Rww(⌧), (3.8)

where Rhh(⌧ 01, ⌧
0
2; t1, t2) , E {h(⌧ 01, t1)h(⌧ 02, t2)} is the autocorrelation of the channel

impulse response h(⌧ 0, t), and Rww(t, ⌧) = Rww(⌧) is the autocorrelation function of

the WSS noise.

According to empirical studies, the channel can be considered as WSS as long as

the mobile unit (the transmitter and/or receiver) covers a distance in the dimension of

2Time-varying is due to motion of the transmitter and/or receiver. Note that the
LTV channels are also referred to as time-frequency dispersive/selective or doubly disper-
sive/selective in the literature.
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a few tens of the wavelength of the carrier signal in an observation period [72]. We also

assume that scattering components with di↵erent propagation delays are statistically

uncorrelated. These channel models are called US (uncorrelated scattering) channel

models or US models [73]. The most important class of stochastic LTV channel

models is represented by models belonging both to the class of WSS and to the class

of US. These channel models are called WSSUS models and are almost exclusively

employed in current literature for modeling frequency selective mobile radio channels

[72–76].

Under this common assumption of WSSUS, the autocorrelation function of the

impulse response of the LTV fading channel can be expressed as [73]:

Rhh(⌧
0
1, ⌧

0
2; t+ ⌧, t) = �(⌧ 02 � ⌧ 01)Shh(⌧

0
1, ⌧), (3.9)

where Shh(⌧ 01, ⌧) is called the delay cross-power spectral density [73]. We substitute

(3.9) back into (3.8) to obtain:

Ryy(t, ⌧) =

Z 1

0

Z 1

0

Rxx(t, ⌧ � ⌧ 01 + ⌧ 02)�(⌧
0
2 � ⌧ 01)Shh(⌧

0
1, ⌧)d⌧

0
1d⌧

0
2 +Rww(⌧)

=

Z 1

0

Rxx(t, ⌧)Shh(⌧
0
1, ⌧)d⌧

0
1 +Rww(⌧)

= Rxx(t, ⌧)

Z 1

0

Shh(⌧
0
1, ⌧)d⌧

0
1 +Rww(⌧), (3.10)

so that

Ryy(t+ T0, ⌧) = Rxx(t+ T0, ⌧)

Z 1

0

Shh(⌧
0
1, ⌧)d⌧

0
1 +Rww(⌧)

= Rxx(t, ⌧)

Z 1

0

Shh(⌧
0
1, ⌧)d⌧

0
1 +Rww(⌧)

= Ryy(t, ⌧). (3.11)

This shows that the autocorrelation function of the received signal y(t) is also

periodic with the same period T0 as the transmitted signal x(t). As a result, the

received signal y(t) is also cyclostationary with the same cyclic components as x(t).
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A more general class of stochastic processes is obtained if the autocorrelation

function Rxx(t, ⌧) is almost periodic in t for each ⌧ [77]: A continuous-time real-

valued stochastic process x(t) is said to be almost-cyclostationary (ACS) in the wide

sense if its autocorrelation function Rxx(t, ⌧) is an almost periodic function of t

(with frequencies not depending on ⌧) [71]. When the input signal x(t) is considered

as ACS, the output signal y(t) through the LTV fading channel is also ACS with

the same cyclic components as x(t), since we can see from (3.10) and (3.11) the

autocorrelation function Ryy(t, ⌧) is also almost periodic with the same period as

Rxx(t, ⌧).

As a result, we see that when fading channels are considered as general LTV

systems (i.e., considering both channel fading and the doppler e↵ect), the cyclosta-

tionary properties of the transmitted signals are not altered at the output of the

channel, or the received signal at the Radiobot. This justifies the robustness of the

cyclostationarity based detection/classification method, in the presence of channel

fading. Note that, the proposed cyclostationarity based detection method introduced

in Section 3.1 also applies to the ACS assumption, since the SCF is also defined un-

der the assumption of ACS and it has been shown that an ACS signal exhibits

cyclostationarity at cycle frequency ↵ if R↵
xx(⌧) 6⌘ 0, similarly to the cyclostationary

stochastic processes [71, 77].

3.3 Impact of the Doppler Shift on the detected

carrier frequencies

In this section, we analyze the impact of Doppler shift on the PSD of the received

signal. The cyclic autocorrelation function R↵
yy(⌧) of the received signal y(t) is defined

as R↵
yy(⌧) , limT!1

1
T

R

T
2

�T
2

Ryy(t, ⌧)e�j2⇡↵tdt [77]. Replacing Ryy(t, ⌧) by its value in
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(3.10), we obtain:

R↵
yy(⌧) = H(⌧)R↵

xx(⌧) +Rww(⌧)�
K(↵), (3.12)

where H(⌧) =
R1
�1 Shh(⌧ 01, ⌧)d⌧

0
1 and �K denotes the Kronecker delta function. We

may compute the PSD S0
y(f) of the received signal y(t) as the Fourier transform

(denoted by the operator F) of R↵
y (⌧) at ↵ = 0, such that:

S0
y(f) = F

⇢

Z 1

�1
Shh(⌧

0
1, ⌧)d⌧

0
1

�

⇤ S0
x(f) + Sw(f)

=

Z 1

�1
F {Shh(⌧

0
1, ⌧)} d⌧ 01 ⇤ S0

x(f) + Sw(f)

=

Z 1

�1
S(⌧ 01, f)d⌧

0
1 ⇤ S0

x(f) + Sw(f) from (7.37) in [73]

= Sµµ(f) ⇤ S0
x(f) + Sw(f) from (7.42) in [73] ,

where S(⌧ 01, f) and Sµµ(f) are, respectively, the scattering function and the Doppler

power spectral density, and S0
x(f) is the PSD of the transmitted signal. The Doppler

PSD is usually defined over a range [�fmax, fmax], where fmax is the maximum

Doppler frequency shift [73]. Thus, the received PSD can be expressed as:

S0
y(f) =

Z fmax

�fmax

Sµµ(⌫)S
0
x(f � ⌫)d⌫ + Sww(f) . (3.13)

Based on (3.13), the convolution of S0
x(f) with a window of length 2fmax causes

the PSD to spread at most by ±fmax at each point. If the Doppler PSD Sµµ(f)

is symmetric (such as Jakes’ type [73]), the carrier frequency components of the

detected feature points do not shift since the main lobes of the PSD are spread

evenly in both left and right directions. However, if Sµµ(f) is not symmetric (such

as Rice’s, Gauss I or Gauss II types [73]), the detected carrier frequencies will shift

by an amount smaller than fmax. Therefore, due to the Doppler shift, it may not

be possible to detect and distinguish signals that are separated by less than fmax

in the spectrum. However, based on the users activity and by using appropriate

57



Chapter 3. Cyclostationarity-based Feature Extraction and Practical Concerns

learning algorithms, the Radiobot might be able to detect each of the signals when

they are the only transmitted signals. Then using this knowledge, it may be able

to distinguish them when both signals are transmitted simultaneously. This again

emphasizes the importance of true learning from past experience during the signal

detection and classification steps.

In order to illustrate the robustness of the cyclostationarity-based feature ex-

traction against the channel fading and doppler e↵ect, we simulated a Bluetooth

signal with a symbol duration of 1µS (i.e., a resulting symbol rate cyclic frequency

feature at 1MHz). The channel is configured as a frequency-selective (multi-path)

fading channel with a maximum Doppler shift of ±300Hz, which corresponds to a

maximum transmitter-receiver relative speed of 37.5m/s, or around 84 mph for a

signal in the 2.4GHz frequency range. There are three discrete path specified with

their delays 0µS, .15µS, and .32µS, respectively, and with an average path gain of

0, �10, and �10dB, respectively. Each discrete path is modeled as an independent

Rayleigh fading process. The cyclic profile of the received Bluetooth signal with

SNR = �5dB, before and after the linear time-varying fading channel is shown in

Fig. 3.2. As shown in Fig. 3.2, the cyclic peaks for the Bluetooth signal stays exactly

at 1MHz and its multiples, for both before and after the fading channel with Doppler

frequency shift. We can also see that the Bluetooth signal shows a minor cyclic peak

amplitude decreasing after the fading channel, this is possibly due to the random

path amplitude variation and the signal distortion in the multi-path environment.
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Figure 3.2: A comparison of the cyclic profile of a Bluetooth signal before and after
linear time-varying channel fading.

3.4 Spectral Correlation Function of Multiple Su-

perposed Digital Signals

In practice, the Radiobot is more likely to deal with multiple RF activities in each

spectrum sub-band of interest. Thus, it needs to know the corresponding SCF prop-

erties of superposed digital signals, in order to identify the number and types of the

detected signals accurately.

In order to analyze the impact of the superposition of multiple signals on the SCF

of a signal y(t), let us assume that y(t) = w(t) +
PNs

m=1 xm(t), where {xm(t)}Ns
m=1

are independent zero-mean random processes (denoting Ns superposed signals) and

w(t) is an independent white noise process with a double-sided PSD of N0
2 . The
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autocorrelation function of y(t) is Ryy(t, ⌧) = N0
2 �(⌧) +

PNs

m=1 Rxmxm(t, ⌧) , where

Rxmxm(t, ⌧) is the autocorrelation functions of xm(t), for m = 1, · · · , Ns. First, we

define a Fourier transform for the cyclic autocorrelation function as [77]:

R↵
yy(⌧) , lim

T!1

1

T

Z T/2

T/2

Ryy(t, ⌧)e
�j2⇡↵tdt

= lim
T!1

1

T

Z T/2

T/2

"

N0

2
�(⌧) +

Ns
X

m=1

Rxmxm(t, ⌧)

#

e�j2⇡↵tdt

=
N0

2
�(⌧)�(↵) +

Ns
X

m=1

R↵
xmxm

(⌧). (3.14)

The SCF of y(t) can then be expressed as:

S↵
y (f) =

Z

R
R↵

yy(⌧)e
�j2⇡f⌧d⌧ =

N0

2
�(↵) +

Ns
X

m=1

S↵
xm

(f). (3.15)

This result shows that the superposition of multiple independent signals results

in a superposition of spectral peaks in the (f,↵) domain. In other words, the SCF

of the superposition of multiple signals has peaks at cyclic frequencies corresponding

to integer multiples of, for example, the data rates of each signal.
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Multivariate Non-parametric

Quickest detection

4.1 Introduction

In the QD problem, one observes samples sequentially. Initially, the samples are

drawn from a certain distribution. At an unknown time, the distribution changes.

Once this occurs, one needs to raise an alarm as quickly as possible to minimize the

detection delay [78].

In non-time-slotted CR networks, the on/o↵ radio activities at unknown times will

change the distribution of the received signal by a CR. In general, QD schemes can

be classified into parametric and non-parametric schemes. Parametric QD schemes

rely on the knowledge of the pre-change and post-change distributions of the obser-

vations. However, in a variety of applications, including detecting radio activities

in an unknown RF environment, such prior knowledge may be hard to obtain due

to uncertainties induced by channel fading, channel shadowing, the distance to the

primary radios, and Doppler e↵ects, among others. In comparison, a non-parametric
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QD scheme does not require any knowledge of the pre-change and post-change dis-

tributions.

In [79], QD methods were proposed for CRs. Both parametric and non-parametric

based algorithms were discussed and analyzed. However, the discussed methods were

only based on energy features. Note that the detection reliability can be compro-

mised by using energy features alone under channel shadowing, since variation of

the received signal power level may trigger excessive false alarms. Moreover, the

non-parametric approach proposed in [79] uses the individual sample power as the

test statistics instead of the average sample power over a certain duration. This,

however, significantly increases the number of detection/observation steps leading to

a high computational complexity compared to using a time window to obtain the

average sample power. In this chapter, we show that the choice of the time window

length plays a critical role in determining the achieved detection delay, false alarm

rate, as well as the percentage of idle channel utilization. Setting the time window

length down to one sample is evidently not the best choice.

In [7], the authors developed a blind energy and cyclostationarity-based signal

identification and classification procedure that does not rely on any prior knowledge

of the radio environment. It is also shown in Chapter 3 that the cyclostationarity-

based signal features are robust against channel fading, and Doppler e↵ects. As a

result, in this chapter, we propose to utilize the cyclostationarity feature to over-

come the aforementioned reliability issue of the traditional energy-based QD ap-

proach in complex channel conditions, and to exploit diversity to improve the de-

tection performance. To the best of our knowledge, such an average sample power

and cyclostationarity-based multivariate non-parametric QD has not been previously

considered in literature. Moreover, the performance of the proposed QD algorithms

is evaluated in more realistic multi-path frequency-selective fading channels with

Doppler e↵ects.
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The remainder of this chapter is organized as follows. In Section 4.2 we describe

our system model. The uni-variate non-parametric QD scheme is then briefly de-

scribed to prepare the reader for subsequent sections. In Section 4.3, we propose

the non-parametric average sample power-based and the cyclostationarity-based QD

schemes. We then propose the average sample power and cyclostationarity-based

multivariate non-parametric QD, followed by the novel parallel on-line QD/o↵-line

change-point detection scheme. In Section 4.4 we present performance evaluation

of the proposed QD schemes through simulations. In Section 4.5 we conclude by

summarizing our results and identifying possible future directions.

4.2 System Model and Non-parametric Quickest

Detection

Due to the focus of this chapter on the QD algorithm, we consider the spectrum sens-

ing for a particular communication channel and omit the decision-making problem

for scheduling of which channel to sense at any given time. Note that the proposed

methods in this chapter work for detecting the state transitions from either idle to

busy or from busy to idle. Without loss of generality, first we may consider the case

of detecting a change from idle to busy. The detection of changes from busy to idle is

further explained in later sections. We assume that after a state change is detected,

observations corresponding to the past are discarded. Thus, a new observation vec-

tor is obtained by re-initializing the starting point as the previous detection point.

As a result, by applying the proposed method iteratively, we may detect each state

change-point in a sequence of multiple alternating state change cycles, as long as

those changes are su�ciently far apart in order to obtain enough observation data to

make a decision. Hence, for the proposed QD schemes to work properly, we assume

that the sampling rate is set at a higher rate compared to the rate of state changes.
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For example, in the simulation section, we assume that the minimum sojourn times of

idle and busy channel states are 600µS (a reasonable assumption according to [80]),

while sensing sampling rate is 100MHz. For a certain communication channel of

interest, we denote by vector Zn
1 = [Z1, Z2, · · · , Zn]T the sequence of observations or

test statistics from time step 1 up to n, depending on the adopted particular sensing

technique, including for example, energy detection and cyclostationarity-based detec-

tion, etc. At each time n, a CR attempts to distinguish the following two hypotheses

based on Zn
1 :

H0 : Zi ⇠ g0, 8 i 2 {1, · · · , n}

H1 : 9 ⌧ 2 {1, · · · , n},

s.t.

8

>

<

>

:

Zi ⇠ g0, 8 i 2 {1, · · · , ⌧ � 1}

Zi ⇠ g1, 8 i 2 {⌧, · · · , n}
, (4.1)

where we denote by g0 and g1, respectively, the distribution of Zi under channel

idle and busy hypotheses and ⌧ denotes the time of the state change from idle to

busy. We denote by � the strategy adopted for the hypothesis testing and denote

by ta the time when the strategy raises an alarm of a state change. If ta � ⌧ , the

detection delay is defined as ⌧d = ta � ⌧ . On the other hand, if ta < ⌧ , we say a

false alarm occurs. Due to the fact that a prior distribution for the change point

is generally hard to find and the statistics of the state change pattern can easily be

non-stationary, we consider the QD in a non-Bayesian framework.

Note that the channel allocation information1 can generally be unknown to a

Radiobot a priori. However, by following the procedure of the RF activity detection

and classification introduced in [7], one may classify the RF activities according to

1Within the frequency range covered by each configuration of the reconfigurable an-
tenna, there can, in general, be multiple channels belonging to possibly di↵erent systems,
according to a static RF spectrum allocation scheme. The allocated channels generally
may have di↵erent center frequencies as well as their bandwidths.
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their center frequencies, cyclostationary features (symbol duration, coding structures,

etc.), and bandwidths to obtain the knowledge of the RF spectrum usage, so that

channel allocation information can be inferred and identified within the frequency

range of interest.

In the framework of non-Bayesian QD, the worst case conditional mean delay is

usually defined as [78, 81]

T̄d = sup
⌧�1

ess supEg1{⌧d = ta � ⌧ | ta � ⌧,Z⌧
1}, (4.2)

where Eg1{·} denotes expectation under the distribution g1, and the operator ess sup

denotes the essential supremum or the smallest essential upper-bound. The condi-

tioning within the expectation is with respect to the change point, and the worst

case is taken over all possible values of the change point and all realizations of the

measurements or the obtained test statistic sequence up to the change point. Note

that the conditional mean delay can be defined as Eg1{⌧d = ta � ⌧ | ta � ⌧,Z⌧
1} [78],

which itself is random since ⌧ and Z⌧
1 are random. One could assign a prior distri-

bution to ⌧ , and then define average delay by averaging the distribution on ⌧ and

Z⌧
1. However, it may be di�cult to find a suitable prior distribution for ⌧ in the

application of cognitive radios. As a result, the worst case, meaning using the least

favorite distributions of ⌧ and Z⌧
1, is considered by taking the essential supremum

over Z⌧
1, and taking the supremum over ⌧ to the conditional mean delay. We may

also define the average run length (ARL) to false alarm (mean value of the false

alarm intervals) to be

T̄f = Eg0{ta}, (4.3)

where Eg0{·} denotes expectation under the distribution g0. Note that in (4.3), the

condition ta < ⌧ is not included since it is redundant. On the other hand, no essential

supremum is taken, so the condition on Zi’s is also not necessary.
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The optimization problem can then be defined to find the strategy � that mini-

mizes T̄d while satisfying a lower threshold Tth for the ARL to false alarm T̄f :

min
�

T̄d = sup
⌧�1

ess supEg1{⌧d = ta � ⌧ | ta � ⌧,Z⌧
1},

subject to T̄f � Tth. (4.4)

Let us denote by G0 and G1 respectively the cumulative distribution functions

(cdfs) of Zi corresponding to g0 and g1, such that G0(z) =
R z

�1 g0(x)dx and G1(z) =
R z

�1 g1(x)dx. Note that G1 is said to be stochastically greater [82] than G0 when

G0(x) � G1(x) for all x, and we can write G1 �st G0.

Observe that if for a particular random process Zi, for i = 1, 2, 3, · · · such that

the cdfs GZ,0 and GZ,1 instead satisfy GZ,0 �st GZ,1, and if we denote by Xi = �Zi

another process with corresponding pre-change and post-change cdfs denoted by GX,0

and GX,1, then it is straightforward to show that GX,1 �st GX,0. This makes it easy

to adopt the same QD algorithm explained in the following for both detecting the

state changes from idle to busy and those from busy to idle. In case of detecting the

state changes from busy to idle, we may simply add a negative sign in front of the

obtained test statistics Zi’s such that the post-change distribution is stochastically

greater then the pre-change distribution.

From the observation vector Zn
1 = [Z1, · · · , Zn], we may define the rank for the

i-th observation Zi, as ⇢(i, n) =
Pn

j=1 I{Zi�Zj}, where I{E} is the indicator function

of event E, defined as I{E} = 1 if event E is true and I{E} = 0 otherwise. Thus,

a higher valued observation Zi has a higher rank ⇢(i, n) in the first n observations.

Then, we may take ⇢n = [⇢(1, n), · · · ⇢(n, n)] to determine a permutation of the first

n integers. Its inverse permutation can be determined as µn = [µ(1, n), · · · , µ(n, n)],

where we define µ(⇢(j, n), n) = j, such that the function µ(⇢(j, n), n) returns the

time sequence index j of an observation with rank ⇢(j, n).
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With these definitions, the likelihood ratio of the change taking place at ⌧ = k,

for k 2 {1, · · · , n}, and observing a particular ⇢n is given by

⇤n
k(⇢n) =

P{Zµ(1,n) < · · · < Zµ(n,n) | ⌧ = k}
P{Zµ(1,n) < · · · < Zµ(n,n) | ⌧ > n} . (4.5)

Since the above rank based likelihood ratio is not too sensitive to the true underlying

distributions [82], one can compute this likelihood ratio by choosing some representa-

tive (or hypothesized) pre and post-change distributions and design a corresponding

algorithm based on this likelihood ratio [82]. Note that the invariance of the ranks

under strictly increasing transformations causes the average run length (ARL) to

false alarm to be identical for any continuous G0.

For example, if we choose the representative/hypothesized pre and post-change

pdfs as f0(x) = e�|x|/2 and f1(x) = p↵e�↵xI{x�0} + q�e�xI{x<0}, with p 2 (1/2, 1),

↵ 2 (0, 1), � 2 [1,+1), and q = 1� p [82], then we have the following cdfs:

F0(x) =

8

>

<

>

:

1
2e

x, if x < 0

1� 1
2e

�x, if x � 0
, (4.6)

F1(x) =

8

>

<

>

:

qe�x, if x < 0

1� pe�↵x, if x � 0
. (4.7)

If we make p↵ � q�, then we can verify that the F1 is stochastically greater than

F0.

According to [82], the likelihood ratio function in this case can then be expressed

as

⇤n
k(⇢n) =

n
X

i=0

�n
k,i(⇢n), (4.8)
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where

n
X

m=0

�n
k,m(⇢n) =

✓

n

m

◆✓

1

2

◆n✓
p↵

q�

◆Uk(m,n)

(2q�)n+1�k

⇥
m
Y

i=1

✓

1 +
Vk(i, n)

i
(� � 1)

◆�1

⇥
n
Y

i=m+1

✓

1 +
Uk(i� 1, n)

n+ 1� i
(↵� 1)

◆�1

,

(4.9)

with Uk(m,n) =
Pn

j=k I {⇢(j,n)>m}, and Vk(m,n) = (n+ 1� k)� Uk(m,n) [82].

The procedure for the QD provided in [82] is to compute the Shiryayev-Roberts

statistic Rn =
Pn

k=1 ⇤
n
k(⇢n) and to stop at time ta when Rn first achieves or exceeds

the critical level A. The ARL to false alarm is shown in [82] to be lower-bounded as

A  Eg0{ta}, (4.10)

and the ARL to false alarm is shown to grow asymptotically linearly in A as the

critical level becomes large. The detection delay is shown in [82] to be upper-bounded

as

lim sup
A!1

sup
⌧�⌧(A)

Eg1{ta � ⌧ | ta � ⌧}  log(A)

D(G0, G1; f0, f1)
, (4.11)

where

D(G0, G1; f0, f1) = E1

⇢

log

✓

f1(F
�1
0 (G0(Z1)))

f0(F
�1
0 (G0(Z1)))

◆�

. (4.12)

The computational complexity of this uni-variate non-parametric QD procedure

can be shown to be O(n4) [82].
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4.3 Multivariate Non-parametric Quickest Detec-

tion

4.3.1 Average Sample Power-based Non-parametric Quick-

est Detection

When there is no prior information about the signal of interest, at any time instance

one may model the received signal in a particular channel as Y = W under the

assumption of no communication activity, where we denote by W the noise; and

Y = X +W when communication activities are present, where we denote by X the

received signal contributed from the activity. When the distributions of Y under

both activity absent and present are hard to find, or the distribution parameters are

unknown, one may adopt the above introduced uni-variate non-parametric QD. The

authors in [79] proposed to use the sample powers as the test statistic Zi’s in the

non-parametric change-point detection method discussed above, which has a compu-

tational complexity of O(n4). However, we find that this method is unsuitable when

the idle/busy periods last for a length that is at least several transmission-packets

long, which is normally the case. This is because the computational complexity

becomes high when the size of the vector Zn
1 is large. Instead, we propose to use

a number of consecutive samples to compute an average signal power as the test

statistic. In particular, we assume that for every M number of samples, we compute

Zi = 1
M

PiM
j=1+(i�1)M |Y (j)|2 as the test statistic. In this case, the computational

complexity of obtaining the average power at each step is O(M). Thus, the com-

putational complexity of the overall uni-variate non-parametric QD scheme becomes

O(Mn4). It is straightforward to see that, by increasing the number of samples M in

each step, the expected number of detection steps n may be significantly reduced. As

a result, a lower computational complexity may be obtained by using a time window
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to compute an average power, instead of using individual sample powers for the QD.

In the simulations section, we also investigate the e↵ect of the choice of M in terms

of the detection delays and false alarm rates. In this case, the ARL to false alarm

and the detection delay are as characterized in (4.10) and (4.11), respectively.

4.3.2 Cyclostationarity-based Non-parametric Quickest De-

tection

Under the assumption of the channel being wide sense stationary and uncorrelated

scattering (WSSUS), it has been shown in Chapter 3 that the autocorrelation func-

tion of a received signal is also periodic with the same period T0 as the transmitted

signal, so that the received signal is also cyclostationary with the same cyclic com-

ponents as the transmitted signal.

Using the same discrete-frequency smoothing method as in Chapter 3, we may

compute an estimate of the Spectral Correlation Function (SCF) S↵
x (t, f) for a general

discrete signal {x(t� kTs)}M�1
k=0 in a particular channel (assuming that the signal is

band-limited to the frequency range from fL to fH), with M number of samples

and a sampling period of Ts. An estimate of the spectral autocoherence function

magnitude [64] can then be computed as:

|C̃↵
x (t, f)| =

|S̃↵
x (t, f)|

q

S̃0
x(t, f + ↵/2)S̃0

x(t, f � ↵/2)
, (4.13)

for all f 2 [fL, fH ]. Note that |C̃↵
x (t, f)| is normalized to be between 0 and 1. A

channel cyclic profile for a channel from fL to fH can then be defined as

Ĩx(t,↵) = max
f2[fL,fH ]

|C̃↵
x (t, f)|. (4.14)
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The authors in [7] proposed a blind cyclostationarity-based signal identification

and classification strategy, which extracts the underlying cyclic components induced

by their symbol rates and coding structures without any prior information. The cyclic

components induced by signal symbol rates and coding structure can be extracted by

finding local maxima of Ĩx(t,↵). The local maxima are not hard to be determined by

setting a threshold to the cyclic profile since the profile has sharp peaks at the cyclic

frequencies corresponding to the symbol rate and coding rate. The same authors

in [7] also developed a machine learning based algorithm for setting the threshold of

the cyclic profile in order to better extract the cyclic components without any prior

information in a later work in [11]. By utilizing the blind signal identification and

classification method in [7], we may obtain knowledge of the channel information

including channel carrier frequency, bandwidth, and cyclic components associated

with each channel. On the other hand, in the context of traditional dynamic spec-

trum sharing, channel information and primary signal characteristics, such as carrier

frequency, signal bandwidth, symbol rates etc., are generally assumed to be known

beforehand. As a result, the following proposed QD schemes are applicable for the

traditional CRs as well.

Assuming a particular cyclic frequency ↵0 that is of interest for a particular

channel from fL to fH , one may compute the value of Ĩx(t,↵0). It can be seen from

(4.13) and (4.14) that, Ĩx(t,↵0) takes value in the interval of (0, 1). However, due

to channel fading, shadowing e↵ects, sensing duration, sampling frequency, unknown

signal-to-noise ratio (SNR), and estimation errors etc., the distribution of Ĩx(t,↵0)

is generally hard to find in closed-form. As a result, we propose to use the non-

parametric scheme as introduced in [82] to perform the QD. We assume that for

every M time samples of the received signal of interest, at a sampling rate of fs,

we may obtain a test statistic Zi = Ĩx(i,↵0), in which we replaced the time index

t by the sequence index i to indicate the i-th test statistic. We denote by G0 and

G1 the cdf of Zi under hypothesis H0 and H1, respectively. It has been shown in [7]
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that when an RF signal with the cyclic component ↵0 is present, the function Ĩx(i,↵)

tends to exhibit a local peak with a value close to 1 at ↵ = ↵0; and on the other hand,

if the signal is absent, the function tends to have a low value close to 0 at ↵ = ↵0.

Consequently, it is reasonable to assume that the distribution G1 is stochastically

greater than G0 and we verify this by simulations in the following.

As shown in Fig. 4.1, we obtained the estimated cdfs of the averaged sample
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Figure 4.1: Estimated cdfs for the averaged power and Ĩx(t,↵0) when the signal with
cyclic component ↵0 is absent and present.

power and Ĩx(i,↵0) at ↵0 = 1MHz under both signal absent and present scenarios

(we plot the cdfs of the average sample power in Fig. 4.1 in order to compare to

the cyclostationarity-based case) with various sensing time window lengths and three
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di↵erent SNRs: �10dB, 0dB and 5dB. The simulated signal is a Bluetooth signal

with a symbol duration of 1µS (i.e., a resulting symbol rate cyclic frequency feature

at 1MHz). The channel is a frequency-selective (multi-path) fading channel with a

maximum Doppler shift of ±300Hz, which corresponds to a maximum transmitter-

receiver relative speed of 37.5m/s, or around 84 mph for a signal in the 2.4GHz

frequency range. There are three discrete paths specified with their delays 0µS,

.15µS, and .32µS, respectively, and with an average path gain of 0dB, �10dB, and

�10dB, respectively. Each discrete path is modeled as an independent Rayleigh

fading process. As is seen from Fig. 4.1, in all cases, the resulting G1 (signal present)

is stochastically greater than G0 (signal absent), or G1 �st G0.

We can also see from Fig. 4.1 that when the SNR is low (�10dB), the pre and

post-change cdfs of the averaged sample power does not di↵er as much compared

to the case of Ĩx(i,↵0), even with a long sensing time (200µS). On the contrary,

the pre and post-change cdfs of Ĩx(i,↵0) di↵er from each other noticeably even when

SNR = �10dB with a sensing time of 100µS. Intuitively, the more the pre- and post-

change cdfs are distinguishable, the better detection performance can be expected in

terms of the averaged detection delay and ARL to false alarms. This suggests that

when the SNR is low, the cyclostationarity-based scheme can be more e↵ective with

longer sensing time window length. On the other hand, as we can see from Fig. 1,

with a short sensing time of 10µS at SNR = 5dB, the di↵erence between the pre-

and post-change cdfs is greater in the case of the averaged sample power, compared

to the di↵erence of those of Ĩx(i,↵0). This suggests that, when SNR is high, the

average sample power-based QD scheme may be more e�cient. This is because a

short sensing time for the cyclostationarity-based case is not adequate for obtaining

distinguishable pre- and post-change cdfs as in the average sample power-based case.

It is then straightforward to see that the sensing time length can be a critical factor of

the e�ciency and the e↵ectiveness of the QD. In particular, by using a longer sensing

time length in both cases, more distinguishable pre- and post-change distributions
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are obtained for the metrics. However, note that the detection delay is expressed in

terms of the observation steps in [82] as discussed in Section II. Thus, the detection

delay of the proposed non-parametric QD method is given by the product of the

number of observation steps and the sensing time length at each step. As a result,

a longer sensing time length setting for each observation step may also increase the

overall detection delay.

From the above observations, it is reasonable to exploit the diversity and consider

combining the energy-based and the cyclostationarity-based QD schemes, since each

o↵ers distinct advantages and disadvantages under di↵erent conditions. In particular,

one may consider a vector test statistic based on the observations of the averaged

sample power and the value of Ĩx(i,↵0) for each operation step, and perform the QD.

In the next sub-section, we discuss such a multivariate QD scheme.

4.3.3 Combined Multivariate Non-parametric Quickest De-

tection

Combining the average sample power-based and the cyclostationarity-based test

statistics at each time step, we may generate a multivariate observation at each

step by stacking the obtained average sample power and Ĩx(i,↵) into a 2⇥ 1 column

vector at each time, i.e. at time n, with a slight abuse of the notation, we obtain the

matrix

Zn
1 = [Z1Z2, · · · ,Zn], (4.15)

where we denote by Zi’s 2 ⇥ 1 column vectors, for all 1  i  n. In [83], a class of

multivariate rank-like quantities is defined and used to develop multivariate tests to

mimic traditional one-dimensional rank tests. We may adopt the algorithm developed
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in [50] to define the centered directional rank vector [50] of Zi for all 1  i  n as

Rn(Zi) =
n
X

j=1

Dij, (4.16)

where we let

Dij =
Zi � Zj

||Zi � Zj||
. (4.17)

The interpretation is that Dij is a unit vector pointing from Zj to Zi, or the nor-

malized di↵erence between Zi and Zj. The centered directional rank vector Rn(Zi)

may be considered as the accumulated di↵erence between the point Zi and the rest

of data points, similar to the idea of ranking in the traditional one-dimensional case.

We may then define the test statistic Rk,n as

Rk,n = R̄(k)T

n ⌃̂�1
Rk,n

R̄(k)
n , (4.18)

where

R̄(k)
n =

1

k

k
X

i=1

Rn(Zi), (4.19)

and

⌃̂Rk,n
=

n� k

(n� 1)nk

n
X

i=1

Rn(Zi)Rn(Zi)
T , (4.20)

for k = 1, · · · , n. Note that R̄(k)
n may be interpreted as the average of the first k

ranking values. If {Z1 · · ·Zk} are from the same distribution, then these data points

are located more closely compared to the case in which there exists a distribution

change before the k-th point. As a result, comparatively, a shorter vector R̄(k)
n is

obtained for the case of no distribution change, and a longer vector R̄(k)
n is obtained

for the case with a distribution change before the k-th point. Then, the quadratic

term Rk,n of R̄(k)
n may be used as the test statistic to detect a distribution change

75



Chapter 4. Multivariate Non-parametric Quickest detection

point, since Rk,n reflects the length of the vector R̄(k)
n , which is a↵ected by the

existence/absence of a change point. The QD may then proceed as follows: 1)

obtain Rmax,n = max1<kn Rk,n; 2) If Rmax,n > hn,pf , raise an alarm for state change,

otherwise collect another multivariate vector observation and repeat steps 1) and 2).

The threshold hn,pf is chosen such that the conditional probability of a false alarm

when observation n is added is equal to pf , given that no previous false alarm has

occurred, or

Pr{Rmax,n > hn,pf | Rmax,j  hj,pf ; j < n} = pf . (4.21)

Note that again this detection method works for both detecting the state changes

from idle to busy as well as for detecting those from busy to idle. However, as also

noted in [50], finding an analytical solution for the sequence of control thresholds

hn,pf is generally di�cult due to the unknown distributions of the observations in

the first place. As a result, we resort to simulations in Section 4.4 to illustrate the

performance of this combined QD scheme. In practice, we suggest to combine this

approach with a suitable machine learning (adaptive) technique [84] to obtain the

appropriate control thresholds. However, this is out of the scope of this dissertation

and left as a future research task.

The computational complexity of the proposed multivariate non-parametric QD

algorithm can be shown to be linear in n3, i.e. O(n3), where n denotes the number of

time steps before a state-change detection. However, the author in [50] has developed

a recursive algorithm to make the computational complexity of the multivariate QD

algorithm linear in n, or O(n). This is accomplished by deriving an expression to

compute the test statistics Rk,n+1 from Rk,n. Note that the computational complexity

of obtaining average sample power in each step is O(M), whereM denotes the number

of samples in each step. Whereas, the computational complexity of obtaining the

cyclostationary feature for a particular cyclic frequency in each step is dominated

by the FFT, which is O(M logM). The overall computational complexity of the
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proposed multivariate QD procedure is then O(nM logM). On the other hand,

the computational complexity of the energy-based uni-variate QD algorithm has a

complexity of O(Mn4). Thus, when logM < n3, the complexity of multivariate

case may be expected to be even less than the uni-variate case, due to the recursive

algorithm proposed in [50]. In case when M is large and M � n, the complexities

of these two cases should still be comparable.

In our case, since we are dealing with alternating idle and busy state changes, we

propose that whenever a state change has been detected, we use new observations

after each detection point for the QD of subsequent state changes. In this way,

we may control the computation complexity of the proposed multivariate QD to be

manageable. In case of either an idle or a busy state lasts for a long time of period,

we may adopt a moving time window to discard older observations and make use of

only the recent observations to perform the QD and e↵ectively keep the computation

complexity low.

To provide the self-awareness of false alarms and the achieved detection delays

in the QD procedure, in the following we propose a novel approach to combine the

above QD procedure with an o✏ine change-point detection algorithm.

Whenever a false alarm is encountered, either an alarm of state changing from

busy to idle is raised before its actual change, or an alarm of state changing from

idle to busy is raised while the state is still idle. In the first case, if the CR (or the

Radiobot) further decides to start transmitting data on the monitored channel, col-

lisions with other radio activities may occur. In the second case, though there may

not be collisions, valuable spectrum opportunities are lost. In either case, any false

alarm can certainly a↵ect the performance of the subsequent QDs, causing detec-

tion delays and possibly more subsequent false alarms, since the observations from

di↵erent distributions (pre-change and post-change) are treated as from the same

distribution. Note that, detection delays may also a↵ect the detection performance
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of subsequent detections in a similar way since a detection delay may omit one or

more state alternating cycles (a state change from busy to idle followed by a change

back to busy is referred as an alternating cycle and vice versa). In order to provide

the self-awareness of false alarms and detection delays to improve subsequent detec-

tions, we propose to incorporate a parallel o✏ine change-point detection algorithm

with our proposed multivariate QD algorithm. Although the method of the o✏ine

change-point detection has already been discussed in [50], the concept of the combi-

nation of QD and the o✏ine change-point detection has not been considered in the

literature.

The exact o↵-line change-point detection procedure can be explained as follows.

For a given sequence of observations with a length of N , one may obtain the test

statistics

Rk,N = R̄(k)T

N ⌃̂�1
Rk,N

R̄(k)
N , for all k = 1, · · · , N , (4.22)

similarly to the QD procedure described above. Then an estimate of the change

point can be obtained as [50]

⌧̂C = argmax
1kN

Rk,N . (4.23)

The parallel on-line QD/o↵-line change-point detection algorithm can be ex-

plained as follows: The o↵-line change-point detection procedure is invoked when-

ever a state change alarm is raised from the on-line QD procedure. The QD out-

come is trusted for the time being, so that the QD may drop previous observations,

re-initialize and take new observations for a subsequent detection of state change.

However, the dropped observations from the previous QD procedure are kept for

the o↵-line change-point detection procedure. As the on-line QD procedure contin-

ues, newly obtained observations are also fed into the o↵-line change-point detection

procedure. For a short period of time, the o↵-line change-point detection algorithm

may then re-estimate the past state change-point based on both the newly obtained

78



Chapter 4. Multivariate Non-parametric Quickest detection

observations and the kept observation history. If the re-estimated change-point were

to be di↵erent from the initial result declared by the on-line QD procedure, then

the re-estimated change-point from the o↵-line detector is used to re-initialize the

starting point for the current on-line QD procedure. In this way, detection delays

are made known to CR by comparing the results from the on-line QD procedure and

that from the o↵-line change-point detection procedure.

On the other hand, in order to detect false alarms, we propose to use an o↵-line

threshold hoff on the test statistics: if maxRk,N � hoff , then ⌧̂C = argmax
1kN

Rk,N

is used to update the change-point as introduced above; if maxRk,N < hoff , cancel

the state-change alarm and re-initialize the current on-line QD procedure from the

previous confirmed state change-point. Note that false alarm rates can be reduced

by directly setting a higher threshold in the on-line QD procedure. However, this

causes longer detection delays. As an alternative, by having a higher threshold hoff

for the o↵-line change-point detection procedure (compared to that of the on-line

QD procedure), false alarms can be corrected to some extent without compromising

the detection delay performance. Note that since the o↵-line change-point detection

procedure relies on more observations, it can provide more accurate/reliable results

on average compared to those obtained in the on-line QD procedure. The detailed

procedure of the parallel on-line QD/o✏ine change-point detection is presented in

Algorithm 4.

4.4 Simulations and Results

In this section, we show representative simulation results to illustrate the advan-

tages of the proposed methods for the channel state QD in CRs such as Radiobots.

Note that all the following simulations are based on the same multi-path frequency-
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Algorithm 4 Parallel Quickest detection and O✏ine Change-point detection
Initialization: Alarm flag f  0, set o✏ine window wait length c, set threshold
h and hoff , set np = n0 = 1
for n = 1, 2, 3, · · · do
Obtain observations Zn

n0

Rk,n  R̄(k)T
n ⌃̂�1

Rk,n
R̄(k)

n , for all k = n0, · · · , n
if max

n0kn
Rk,n � h then

Set the alarm flag to current step: f  n
Keep track of the previous state change-point: np  n0

Set current state change point: n0  n
end if
if n = f + c and n 6= c then
if max

npkn
Rk,n � hoff then

⌧̂C  argmax
npkn

Rk,n

Re-initialize starting point as n0  ⌧̂C
else
Re-initialize starting point as n0  np

end if
end if

end for

selective channel with Doppler e↵ect as used in Section 4.3.2.

In Fig. 4.2, a typical situation of the non-parametric cyclostationarity-based (uni-

variate, without using the average sample power) QD procedure introduced in Sec-

tion 4.3.2 is shown. In the top panel, we show the values of Zi = Ĩx(i,↵0) up to

roughly 15000µS. In the middle panel, the sequentially obtained Shiryayev-Roberts

statistic is shown. The QD threshold A for the Shiryayev-Roberts statistic is set

to 500. Other parameters are shown in the panel itself. In the bottom panel, the

true state change history and the detection results are superposed to show detec-

tion delays. The procedure for the average sample power based QD introduced in

Section 4.3.1 is similar.

Fig. 4.3 shows a typical scenario of the proposed parallel QD/o✏ine change-point
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Figure 4.2: A typical scenario of the QD procedure at SNR = 0dB, with a sampling
rate at 100MHz and the sensing time interval of 20µS.

detection procedure. We set the threshold hn,pf = 11 for all n of the on-line QD and

hoff = 15 for the o↵-line change-point detection. We show the state change history

and the QD results in the top panel. In the middle panel, we show the plot of

test sequence Rk,n for each time an alarm is raised, i.e. when Rmax,n > hn,pf where

Rmax,n = maxRk,n. In the bottom panel, we show the plot of Rk,n for each time

the o↵-line change-point detection is engaged. Note that the o↵-line change-point

detection detects the false alarm (Rmax,n < hoff ) at stage 1 and detects detection

delays from stage 2 to stage 5. The estimated chant-points are re-adjusted for all

stages. As shown in the middle panel, the re-adjusted change-point of each stage

is the first data point of Rk,n sequence of the next stage, which is the same as the

maximum point of Rk,n of the corresponding stage in the bottom panel. However,
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the on-line QD point of each stage is the last data point of of Rk,n sequence of that

stage, as shown in the middle panel. The o↵-line re-adjusted change-points are closer

to the real change-points compared to the on-line estimates.
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Figure 4.3: A typical scenario of the multivariate parallel on-line QD/o✏ine change-
point detection procedure at SNR= �5dB, with a sampling rate of 100MHz and
sensing interval of 10µS.

Fig. 4.4 shows performance comparisons of the average sample power-based, the

cyclostationarity-based, and the multivariate parallel QD strategies. The comparison

of average detection delay is shown in Fig. 4.4(a), the probability of change-point

detection and the false alarm probability are shown in Fig. 4.4(b), and the resulting

percentage of idle state usage is shown in Fig. 4.4(c). In the two uni-variate QD

cases, the threshold for the Shiryayev-Roberts statistic Rn was set to A = 830. In
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the multivariate parallel QD case, the detection thresholds are set to be hn,pf = 17

and hoff = 20 in order to make the false alarm probabilities lower than the other two

cases for a fair performance comparison. Note that higher threshold setting in all

cases may result in lower false alarm probability but at the expense of less change-

point detection and longer detection delays. The minimum idle/busy state sojourn

time is set to 600µS in all three cases. For fair comparison, we assume that whenever

a false alarm is raised prior to a state change from busy to idle, the following idle

period is not used by the CR. However, in practice a CR may still make use of some

portion of the idle period using the multivariate parallel detection scheme. As we can

see, slightly shorter detection delays are achieved by using the average sample power

based QD, compared to that using the cyclostationarity-based features. However, by

exploiting the power/cyclostationarity diversity, the multivariate parallel QD scheme

yields superior performance, in terms of both lower detection delays and lower false

alarm probabilities for each sensing duration compared to the other two schemes.

Although similar probabilities of change-point detections are achieved for all three

schemes, the multivariate parallel scheme yields much higher average percentage of

idle channel usage in the SNR region from �10 to 10dB. It is also shown in Fig.

4.4(c) that the average sample power based scheme with sensing duration of 5uS

achieves the highest average percentage of idle channel usage in SNR region from

�16 to �12dB. This suggests that the average sample power based scheme may be

more e�cient in the extreme low SNR region compared to the other schemes.

From the performance comparisons shown in Fig. 4.4, we can also see the tradeo↵

between the length of sensing duration and the resulting percentage of usage of the

idle state in all three cases. In particular, the highest percentage of usage is not

necessarily always achieved by using the shortest sensing duration of 5µS, although

it may achieve lower detection delays. This is due to its limited probability of change-

point detection and comparatively high false alarm probability. Note that the false

alarm probability is related to the ARL to false alarm. In particular, a shorter ARL
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to false alarm results in a higher false alarm probability. Moreover, the lower-bound

of ARL to false alarm in (4.10) is given in terms of number of steps, but not in terms

of the absolute time length. As a result, when using a shorter sensing duration for

each step (with the same threshold value), false alarms are raised more frequently

since there are more sensing steps prior to any change-point compared to that using

a longer sensing duration for each step. This also points out the disadvantage of

performing QD using individual samples (for example, the traditional individual

sample power-based QD scheme proposed in [79]), which can be considered as the

extreme case of using a short sensing duration.

The optimal setting of the sensing duration and the test threshold may not be

easy to be derived analytically (since they depends on the pre and post-change distri-

butions of the observations, which are assumed unknown in the first place). However,

suitable machine learning (adaptive) techniques [84] may help in practice to find the

optimal or a near-optimal solution. In particular, by using the proposed parallel

on-line QD/o↵-line change-point detection scheme, performance feedback of detec-

tion delay and false alarm probability may help to estimate/predict the idle channel

usage for any particular setting. Then, an appropriately chosen machine learning

algorithm may be used to find the optimal/near optimal solution.

4.5 Chapter Summary

In this chapter, we have proposed non-parametric quickest detection schemes to keep

track of the state changes (idle/busy) of communication channels. This capability

can be useful for future cognitive radios, since prior information on the statistics

of channel usage is generally hard to obtain in practice. We also proposed a novel

average sample power and cyclostationarity-based multivariate parallel quickest de-
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tection/o✏ine change-point detection scheme to improve detection performance com-

pared to the traditional energy-based methods. The performance of the proposed

detection schemes is evaluated through simulations. Compared to traditional energy-

based quickest detection schemes, smaller detection delays and higher percentage of

spectrum usage are obtained using the proposed schemes. The incorporation of the

decision-making for wideband spectrum sensing scheduling, and the evaluation of

communication throughput are left as future work.
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Figure 4.4: Performance comparisons of the average sample power-based, the cyclo-
stationarity based, and the multivariate parallel QD strategies. With a sampling rate
of 100MHz, the sensing time durations are set to 5µS, 10µS, and 15µS, respectively
in all cases.
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Chapter 5

Wideband PHY/MAC Bandwidth

Aggregation Optimization For CRs

5.1 Introduction

The simultaneous transmission over multiple radio interfaces by a single mobile ter-

minal has been previously discussed in the literature under the term of the bandwidth

aggregation (BAG) [32–37] (also known as channel aggregation), which aims at per-

forming simultaneous use of multiple interfaces (including Bluetooth, WiFi, satellite

communications etc.) to improve transmission quality or throughput depending on

specific architectural designs. A similar idea called Carrier aggregation (CA) can also

be found in recent literature on the Third Generation Partnership Project Long Term

Evolution-Advanced (3GPP LTE-A) [38–41]. CA is one of the key features assumed

in the LTE-A, in which mobile users can access a much wider transmission bandwidth
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up to 100 MHz compared with LTE Release 8 standard (up to 20 MHz) [38]. This is

achieved by aggregating two or more individual component carriers (CCs) belonging

to contiguous or non-contiguous frequency bands [38], essentially scheduling a mobile

user on multiple CCs simultaneously.

In this chapter, we provide a general formulation for the bandwidth aggrega-

tion (BAG) problem in a wideband spectrum access setup, taking into account the

essential practical issues and derive an optimal BAG strategy as the solution to a

multi-objective optimization problem: one objective is the communication through-

put of the mobile Radiobot device and the other one is the power consumption of

the device. Note that, by self-adjusting coe�cients used to give di↵erent priori-

ties for each of the objectives, the Radiobot can achieved autonomous operations

as envisioned in [6]. The proposed multi-objective optimization problem takes the

following essential practical issues into account: imperfect spectrum sensing, time

varying channel coe�cients (caused by fading and shadowing), hardware reconfigu-

ration time delay, hardware reconfiguration power consumption, and communication

power consumptions.

5.2 Problem Formulation

We assume that the spectrum range of interest is divided into N sub-bands, with

labels 1, 2, · · · , N . We denote by fn, Bn and Tn, respectively, the center-frequency,

the bandwidth, and the sensing time length of the n-th sub-band. We assume that

the maximum number of simultaneous transmissions that can be supported by the

Radiobot is L.

We assume that spectrum sensing is performed in each sub-band in an arbitrary

order. Let time sequence index k = 0, 1, 2, · · · denote the time instance at the end of
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the k-th spectrum sensing. We denote by ik and jk, respectively, for 1  ik, jk  N ,

the sub-band the Radiobot has just finished sensing on and the sub-band that is

about to be sensed immediately at time k. We denote by Mn(k) the number of

f
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k

Figure 5.1: A diagram of the system operation with N number of sub-bands.

detected idle channels in the n-th sub-band at time k. We index the m-th idle

channel in the n-th sub-band by (n,m), where 1  n  N and 1  m  Mn(k).

We assume that the Radiobot is free to choose to transmit on all the detected idle

channels including the ones in the sub-band that is immediately going to be sensed

by itself. This assumption is made based on the recent advances of the full duplex

radio capability [85], which is based on RF interference cancellation algorithms. A

diagram of the system operation is illustrated in Fig. 5.1.

In [86], a semi-Markov model was proposed to describe the channel state switching

based on measurements of a WLAN in the 2.4 � 2.475 GHz ISM band, in which

the sojourn time of idle periods was shown to fit a generalized Pareto distribution
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(GDP) [87] having a probability density function (pdf)

f(t | s, �, ✓) =

8

>

<

>

:

1
�

⇣

1 + s (t�✓)
�

⌘�1�1/s

, for s 6= 0

1
�
exp

⇣

� (t�✓)
�

⌘

, for s = 0
(5.1)

with the domain ✓  t < +1 for s � 0 and ✓  t  ✓��/s for s < 0, where s is the

shape parameter, � > 0 is the scale parameter, and ✓ is the location parameter [87].

Note that when s = 0, (5.1) reduces to an exponential distribution. In [88], an

Maximum Likelihood (ML) estimator for the sojourn time (both idle and busy)

distribution was proposed. The estimation of the sojourn times with time-varying

distributions was also discussed in [88]. In this work, the details of the estimation

of the sojourn time distributions are not addressed, but left as a future work in this

dissertation. We denote by F I
n,m(t) and FB

n,m(t), in general, the cdfs of the idle period

and busy period respectively, of channel (n,m), with

F I
n,m(t) =

Z t

0

f I
n,m(⌧)d⌧ , and FB

n,m(t) =

Z t

0

fB
n,m(⌧)d⌧

where f I
n,m(t) and fB

n,m(t) are the probability density functions (pdf’s) of the idle

period and busy period respectively.

The transmission rate on an idle channel (n,m) at time instance k can be defined

as

rn,m,k = Bn,m,k log2

✓

1 +
h2
n,m,kPn,m,k

Bn,m,kN0

◆

bits/s, (5.2)

where Bn,m,k is the bandwidth of the channel (n,m) at time k, with 1  m 

Mn(k). We denote by hn,m,k and Pn,m,k, respectively, the channel coe�cient and

the transmit power with the constraint 0  Pn,m,k  P̄ , and N0 is the single-sided

noise power spectral density level. Note that, one can obtain the knowledge of

the channel coe�cients by performing the pilot-assisted transmission (PAT) training

periodically or before each transmission [89, 90]. In this work, we assume that only

the distributions of the channel coe�cients are known a priori.
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Recall that the allowed maximum number of simultaneous transmission is L,

and we use the notation (nl,k,ml,k), for l = {1, · · · , L} to denote the channel being

selected at time k for the l-th transmission. We may use the L ⇥ 3 matrix Ak to

denote the action of the Radiobot at time k:

Ak =

2

6

6

6

4

n1,k m1,k P1,k

...
...

...

nL,k mL,k PL,k

3

7

7

7

5

. (5.3)

When (nl,k�1,ml,k�1) 6= (nl,k,ml,k), we say that the l-th transmission performed a

frequency hopping. When nl,k�1 6= nl,k, we denote by the constants �t and �p

the incurred time delay and power consumption for the hardware reconfiguration,

respectively, and denote by the constants �t and �p the incurred time delay and

power consumption respectively when nl,k�1 = nl,k but ml,k�1 6= ml,k. We assume

that�t > �t and�p > �p, since switching channels from one sub-band to another may

generally involve much more complicated RF hardware reconfigurations compared to

the case of switching within a sub-band.

Thus, given (nl,k�1,ml,k�1) and (nl,k,ml,k), the time delay incurred on the l-th

transmission can be expressed as

⌧l,k(Ak,Ak�1) = �tI{nl,k�1 6=nl,k} + �tI{nl,k�1=nl,k,ml,k�1 6=ml,k}, (5.4)

and the power consumption overhead incurred on the l-th communication hardware

can be expressed as

pl,k(Ak,Ak�1) = �pI{nl,k�1 6=nl,k} + �pI{nl,k�1=nl,k,ml,k�1 6=ml,k}, (5.5)

where I{E} is the indicator function of event E such that

I{E} =

8

>

<

>

:

1 , if E is true

0 , if E is not true
. (5.6)
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We assume that there are always data to be transmitted and the Radiobot as-

sumes that a primary user is interfering its communication if several packets are sent

wihtout receiving any ACK, and therefore, stops its transmission on a channel. Let

us denote by ⌧s the amount of time needed before it stops transmission. We define

a multi-objective problem: high communication throughput, and low transmission

energy consumption. The throughput Gl,k(Ak,Ak�1) on the channel (nl,k,ml,k) from

time k to k + 1 is given by

Gl,k(Ak,Ak�1)

=
h⇣

T I
nl,k,ml,k,k

� tk,nl,k
� ⌧l,k(Ak,Ak�1)

⌘

rnl,k,ml,k,kI{C} +

+ (Tjk � ⌧l,k(Ak,Ak�1)) rnl,k,ml,k,kI{D}
⇤

I{E}

= rnl,k,ml,k,k

h⇣

T I
nl,k,ml,k,k

� tk,nl,k
� ⌧l,k(Ak,Ak�1)

⌘

I{C} +

+ (Tjk � ⌧l,k(Ak,Ak�1)) I{D}
⇤

I{E}, (5.7)

where tk,n denotes the amount of time that has passed since the end of the last sensing

on the n-th sub-band at time instance k, T I
n,m,k denotes the random variable of the

idle sojourn time of the channel (n,m), and Tjk denotes the sensing time duration

for the jk-th sub-band. The events C, D, and E are defined as:

C =
n

0 <
⇣

T I
nl,k,ml,k,k

� tk,nl,k
� ⌧l,k(Ak,Ak�1)

⌘

< (Tjk � ⌧l,k(Ak,Ak�1))
o

=
n

tk,nl,k
+ ⌧l,k(Ak,Ak�1) < T I

nl,k,ml,k,k
< tk,nl,k

+ Tjk

o

, (5.8)

D =
n

T I
nl,k,ml,k,k

� tk,nl,k
+ Tjk

o

, (5.9)

E = {channel (nl,k,ml,k) is indeed idle, given it is detected idle} . (5.10)

The total expected throughput of the Radiobot from time k to k+1 can be given
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as:

E {Gk(Ak,Ak�1)} =
L
X

l=1

E {Gl,k(Ak,Ak�1)}

=
L
X

l=1

EH{rnl,k,ml,k,k}p
(nl,k,ml,k)
I

"

Z tk,nl,k
+Tjk

tk,nl,k
+⌧l,k(Ak,Ak�1)

⌧f I
nl,k,ml,k

(⌧)d⌧ +

+(Tjk � ⌧l,k(Ak,Ak�1))

Z 1

tk,nl,k
+Tjk

f I
nl,k,ml,k

(⌧)d⌧ +

�
�

tk,nl,k
+ ⌧l,k(Ak,Ak�1)

�

Z tk,nl,k
+Tjk

tk,nl,k
+⌧l,k(Ak,Ak�1)

f I
nl,k,ml,k

(⌧)d⌧

#

, (5.11)

where

p
(nl,k,ml,k)
I = E{I{E}}

= Pr {channel (nl,k,ml,k) is idle, given it is detected idle} , (5.12)

denotes the posteriori probability of channel (nl,k,ml,k) being idle, and EH{rnl,k,ml,k,k}

can be given as:

EH{rnl,k,ml,k,k}

=

Z 1

�1
Bnl,k,ml,k,k log2

✓

1 +
h2Pnl,k,ml,k,k

Bnl,k,ml,k,kN0

◆

fHnl,k,ml,k,k
(h)dh. (5.13)

The energy consumption El,k(Ak,Ak�1) on the channel (nl,k,ml,k) from time k

to k + 1 can be given as,

El,k(Ak,Ak�1)

=
n

Pl,k

h⇣

T I
nl,k,ml,k,k

� tk,nl,k
� ⌧l,k(Ak,Ak�1)

⌘

I{C}+

+ (Tjk � ⌧l,k(Ak,Ak�1)) I{D}
⇤

+ pl,k (Ak,Ak�1) ⌧l,k(Ak,Ak�1)
 

I{E} + Pl,k⌧sI{F},

(5.14)
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where event F = EC is the complement of event E.

The total expected energy consumption of the Radiobot from time k to k + 1 is

then given by

E {Ek(Ak,Ak�1)} =
L
X

l=1

E {El,k(Ak,Ak�1)}

=
L
X

l=1

p
(nl,k,ml,k)
I

(

Pl,k

"

Z tk,nl,k
+Tjk

tk,nl,k
+⌧l,k(Ak,Ak�1)

⌧f I
nl,k,ml,k

(⌧)d⌧ +

�
�

tk,nl,k
+ ⌧l,k(Ak,Ak�1)

�

Z tk,nl,k
+Tjk

tk,nl,k
+⌧l,k(Ak,Ak�1)

f I
nl,k,ml,k

(⌧)d⌧ +

+ (Tjk � ⌧l,k(Ak,Ak�1))

Z 1

tk,nl,k
+Tjk

f I
nl,k,ml,k

(⌧)d⌧

#

+

+ pl,k (Ak,Ak�1) ⌧l,k(Ak,Ak�1)

)

+

+ (1� p
(nl,k,ml,k)
I )Pl,k⌧s. (5.15)

The optimization problem of achieving transmission throughput and low energy

consumption can then be expressed as follows:

maximize ↵1E {Gk(Ak,Ak�1)}� ↵2E {Ek(Ak,Ak�1)}

subject to (nl,k,ml,k) 6= (nl0,k,ml0,k) 8 l, l0 2 {1, · · · , L},

and 0  Pl,k  P̄ , 8 l 2 {1, · · · , L},

where ↵1 � 0 and ↵2 � 0 are the priority coe�cients for the transmission throughput

and the energy consumption respectively. The optimization problem can equivalently

be expressed as follows:

A⇤
k = argmax

Ak

L
X

l=1

Rl,k (Ak,Ak�1) (5.16)
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subject to (nl,k,ml,k) 6= (nl0,k,ml0,k) 8 l, l0 2 {1, · · · , L},

and 0  Pl,k  P̄ , 8 l 2 {1, · · · , L},

where Rl,k (Ak,Ak�1) in (5.16) denotes the reward function of l-th transmission and

is given as:

Rl,k (Ak,Ak�1)

= p
(nl,k,ml,k)
I

⇥�

↵1EH{rnl,k,ml,k,k}� ↵2Pl,k

�

Jl,k (Ak,Ak�1)

� ↵2pl,k (Ak,Ak�1) ⌧l,k(Ak,Ak�1)]� (1� p
(nl,k,ml,k)
I )↵2Pl,k⌧s . (5.17)

The quantity Jl,k (Ak,Ak�1) in (5.17) is defined as

Jl,k (Ak,Ak�1) =

"

Z tk,nl,k
+Tjk

tk,nl,k
+⌧l,k(Ak,Ak�1)

⌧f I
nl,k,ml,k

(⌧)d⌧ +

�
�

tk,nl,k
+ ⌧l,k(Ak,Ak�1)

�

Z tk,nl,k
+Tjk

tk,nl,k
+⌧l,k(Ak,Ak�1)

f I
nl,k,ml,k

(⌧)d⌧ +

+(Tjk � ⌧l,k(Ak,Ak�1))

Z 1

tk,nl,k
+Tjk

f I
nl,k,ml,k

(⌧)d⌧

#

. (5.18)

The optimal solution of A⇤
k in (5.16) can be solved using a combination of the

Hungarian algorithm [91] and a convex optimization procedure, by separating the

problem of channel selection and the problem of power allocation in each transmis-

sion. The separation is valid since the objective function in (5.16) is in the form of a

summation of rewards on each transmission link and the power constraints on each

transmission link are decoupled, i.e. not a joint total constraint, such that a choice of

transmission power for any transmission link does not a↵ect the choice of any other

transmission links.
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First, for a given channel allocation (nl,k,ml,k) of the l-th transmission, the opti-

mal transmission power P ⇤
l,k|(nl,k,ml,k) can be found as

P ⇤
l,k|(nl,k,ml,k) = argmax

Pl,k

Rl,k (Ak,Ak�1) . (5.19)

Since it can be shown that Rl,k (Ak,Ak�1) is a concave function, we have

P ⇤
l,k|(nl,k,ml,k) = P4

l,k , (5.20)

if P4
l,k is the solution of

dRl,k (Ak,Ak�1)

dPl,k

= 0, (5.21)

such that 0 < P4
l,k < P̄ . Otherwise, if such a solution can not be found, we have

P ⇤
l,k|(nl,k,ml,k) = argmax

Pl,k2{0,P̄}
Rl,k (Ak,Ak�1) . (5.22)

Note that the solution Pl,k to (5.21) can be shown to equivalently satisfy

Z 1

�1

h2fHnl,k,ml,k,k
(h)

Bnl,k,ml,k,kN0 + h2Pl,k

dh� ↵2(⌧s/p
(nl,k,ml,k)
I + Jl,k (Ak,Ak�1)� ⌧s)

↵1Jl,k (Ak,Ak�1)Bnl,k,ml,k,k log2(e)
= 0. (5.23)

Second, the channel assignment problem can be represented by a weighted bi-

partite graph1, where the detected idle channels and the L number of transmissions

constitute the two disjoint sets of vertices, and the edge weight between the channel

(nl,k,ml,k) and l-th transmission is Rl,k (Ak,Ak�1) |Pl,k=P ⇤
l,k|(nl,k,ml,k)

.

The problem of assigning the channels to the L transmissions is a special case

of the Hitchcock problem [92], and it can be solved by the Hungarian algorithm

[91]. The Hungarian algorithm solves the weighted matching problem for a complete

1A bipartite graph is a graph whose vertices belong to two disjoint sets, such that every
vertex is connected to at most one vertex from the other set.
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bipartite graph. A complete bipartite graph has the same number of elements in

both sets, but according to [92], we can always assume that a bipartite graph is

complete by setting the weights of the missing edges to be equal to 0, and still get

the optimal solution for the bipartite graph by applying this modification [93]. The

goal is to find the optimal matching between the elements of the two sets so that we

maximize the sum of the weights of the matching edges.

The bipartite graph illustrating the channel assignment problem with M number

of detected channels and L M transmissions is shown in Fig. 5.2

1$ 2$

1$

M$

2$ L$ L+1$ M$

…$ …$

…$…$

Possible$channel$choices$

L$transmissions$

Figure 5.2: An illustration of the bipartite graph representation of the channel as-
signment problem with M number of channels and L number of transmissions. The
dashed edges have weight of 0.

5.3 Simulation results

To illustrate the performance of the proposed wideband BAG solution, a simulation

was first carried out under the following conditions: 1) maximum number of simul-

taneous transmissions of the Radiobot is L = 2; 2) number of sub-bands N = 3;

3) number of channels in each sub-band are 2, 3, and 3, respectively, and each of

these channels have bandwidths 22, 22, 40, 40, 40, 36, 36, and 36MHz respectively;

97



Chapter 5. Wideband PHY/MAC Bandwidth Aggregation Optimization For CRs

4) the sojourn time of idle and busy periods are all exponentially distributed with

a common idle sojourn time mean of 0.3ms and a common busy sojourn time mean

of 0.6ms [86]; 5) P̄ = 1 Watt, and ⌧s = 0.2ms. The transmission throughput of the

Radiobot as a function of the probability of idle state detection, in a time period

of 100ms is shown in Fig. 5.3. As shown in Fig. 5.3, we see that the first case

with ↵1 = 1 and ↵2 = 0.2 results in more transmission throughput compared to

the second case with ↵1 = 1 and ↵2 = 5, as expected. This is due to the fact that

the power consumption was considered more critical in the second case by setting a

higher value for ↵2.
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Figure 5.3: Achieved throughput as a function of the probability of detection of idle
channels in two cases: 1) ↵1 = 1, ↵2 = 0.2; and 2) ↵1 = 1, ↵2 = 5.

With the same radio environment setup, in Fig. 5.4, we show the performance

comparison for the following two cases: 1) L = 2 and ↵1 = 1; 2) L = 1 and

↵1 = 1, in terms of the data throughput as a function of ↵2, in a time period of

1000ms. The probability of idle state detection was set to be 0.8. We observe that
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in the first case, the Radiobot is able to perform L = 2 number of simultaneous

transmissions, resulting in a higher data throughput compared to the second case

with only one supported transmission. We can also see that as the ↵2 increases, the

data throughput drops to conserve energy as expected.
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Figure 5.4: Achieved throughput as a function of the ↵2 in two cases: 1) L = 2,
↵1 = 1; and 2) L = 1, ↵1 = 1.

5.4 Chapter Summary

We proposed an optimal wideband bandwidth aggregation strategy as the solution to

a multi-objective optimization problem: one objective is the communication through-

put of the mobile cognitive radio device and the other one is power consumption of

the device. The optimal bandwidth aggregation strategy was derived taking into
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account practical issues including imperfect spectrum sensing, channel fading, hard-

ware reconfiguration time delay and power consumption, and communication power

consumptions. Moreover, we analyzed and verified the performance of the proposed

strategy through simulations.
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Chapter 6

Learning-aided Sub-band Selection

for Wideband CRs

6.1 Introduction

Spectrum sensing has been identified as a fundamental task for CRs to detect

spectrum opportunities and achieve awareness of the surrounding RF environment

[3, 13, 94–96]. Several sensing techniques have been proposed for sensing primary

signals1 in either narrow or wide frequency bands [13, 96–99]. In narrowband appli-

cations, a CR senses a particular channel (or a particular set of channels) to identify

the existence of primary signals. In this case, the decision-making reduces to a bi-

nary hypothesis testing problem to determine whether a particular channel is idle or

1A primary signal refers to a signal that is licensed to a certain frequency range by the
regulations of static RF spectrum allocation.
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busy [27,100–102]. In a wideband CR application, however, in order to maximize its

communication throughput, a CR not only has to determine the existence of primary

signals, but it also has to determine the spectrum range to sense in the first place,

since the limitations of the RF hardware and the signal processing capabilities often

prohibit a wideband CR from sensing the whole spectrum range of interest at the

same time and the spectrum usage patterns are in general non-homogeneous across

the wide spectrum range of interest [103].

In this chapter, we propose a dynamic spectrum sensing scheduling framework

for wideband CRs. The considered wideband CR is assumed to be equipped with

a reconfigurable RF front-end (reconfigurable antennas and reconfigurable RF cir-

cuitry) that may operate over several wide frequency bands, with each configuration

corresponding to one of the wide frequency bands. We assume that the CR can

only be configured to operate in one of the frequency bands at a time and that the

CR may determine to reconfigure at any time. Each of the wide frequency bands is

assumed to be further segmented into several non-overlapping sub-bands and each

of the segmented sub-bands is assumed to contain multiple communication channels.

Without loss of generality, we assume that the CR can only operate in one of the

sub-bands at a time due to hardware and signal processing limitations. Note that

we also assume that the wideband CR is capable of simultaneous transmissions of

multiple signals on multiple channels within a single sub-band. Note that there may

exist multiple distinguishable radio interfaces or communication protocols within any

particular sub-band. The simultaneous transmission over multiple radio interfaces

by a single mobile terminal is discussed in Chapter 5. In this chapter, we focus on

the sub-band selection problem that arise in wideband spectrum sensing instead of

the optimization of the BAG problem.

Note that although the wideband spectrum sensing scheduling problem may be
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formulated as a POMDP problem2 when the RF environment exhibit Markov state

transition properties, the optimal solution to the POMDP is computationally pro-

hibitive because of the continuum of the state space, as also noted in [25–27]. As

a result, three myopic sub-band selection policies are proposed to maximize the

probability of finding spectrum opportunities and communication throughput. The

proposed policies take into account realistic reconfiguration energy consumptions and

time delays. The first sub-band selection policy rely on the knowledge of the channel

Markov parameters. Note that, however, it may require a tremendous amount of

e↵orts to obtain the Markov parameters of each and every channel through learning

when the channels are not independent and identically distributed (non-i.i.d.) and

the number of channels is large. Hence, the second sub-band selection policy is pro-

posed to rely on only the Markov properties of the sub-bands to avoid the necessity

of obtaining the Markov knowledge of each and every channel. Note that, although

both of these two policies may achieve good results, they rely on the knowledge of the

Markov parameters of the RF environment and thus may become computationally

infeasible when the knowledge of the Markov models are unavailable. As a result,

the third sensing policy based on the Q-learning [104] technique is proposed to avoid

the necessity of any knowledge of the Markov properties.

The Q-learning algorithm is one of the most important temporal di↵erence (TD)

reinforcement learning (RL) methods and it has been shown to converge to the

optimal policy when applied to single agent Markov decision process (MDP) models

[104,105]. The Q-learning has also been recently applied to CRs [106,107]. Although

the sub-band selection problem is a POMDP problem, we may still use the Q-learning

technique to achieve reasonable performance results since it has been shown that the

application of Q-learning in POMDP problems may achieve near-optimal solutions

2The wideband spectrum sensing scheduling problem can be formulated as a POMDP
problem since at each time step, only the state of the sensed sub-band is revealed and the
complete state of the RF environment is not fully observable.
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[100,108,109]. Performance of the three policies are compared and discussed against

a performance upper-bound of the optimal solution to the POMDP formulation.

We validate the suitability of the Q-learning technique for this type of wideband

spectrum sensing problems by showing that it achieves good performance in both

simulated and real measured RF environments.

The remainder of the paper is organized as follows: In Section 6.2 we introduce

the system model and problem formulation. In Section 6.3, the sub-band selection

policies for spectrum sensing are developed. In Section 6.4, the alternative Q-learning

based solution is proposed. In Section 6.5 we show the simulation results. In Sec-

tion 6.6 we conclude by summarizing our results.

6.2 System Model and Problem Formulation

6.2.1 Spectrum Segmentation Model for Wideband Sensing

The proposed CR architecture consists of a tunable RF front-end with wideband

capabilities and a cognitive engine (CE), as shown in Fig. 6.1. The CE is equipped

with signal processing, learning and decision-making capabilities, as proposed in the

Radiobot architecture in [6]. The CE controls the RF front-end to perform spectrum

sensing and communication functionalities. The concept of CE is also aligned with

the original vision of CRs in [3].

We assume that a reconfigurable antenna is adopted to cover R number of dif-

ferent frequency bands W1, · · · ,WR spanning a wide range of frequency spectrum.

Note that the frequency bands W1, · · · ,WR are determined by the capabilities of

each configuration of the reconfigurable antenna. We denote by Wl = |Wl| > 0 the
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Figure 6.1: System architecture for the proposed wideband CR.

bandwidth of the frequency band Wl, for l 2 {1, · · · , R}. Since the bandwidths

W1, · · · ,WR are considered to be still wide, the processing cost of the correspond-

ing signals may be high, which requires further segmenting those frequency bands

into smaller sub-bands prior to processing. Therefore, the sensing reconfigurable

antenna will be connected to a reconfigurable band-pass filter or a filter bank of re-

configurable band-pass filters allowing proper segmentation of each of the frequency

bands W1, · · · ,WR. We also assume that spectrum sensing can only be performed

on a single sub-band at a time due to software and hardware limitations. There are

several characteristics that need to be specified in order to determine the optimal

number of sub-bands in each frequency band, such as the maximum sampling rate of

the analog-to-digital converter (ADC), the required quantization accuracy, and the

power consumptions to name a few. However, we omit the problem of finding the

optimal number of sub-bands in each frequency band due to the focus of this work.

Without loss of generality, we may assume that there are Nl number of sub-bands

in the l-th RF configuration mode (corresponding to the frequency band Wl) and

denote by Nl the set of sub-bands contained in the l-th RF configuration mode, such

that |Nl| = Nl. An illustration of the frequency bands and the further segmented

sub-bands in each frequency band is shown in Fig. 6.2. Note that the collection
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Figure 6.2: An illustration of wide frequency bands and further segmented sub-bands
in each wide frequency band.

of the operable wide frequency bands may not perfectly cover the whole spectrum

range due to antenna imperfections. The operable wide frequency bands may also

overlap and/or be non-contiguous. Such reconfigurable antenna designs can be found

in [46–49].

Since the RF spectrum environment is in general non-homogeneous [103], a spec-

trum sensing scheduling policy can be designed to dynamically change the RF front-

end configurations to aim at suitable sub-bands to perform spectrum sensing. This

sensing scheduling policy chooses a sub-band according to the real-time variations of

the RF environment in order to maximize potential communication opportunities.
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We propose such a sensing selection policy for the CR to perform spectrum sensing.

We assume that the total bandwidth of interest is divided into Nb =
PR

l=1 Nl sub-

bands and there are M1, · · · ,MNb
number of identified communication channels in

each of the Nb sub-bands respectively. In order to develop the proposed sub-band

selection policies in Section 6.3, we introduce the channel and sub-band Markov

models in the rest of this section.

6.2.2 Channel Markov Model

We assume a semi-infinite slotted time horizon with each time slot having an equal

time length of T sec. We denote by k = {0, 1, 2, · · · } the time indices of the time

slots. For simplicity, we assume that the state of any communication channel does

not change within a single time slot, so that the CR may spend a short period of

time at the beginning of each time slot to determine the corresponding state. We

denote by Si,j(k) 2 {0, 1} the true state of the (i, j)-th channel (the j-th channel in

the i-th sub-band) at time k, for j 2 {1, · · · ,Mi} and i 2 {1, · · · , Nb}. As shown in

Fig. 6.3, for a single channel, we may assume that the state busy (state 0) indicates

the channel is occupied by other radio activities, and the state idle (state 1) indicates

no radio activities over that channel and it is available for a CR to access. As a result,

the state dynamics of each communication channel may be modeled as a two-state

Markov chain. This Markov model, also known as the Gilbert-Elliot model [51], has

been commonly used to abstract physical primary channels with memory (see, for

example [22,26,27,52]). Note that it is worth mentioning that the choice of the value

T may play a critical role in terms of the validity of the channel Markov models.

In other words, the channel Markov property may not hold for some choices of T ,

or the channel dynamics may be better represented by higher-order Markov models

as opposed to the first order Markov model considered in this chapter. However,
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due to the focus of this work, the problem of finding the appropriate value of T is

not investigated. Detailed discussions on this topic can be found in [110] and the

references therein.

Figure 6.3: The Markov model for a single communication channel (Gilbert-Elliot
model).

Since di↵erent channels may exhibit non-identical statistical behaviors [103],

the assigned Markov chain models are, in general, non-identical, i.e. the state

transition probabilities and the stationary distributions are di↵erent. Moreover,

for those channels belonging to the same communication system, some level of

channel access control may be present [111] for a centralized setup. As a result,

communication tra�cs in those channels may be correlated. As a result, we as-

sume that the Markov models can be correlated in general. The time-invariant

transition probability of the (i, j)-th channel Markov model from state x to state

y is defined as pi,jx,y = Pr{Si,j(k + 1) = y | Si,j(k) = x}, 8x, y 2 {0, 1}. The

transition probability matrix of the (i, j)-th channel Markov model is denoted by

Pi,j =

0

@

pi,j0,0 pi,j0,1

pi,j1,0 pi,j1,1

1

A . We denote by vector ⇡i,j =
⇥

⇡i,j
0 , ⇡i,j

1

⇤

the stationary dis-

tribution vector, such that ⇡i,j = ⇡i,jPi,j, with ⇡i,j
0 and ⇡i,j

1 being the stationary

probabilities of busy and idle, respectively.
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6.2.3 Sub-band Markov Models

We may further define the random variable N idle
i (k) as the number of idle channels

in the i-th sub-band at time k. Note that, due to the Markov property of the

communication channels, the dynamics of N idle
i (k) also forms a Markov chain as

shown in Fig. 6.4. Since there are Mi number of channels in the i-th sub-band, we

Figure 6.4: The Markov model of the i-th sub-band. The state of the Markov model
is defined as the number of idle channels in the i-th sub-band.

obtain a (Mi + 1)-state Markov chain for the i-th sub-band, with a state space of

{0, 1, · · · ,Mi}. As shown in Fig. 6.4, the time-invariant transition probability of the

Markov model from state m to state n is defined as

pim,n = Pr{N idle
i (k + 1) = n | N idle

i (k) = m}, 8m,n 2 {0, 1, · · · ,Mi}. (6.1)

The (Mi+1)⇥ (Mi+1) transition probability matrix of the Markov model of the i-th

sub-band is then denoted byPi =

0

B

B

B

B

B

B

@

pi0,0 pi0,1 · · · pi0,Mi

pi1,0 pi1,1 · · · pi1,Mi

...
...

. . .
...

piMi,0
piMi,1

· · · piMi,Mi

1

C

C

C

C

C

C

A

. We denote by vector

⇡i =
⇥

⇡i
0, · · · , ⇡i

Mi

⇤

the stationary distribution vector, such that ⇡i = ⇡iPi with

⇡i
0, · · · , ⇡i

Mi
being the stationary probabilities of the states 0, 1, · · · ,Mi, respectively.
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6.3 Sub-band Selection For Wideband Spectrum

Sensing

In this section, we propose two sub-band selection policies for the wideband spectrum

sensing scheduling problem. The first policy solely relies on the knowledge on the

channel Markov models; whereas the second policy mainly relies on the knowledge

on the sub-band Markov models. The performance comparison of the two policies

are provided in Section 6.5.

6.3.1 Channel Markov Model based Sub-band Selection

In order to derive the sensing sub-band selection policy, let us first denote by BWi,j

the identified channel bandwidth of the j-th channel in the i-th sub-band, for i 2

{1, · · · , Nb} and j 2 {1, · · · ,Mi}. Note that the instantaneous transmission rate of

a channel with a bandwidth of B is r = B log2

⇣

1 + h2P
BN0

⌘

bits/sec, where we denote

by h, P , and N0 the channel coe�cient between the receiver and the transmitter, the

transmission power, and the single-sided noise power spectrum density (PSD) level,

respectively. We assume that the distributions of the channel coe�cients are either

known or can be obtained through learning and we denote by fHi,j
the corresponding

distribution function of the channel coe�cient of the (i, j)-th channel.

For simplicity, we may assume that whenever the i-th sub-band is sensed (or

visited) at time k, the information of N idle
i (k) and the states of the channels in the

i-th sub-band are revealed exactly by sophisticated sensing algorithms, and they

cannot be revealed otherwise. Since only one sub-band can be sensed at a time, it is

impossible to consecutively obtain the information of N idle
i (k) as well as the channel

states for every sub-band. At time k, we denote by t(k) = [t1(k), t2(k), · · · , tNb
(k)]
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the sub-band visiting history, where we denote by ti(k) the time index of the last

visit of the i-th sub-band. Note that ti(k)  k and N idle
i (ti(k)) is known. However,

N idle
i (t) is unknown for all t 2 {ti(k) + 1, · · · , k}. An illustration of the sensing

history is shown in Fig. 6.5. Note that, in the case when the i-th sub-band has not

yet been visited, we may assign a negative integer value, say �1, to ti(k) in order

to distinguish from others. Also, we may initialize N idle
i (ti(k)) accordingly based on

the prior knowledge of the Markov properties, whenever ti(k) = �1.

Figure 6.5: An illustration of the sensing history ti(k) for three sub-bands.

Note that, in practice, imperfect sensing is indeed one of the most critical impact

factors for CRs. In particular, when a CR may mistake an idle channel as a busy one

and vice versa, performance can be degraded due to the missed channel opportunities

and the constraint on the interference to other radios. The imperfect sensing issue

has been addressed in our previous work [27] and many other works [25, 42] for

narrow-band spectrum sensing scenarios. One may incorporate the imperfect sensing
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by using a believe vector. The belief vector is used to maintain the distribution

(belief) of future states of the RF environment based on the observation history,

the observation emission probabilities, and the Markov state transition probabilities.

Note that this is as opposed to using only the Markov state transition probabilities as

in this chapter under perfect sensing assumption. On the other hand, sensing errors

may be substantially limited by the state-of-the-art spectrum sensing techniques by

involving multivariate detection (e.g., energy and cyclostationary features [112]) and

network sensing cooperations [27]. As a result, the imperfect sensing problem is not

considered here due to the space limitation and the focus of this work.

We denote by Ti,j(k) the discrete-valued random variable of the idle sojourn

time3 of the (i, j)-th channel starting from time k given the observation history,

with Ti,j(k) 2 {0, T, 2T, · · · }, where T is the length of a time slot. Note that the

probability mass function (pmf) of Ti,j(k) can be found using the Markov properties:

fTi,j ,k(nT ) = Pr{Ti,j(k) = nT | Si,j(ti(k))}

=

8

>

<

>

:

p
i,j,(k�ti(k))
Si,j(ti(k)),0

, if n = 0

p
i,j,(k�ti(k))
Si,j(ti(k)),1

· (pi,j1,1)n�1 · pi,j1,0, if n 2 {1, 2, 3, · · · }
, (6.2)

where we denote by p
i,j,(k�ti(k))
Si,j(ti(k)),m

the (k� ti(k))-step transition probability from state

Si,j(ti(k)) to m of the (i, j)-th channel, for m 2 {0, 1}, which can be found as the

(Si,j(ti(k)) + 1,m + 1)-th element in (Pi,j)(k�ti(k)), the (k � ti(k))-th power of Pi,j.

Whereas, (pi,j1,1)
n�1 is the (n� 1)-th power of pi,j1,1. The expected value of Ti,j(k) can

then be found as

E{Ti,j(k)} =
1
X

n=0

fTi,j ,k(nT ) · nT . (6.3)

3The idle sojourn time refers to the time duration of the channel being consecutively
idle. Since we assumed that the state of any communication channel does not change
within a single time slot, the sojourn time of a channel is discrete-valued.
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Note that since sensing errors indeed exist in practice, di↵erent frequency bands

may have di↵erent spectrum sensing requirements. For instance, in some licensed

frequency bands, there can be a more stringent regulation of collisions with licensed

users such that the upper bound on the probability of collision is low. This requires

a CR to spend more time on spectrum sensing in order to achieve the required level

of probability of detecting licensed signals (if any) thereby lowering the chances of

colliding with them. On the other hand, in an unlicensed frequency band, such as

the Industrial, Scientific and Medical (ISM) band, the collision is not often strictly

controlled. Hence, a CR may spend less time to detect a transmission opportunity

at the expense of a possible higher collision probability. Since we are considering

perfect sensing for simplicity, we may assume that the CR spends T i
0 sec for sensing

the i-th sub-band. If the sensing result for the channel is idle, it can then access

that channel. Note that, when formulating the problem under imperfect sensing, the

required sensing time T i
0 can be easily modeled as a function of the characteristics

of the sensing detector and the constrained collision probability.

Note that a CR may achieve a high communication throughput by frequently

jumping among the frequency sub-bands, at the expense of a high rate of hardware

reconfigurations. This, however, generally require a certain amount of energy con-

sumption and time delay. In order to take into account the practical RF front-end

reconfigurable energy consumptions in the sub-band selection decision-making, we

may denote by cs(i0, i) the switching energy cost from the i0-th sub-band to the i-th

sub-band, such that

cs(i
0, i) =

8

>

>

>

>

<

>

>

>

>

:

c1 + c(T i
0), if i0 2 Nl0 , i 2 Nl, and l0 6= l

c2 + c(T i
0), if i0 2 Nl0 , i 2 Nl0 , and i0 6= i

c(T i
0), if i0 = i

, (6.4)

where c1 denotes the energy cost when switching between di↵erent RF configuration
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modes, and c2 denotes the energy cost when switching between di↵erent sub-bands

within the same RF configuration mode. The quantity c(T i
0) denotes the energy cost

required for spectrum sensing in the i-th sub-band, as a function of the required

sensing time T i
0. Since hardware reconfiguration may require more energy consump-

tion, we assume that c1 > c2. Note that in practice c1 and c2 may not necessarily

be constant. In such cases, we may easily re-adjust them depending on the specific

adopted RF front-end.

We may also define ts(i0, i) the switching time delay incurred when the CR

switches from the i-th sub-band to the i0-th sub-band, such that

ts(i
0, i) =

8

>

>

>

>

<

>

>

>

>

:

t1, if i0 2 Nl0 , i 2 Nl, and l0 6= l

t2, if i0 2 Nl0 , i 2 Nl0 , and i0 6= i

t3, if i0 = i

, (6.5)

where t1, t2 and t3 include the computation time of decision-making at each time

step, the circuit switching time, software reconfiguration time, and settling time for

the RF front-end (especially the settling time for the phase-locked loop (PLL) in the

frequency synthesizer [113]).

In order to consider possible bandwidth aggregation [10, 32, 33] capability, we

may assume that the CR is capable of utilizing up to a maximum of L idle channels

simultaneously, all from a single sub-band. When the CR has the knowledge of

channel Markov models but not the Markov models of the sub-bands, we may define

the total expected communication throughput by switching from the i0-th sub-band

to the i-th sub-band in time slot k as

Ri0(i, k) =
X

j2M⇤
i,L

EHi,j
{ri,j}min

⇢

E{Ti,j(k)}
✓

1� T i
0

T

◆

� ts(i
0, i)

�

, Tmax

�

,(6.6)

where function min{x, y} = x, if x  y and min(x, y) = y otherwise. Note that the
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expectation of transmission rate EHi,j
{ri,j} on the (i, j)-th channel in (6.6) is with

respect to the channel coe�cient and is defined as

EHi,j
{ri,j} =

Z

BWi,j log2

✓

1 +
h2P

BWi,jN0

◆

⇥ fHi,j
(h)dh. (6.7)

The expression
h

E{Ti,j(k)}
⇣

1� T i
0
T

⌘

� ts(i0, i)
i

in (6.6) gives the expected transmis-

sion time on the (i, j)-th channel. We denote by Tmax the maximum considered

staying time for any sub-band. The Tmax is introduced to prevent the CR from se-

lecting a sub-band when the achievable transmission rate in a sub-band is extremely

low, but the expected channel idle sojourn time is extremely large. In this case, al-

though the expected throughput may be large, the extremely low transmission rate

may not be desirable. We denote by M⇤
i,L in (6.6) the set of L channels in the i-th

sub-band that have top L highest expected transmission throughput. As a result,

the following inequality is satisfied:

X

j2M⇤
i,L

EHi,j
{ri,j}min

⇢

E{Ti,j(k)}
✓

1� T i
0

T

◆

� ts(i
0, i)

�

, Tmax

�

�

X

j2Mi,L

EHi,j
{ri,j}min

⇢

E{Ti,j(k)}
✓

1� T i
0

T

◆

� ts(i
0, i)

�

, Tmax

�

, (6.8)

where we denote by Mi,L any set of L channels in the i-th sub-band.

When the CR has only the knowledge of channel Markov models, by taking the

switching energy and time delays into account, we may then define the quality of the

i-th sub-band (switching from the i0-th sub-band) at time k as

Qi0(i, k) = Ri0(i, k)� �cs(i
0, i), (6.9)

where the coe�cient � (bits/Joule) is used to convert the units and to help weighting

the energy consumption priority. The sub-band selection policy a(i0, k, t(k)) (in the
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i0-th sub-band and time slot k) may then be defined as

a(i0, k, t(k)) = argmax
i2{1,··· ,Nb}

Qi0(i, k). (6.10)

6.3.2 Sub-band Markov Model based Sub-band Selection

In the case when the knowledge of both the sub-band Markov models and the channel

Models are available, we may define the total expected communication throughput

by switching from the i0-th sub-band to the i-th sub-band in time slot k as

Ri0(i, k,N
idle
i (ti(k)))

=
1

Mi

 

Mi
X

j=1

EHi,j
{ri,j}min

⇢

E{Ti,j(k)}(1�
T i
0

T
)� ts(i

0, i)

�

, Tmax

�

!

⇥

⇥ min
n

N̂ idle
i (k,N idle

i (ti(k))), L
o

, (6.11)

where N idle
i (ti(k)) is the visiting history of the i-th sub-band and Mi is the num-

ber of channels in the i-th sub-band. Note that, the average expected per channel

throughput within the i-th sub-band, or

1

Mi

 

Mi
X

j=1

EHi,j
{ri,j}min

⇢

E{Ti,j(k)}
✓

1� T i
0

T

◆

� ts(i
0, i)

�

, Tmax

�

!

, (6.12)

in (6.11), requires the knowledge of the individual channel Markov models in or-

der to obtain E{Ti,j(k)}. This, of course, is not possible when the channel Markov

parameters are unavailable. However, when only the sub-band Markov model is as-

sumed to be known, we may replace the average expected channel throughput term

by r̄i min
nh

T̄i

⇣

1� T i
0
T

⌘

� ts(i0, i)
i

, Tmax

o

, where we denote by r̄i and T̄i the average

achievable individual channel throughput and the average idle sojourn time of the
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channels in the i-th sub-band. Note that the average individual channel through-

put and the average channel idle sojourn time may be easily summarized from past

channel access history. However, due to the space limitation, we do not go into

details of estimation methods for r̄i and T̄i. Note that the function min{x, y} = x,

if x  y, and min{x, y} = y otherwise. The term min
n

N̂ idle
i (k,N idle

i (ti(k))), L
o

in (6.11) is the estimated number of accessible and usable channels at time k,

where we denote by N̂ idle
i (k,N idle

i (ti(k))) the estimated number of idle channels in

the i-th sub-band in time slot k, given the visiting history N idle
i (ti(k)). The es-

timate of N̂ idle
i (k,N idle

i (ti(k))) may be obtained, for example, using the following

two criteria:1) The maximum a posteriori (MAP) criterion: given N idle
i (k) = m

for m 2 {0, 1, · · · ,Mi}, we may predict the state N idle
i (k + k0) for any integer

k0 � 1 as N̂ idle
i (k + k0) = argmax

n2{0,··· ,Mi}
Pr{N idle

i (k + k0) = n | N idle
i (k) = m} =

argmax
n2{0,··· ,Mi}

p
i,(k0)
m,n ,where we denote by p

i,(k0)
m,n the k0-step transition probability from state

m to n. Note that the k0-step transition probability can be obtained by finding the

(m+ 1, n+ 1) entry of Pk0
i , the k0-th power of the transition probability matrix Pi,

where Pk0
i = Pi ⇥Pi · · ·⇥Pi

| {z }

k0

; 2) The minimum mean square error (MMSE) crite-

rion: N̂ idle
i (k + k0) = E{N idle

i (k + k0) | N idle
i (k) = m} =

PMi

n=0 n · pi,(k
0)

m,n . Note that

although the MMSE estimator may give a non-integer result for N̂ idle
i (k + k0), it

would still make sense when we use N̂ idle
i (k + k0) to obtain the expected sub-band

communication throughput. We verify in simulations that both methods achieve

close results and thus we choose to use the MAP criterion since its computation is

straightforward.

The quality of the i-th sub-band may then be defined as:

Qi0(i, k,N
idle
i (ti(k))) = Ri0(i, k,N

idle
i (ti(k)))� �cs(i

0, i). (6.13)

The sub-band selection policy a(i0, k, t(k)) (in i0-th sub-band and time slot k) is
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defined as

a(i0, k, t(k)) = argmax
i2{1,··· ,Nb}

Qi0(i, k,N
idle
i (ti(k))). (6.14)

When the knowledge of the sub-band Markov models is not directly available, but

the knowledge of the channel Markov models is available, one may obtain the knowl-

edge of the sub-band Markov models from the knowledge of the channel Markov

models, at least in theory (However, note that this is extremely unlikely when chan-

nels are non-i.i.d.). Note that the time-invariant transition probability pim,n of the

i-th sub-band may be expressed as (for all m 2 {0, · · · ,Mi} and n 2 {0, · · · ,Mi})

pim,n = Pr

(

Mi
X

j=1

Si,j(k + 1) = n |
Mi
X

j=1

Si,j(k) = m

)

=
X

Ai,m

X

PMi
j si,j=n

2

4

0

@

Y

j2Ai,m

pi,j1,si,j

1

A

0

@

Y

j2A0
i,m

pi,j0,si,j

1

A

3

5 , (6.15)

where we denote by Ai,m a subset of channels in the i-th sub-band, with cardinality

m and we denote by A0
i,m the relative complement of Ai,m with respect to the set of

all channels in the i-th sub-band. The summation in (6.15) is taken over all possible

Ai,m’s and all possible combination of states si,1, · · · , si,Mi
, where si,j 2 {0, 1} for all

j 2 {1, · · · ,Mi}, such that
PMi

j si,j = n.

On the other hand, the stationary probability ⇡i
m, for m 2 {0, · · · ,Mi} can be

expressed as

⇡i
m = Pr

(

Mi
X

j=1

Si,j(k) = m

)

. (6.16)

In case the channels are independent, the stationary distribution can be further
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expressed as

⇡i
m =

X

Ai,m

0

@

Y

j2Ai,m

⇡i,j
1

1

A

0

@

Y

j2A0
i,m

⇡i,j
0

1

A , (6.17)

The summation in (6.17) is taken over all possible Ai,m’s. The closed-form expres-

sion of (6.17) requires a computational complexity of
⇥�

Mi

m

�

⇥Mi

⇤

� 1 [103] when

channels are assumed non-identical, but independent. In case the channels in a

sub-band are non-identical, but statistically independent, we may also approximate

the stationary distributions using the Poisson-Normal approximation method that is

proposed in [103]. However, since we assume that channels may be correlated (i.e.

non-independent) in general, to obtain the closed-form expression of ⇡i
m requires the

knowledge of the joint distribution of Si,j(k)’s, which is even harder to be obtained.

We can see that the computational complexity to obtain the transition probabilities

is at least
⇥�

Mi

m

��

Mi

n

�

⇥Mi

⇤

� 1, which is even higher than that of obtaining the sta-

tionary distributions. This observation suggests that to obtain the knowledge of the

sub-band Markov models from the channel Markov models may not be advisable.

As an alternative, we may adopt the hidden Markov model (HMM)-based pa-

rameter estimation algorithm proposed in Chapter 2 to perform on-line estimation

of the transition probabilities of the Markov chain model, without the computation of

(6.15). The estimation algorithm has been shown to have a computation complexity

linear in the number of the states of the Markov chain, or in this case, Mi, the num-

ber of channels in the i-th sub-band. However, when the number of sub-bands and

the number of channels in each sub-band are both large, the overall computational

complexity is still high4. Moreover, to obtain accurate estimates of the transition

probability matrices, it may require a long period of time. As a result, in the case

when the sub-band transition probabilities are unknown but the channel Markov

4Note that the computational complexity is also high when there are a large number of
channels and the CR directly attempt to learn the channel Markov models.
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models are known, we suggest to use the channel Markov models based sub-band

selection policy defined in (6.10). When both the knowledge of the channel Markov

models and the sub-band Markov models are available, one may choose either (6.6)

or (6.11) to express the expected sub-band throughput. We compare the resulting

performances between these two strategies in simulations later in Section 6.5. In the

case when both channel and sub-band Markov models are unknown, we propose a Q-

learning based Machine learning technique in Section 6.4 to bypass the computation

complexity.

We may assume that an autonomous CR triggers to execute the above derived

sub-band selection decision rule only when current transmission performance falls

below a certain performance threshold, as opposed to triggering the decision rule in

each time slot. This will avoid unnecessarily frequent sub-band switching when the

performance objectives can be met without switching. The performance threshold

may be fine tuned using a learning process. Note that a high threshold triggers more

decision-making process and thus may result in more computation and reconfigura-

tion energy consumptions. On the other hand, a lower threshold may result in lower

communication throughput. An example illustration diagram of this procedure is

shown in Fig. 6.6. Due to the space limitation and the focus of this chapter being

on the sub-band selection algorithm design itself, we do not further investigate the

use of such a performance threshold.

6.4 Machine Learning aided sub-band selection

In the case when neither the channels’ nor the sub-bands’ Markov models are known,

we may rely on Reinforcement Learning (RL) techniques [104]. A Q-table Q(s, a) is

maintained that is used to summarize the value (benefit) of each action a in each
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Figure 6.6: An illustration of the operation procedure of a performance threshold
setting for higher level autonomous operation of the CR.

and every state s. In our case, the action a refers to the selection of a sub-band, with

a 2 N1 [N2 · · · [NR. Each time an action is chosen in a certain state, the Q-table

may be updated using the following rule:

Q(sk�1, ak�1) (1� ↵)Q(sk�1, ak�1) + ↵
h

rk (sk�1, ak�1) + �max
a

Q(sk, a)
i

,

(6.18)

where we denote by sk�1 and ak�1 the observed state and the action in time interval

k�1, respectively. Note that the state sk does not refer to the whole RF environment

true state. This is explained in the following. Note that the action ak�1 denotes the

index of the sub-band selected that is to be sensed at time k. We denote by ↵ 2 (0, 1)

the learning rate. The function rk(sk�1, ak�1) denotes the reward obtained in time

interval k, as a result of the action ak�1 in state sk�1, which can be defined as the
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actual achieved performance. In the simulation, the reward is calculated as

rk(sk�1, ak�1) = r̃(sk�1, ak�1)� �cs(ak�2, ak�1), (6.19)

where we denote by r̃(sk�1, ak�1) the actual achieved communication throughput by

taking action ak�1 in state sk�1. The term cs(ak�2, ak�1) in (6.19) is the switching

energy cost from the ak�2-th sub-band to ak�1-th sub-band as defined in (6.4), and

� is the same coe�cient as in (6.9). We denote by � the discount factor, with

� 2 [0, 1). Note that the state at time k � 1 may be defined as sk�1 = [a(k �

2), N idle
a(k�2)(k� 1)], where a(k� 2) denotes the index of the sensed sub-band in time

interval k�1. Also note that, the state sk in (6.18) is the result of taking action ak�1

in state sk�1 and the term �max
a

Q(sk, a) represents the discounted delayed reward

by taking action ak�1 in state sk�1. The value of max
a

Q(sk, a) is obtained by finding

the maximum value in the row of the Q-table corresponding to the state sk. The

decision-making rule for choosing an action a⇤ in the state s may be defined as

a⇤ = argmax
a

Q(s, a). Since the state of the whole RF environment is not obtained

at each time due to the RF hardware limitation (sensing can be done only in one

sub-band at a time), the Q-learning application is for the POMDP case as discussed

in the introduction section.

Note that the Q-learning is usually implemented as a balance between exploration

and exploitation. Exploration refers to the e↵ort of searching new opportunities,

whereas exploitation refers to taking actions for immediate reward. Maintaining a

certain level of exploration may help the agent avoid being trapped in local maxima.

An exploration rate ✏ 2 (0, 1) is often defined, such that the agent each time takes an

action using a⇤ with probability 1� ✏ and uniformly choose an action out of all the

possible actions with probability ✏. Choosing a high exploration rate may help the

agent to quickly understand the environment. However, it may also reduce the overall

performance due to excessively exploring. On the other hand, a low exploration
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rate may increase the required time for the algorithm to converge to the optimal

solution. In the simulation section, we investigate the performance of the Q-learning

technique using di↵erent parameter options. The variable parameters include the

exploration rate ✏, the learning rate ↵, and the discount factor �. Since the Q-learning

technique is simple to implement and it does not require any prior knowledge of the

environment, we also compare its performance to the previously proposed sub-band

selection policies to validate the application of Q-learning techniques in this type of

problems. A temporal illustration of the Q-learning procedure on the slotted time

horizon is shown in Fig. 6.7.

Figure 6.7: An illustration of the Q-learning procedure on the slotted time horizon.
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6.5 Simulation Results and Discussions

In order to evaluate the performance of the proposed sub-band selection policies,

we have conducted simulations for 3 test cases. The simulation settings for the

3 test cases are summarized in Table. 6.1. Note that the test cases 1, and 2 are

based on simulated RF environments, whereas the test case 3 is based on real RF

measurements for the 20� 1500MHz band, with center frequency at 770 MHz inside

a modern o�ce building at Aachen, Germany [114].

Table 6.1: Simulation settings for the considered 4 test cases.``````````````̀Settings
Test cases

Test case 1 Test case 2 Test case 3

# of configuration modes 2 2 2
# of sub-bands in each mode [3 3] [2 2] [2 3]

Total # of sub-bands 6 4 5
# of channels in each sub-band 10 each 10 each 10 each

Total # of channels 60 40 50
Max # of channels can be
used for each time step: L 2 2 2

Time slot duration: T (seconds) 1 1 1
# of simulation time steps 10,000 10,000 12,000
Channel Markov models Randomly generated. measurement data.

Required sensing time duration
The required sensing time duration

in each sub-band is chosen
uniformly between 0.1 sec and 1.0 sec.

Sub-band Markov models Obtained from channel Markov models.

Reconfiguration coe�cients
c1 = 1, c2 = 0.8;

t1 = 0.1, t2 = 0.05, t3 = 0.01;
� = 1.

For test cases 1, and 3, we assume that all channels have the same bandwidth,

but the channel coe�cients are independently Rayleigh-distributed. On the other

hand, in test case 2, the individual channel throughputs are specifically assigned with

non-random values for comparison purposes: in each configuration mode, one of the
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sub-bands is assumed to have channels with the same individual channel throughputs,

whereas the other sub-band is assumed to have 2 channels with very high channel

throughput and the other 8 channels with very low individual throughputs, such that

all the sub-bands have the same sum of channel throughputs.
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Figure 6.8: Comparison of normalized accumulated reward of sub-band selection
policies in 10, 000 time steps for the first test case. The considered random selection
interval length is set from 2 to 100.

In Fig. 6.8, we show the performance of the sub-band selection policies in the

first test case. The simulated policies are: 1) the channel Markov models based pol-

icy using (6.10), 2) the sub-band Markov models based policy using (6.14), and 3)

the Q-learning policy without any knowledge of the channel and sub-band Markov

models. A trivial random policy is also included for comparison. The reward for all
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policies is defined as the actual obtained throughput less the energy consumption due

to hardware reconfigurations (the energy consumption is weighted by the coe�cient

�), similar to the way the sub-band quality is defined in (6.9) and (6.13). The accu-

mulated reward is then normalized with respect to a performance upper-bound. The

performance upper-bound is obtained by assuming that each time after a sub-band

selection decision is made, not only the state of the selected sub-band is revealed,

but the states of all other sub-bands are also revealed. Since each time the sub-band

selection maximize the immediate reward without a↵ecting information update for

the next step, the policy achieves the performance upper-bound for the POMDP

solution. Note that this performance upper-bound is commonly used for the optimal

POMDP solutions [26, 27]. The normalized accumulated reward is plotted against

the random selection interval length. The random selection interval length refers to

the average number of steps for which the CR makes a random selection. For in-

stance, when the random selection interval is 100, the CR makes a random selection

for every 100 steps on average. In all other time steps, the sub-band selection de-

cisions are made accordingly to the selected policy. Note that the random selection

interval length is equivalent to the inverse of the exploration rate ✏ in Q-learning.

The trivial random selection policy selects a sub-band randomly and stays in that

sub-band until the next time step in which another sub-band is randomly selected.

As shown in Fig. 6.8, the trivial random selection policy can only achieve a 20%

of the performance whereas the two direct search methods (using (6.10) and (6.14)),

achieve almost 100% of performance when the random selection interval is long (low

exploration rate). In this case, the channel Markov model based policy and the

sub-band Markov model based policy achieve almost the same performance. This

may be explained by the structure of the simulated RF environment: all channels

are statistically identical such that the product of the expected average individual

channel throughput and the expected number of accessible channels is rather close to

the sum of the expected highest throughputs from the expected accessible channels.
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As a result, the two di↵erent approaches of defining the sub-band qualities does not

make a di↵erence.

In the case of the Q-learning, the performance achieves the highest value of 78%

when the random selection interval is roughly between 5 and 10, corresponding to an

exploration rate in the range from 1/10 to 1/5. The highest performance of the Q-

learning technique is achieved when the learning rate ↵ = 0.25 and the discount factor

� = 0.8. Since there is a total of 60 channels, without su�cient exploration (long

random selection intervals), the performance of the Q-learning technique degrades.

On the other hand, when the exploration rate is too high (very short random selection

intervals), the performance degrades as well. Note that this delicate balance between

the exploration and exploitation is a well-known aspect of all RL algorithms [100,

104,105]. A detailed performance of the Q-learning based policy for the first test case

is shown in Fig. 6.9 for various combinations of the exploration rate ✏, the learning

rate ↵ and the discount factor �. For all the selected parameter combinations, the

highest achieved performance is observed to be 78.03%, which is achieved when when

✏ = 1/7, ↵ = 0.05 and � = 0.2.

In Fig. 6.10, we show the performance of the sub-band selection policies in the

second test case. The performance is normalized with respect to the performance

upper-bound as introduced in the first test case. We can see that the trivial random

selection method may achieve roughly 65% of the performance whereas the sub-band

selection policy using the channel Markov models achieves almost 100% performance

at low exploration rate (long random selection interval). The sub-band selection

policy using the sub-band Markov models can only achieve roughly 50% with a high

exploration rate. The performance di↵erence between the channel Markov model

based policy and the sub-band Markov model based policy can be explained as fol-

lows. Note that the expected individual channel throughputs are specifically assigned

such that in each configuration mode, one of the sub-bands is assumed to have chan-
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Figure 6.9: Comparison of normalized accumulated reward of the Q-learning-based
sub-band selection policy in 10, 000 time steps for the first test case with di↵erent
Q-learning parameter settings.

nels with the same individual channel throughputs, whereas the other sub-band is

assumed to have 2 channels with very high channel throughput and the other 8 chan-

nels with very low individual throughputs but the resulting sum throughputs of all

individual sub-bands are the same. Also note that the sub-band quality defined in the

sub-band Markov model based policy computes the expected sub-band throughput

by finding the product of the expected average individual channel throughput and

the expected number of accessible channels. On the other hand, the channel Markov

model based policy computes the expected sub-band throughput by finding the sum

of the expected highest individual channel throughputs of the expected accessible

channels. The latter gives a better estimate of the expected sub-band throughputs

with the setting of L = 2, since the sub-band Markov model based policy sees all
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the sub-bands having the same expected sub-band throughput. However, the chan-

nels are distinct and the actual communication throughput is much lower in those

sub-bands with channels of the same channel throughput, compared to those sub-

bands with 2 channels with very high channel throughput. As a result, the channel

Markov model based policy gives much better performance compared to the sub-

band Markov model based policy. Note that although the channel Markov models

based sub-band selection policy may achieve better results, the unavailability of the

required knowledge in practical scenarios may prohibit the application of the policy.

In this case, using the Q-learning based policy may be a better choice. As shown

in Fig. 6.10, the Q-learning based policy is capable of achieving the performance at

90%, when ↵ = 0.25, � = 0.2, and the exploration rate ✏ between 1/8 and 1/6.

A detailed performance of the Q-learning policy in the second test case is shown

in Fig. 6.11 for various combinations of the exploration rate ✏, the learning rate ↵

and the discount factor �. For all the selected parameter combinations, the highest

achieved performance is observed to be 92.24%, which is achieved when ✏ = 1/6,

↵ = 0.01 and � = 0.5.

In Fig. 6.12, we show the Q-learning policy for the third test case with real RF

measurement data for the 20 � 1500MHz band, with center frequency at 770 MHz

inside a modern o�ce building at Aachen, Germany [114]. The data is the measured

values of the power spectrum density (PSD) with a resolution bandwidth of 200kHz

taken each second. For simplicity, the communication channels are also considered as

spaced at 200kHz and each data point corresponds to a channel [114]. We randomly

selected 50 channels over a time duration of 12,000 seconds for the simulation. We

assume that the wideband CR has two reconfiguration modes with the first mode

contains two sub-bands and the other contains three sub-bands and that each sub-

band contains 10 channels as shown in Table. 6.1. The channel occupancies (idle

and busy states) are then determined by a thresholding test of the measurement
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Figure 6.10: Comparison of normalized accumulated reward of sub-band selection
policies in 10, 000 time steps for the second test case. The considered random selec-
tion interval length is set from 2 to 70.

data of each channel, similar to [114]. In this test case, we found that the channel

and sub-band state transitions do not exhibit stationary Markov properties. This is

found out by performing the built-in Matlab function hmmestimate on the data such

that di↵erent portions of the data (with each portion corresponds to 2,000 seconds of

data) give significantly di↵erent estimated state transition probabilities. Note that

this is similar to the observation in [115] that a simple discrete-time Markov chain

model is not able to accurately capture the channel load variations5. In this case, in

5When the channel is sparsely used (low load), the length of idle periods is significantly
higher than that of busy periods. On the other hand, when the channel is subject to
an intensive usage (high load), the length of busy periods increases, whereas idle periods
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Figure 6.11: Comparison of normalized accumulated reward of the Q-learning-based
sub-band selection policy in 10, 000 time steps for the second test case with di↵erent
Q-learning parameter settings.

order to obtain the performance upper-bound as used in previous two test cases, we

obtained the Markov model parameters for the entire data. However, we observed

that the Q-learning base policy outperforms the ‘upper-bound’. This is due to the

non-stationarity of the state dynamics of the measured RF environment and the

assumptions of the time-invariant transition probabilities of the channels and sub-

bands do not capture the non-stationary scenario, so that the obtained performance

‘upper-bound’ is not a performance upper-bound. As a result, we obtained a loose

performance upper-bound by assuming that before a sub-band selection decision

is about made, all sub-band and channels states are exactly revealed for the next

become notably shorter.

131



Chapter 6. Learning-aided Sub-band Selection for Wideband CRs

time step. As shown in Fig. 6.12, the obtained Q-learning policy performance is

normalized to the loose upper-bound. A performance of 78.9% is achieved when the

exploration rate ✏ = 1/6, the learning rate ↵ = 0.01, and the discount factor � = 0.7.

For comparison, the trivial random selection policy as introduced in the first test

case can only achieve a 52% of performance. Due to the space limitation, we do not

show the performance of the random selection policy.
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Figure 6.12: Comparison of normalized accumulated reward of the Q-learning-based
sub-band selection policy in 12, 000 time steps for the third test case with di↵erent
Q-learning parameter settings.

In summary, the two Markov-based sub-band selection policies may achieve good

results. However, the performance may vary depending on the RF environment.

The required Markov knowledge may not be easy to obtain in some cases. On the

other hand, the Q-learning policy achieves reasonable results (around 80� 90% per-
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formance) in all test cases, with a much lower computational e↵ort without any

knowledge of the channel/sub-band Markov models. As a result, we validate the ap-

plication of the Q-learning technique in the wideband spectrum sensing problem. In

order to achieve the autonomous operation of the CR in practical RF environments,

the CR may adopt a certain Machine-learning technique to fine tune the parameters

of the Q-learning method. However, due to the focus of this chapter, the higher level

autonomous behavior is out of the scope of this work.

6.6 Chapter Summary

In this chapter, we have investigated a frequency spectrum sensing scheduling prob-

lem in a realistic wideband spectrum sensing setup for a CR equipped with a recon-

figurable RF front-end with several operation modes to cover a wide frequency range

of interest. We assume that within each operation mode, the frequency range is

further divided into several frequency sub-bands and that the CR can only perform

spectrum sensing in one sub-band at a time. We propose three di↵erent sub-band

selection policies for the spectrum sensing scheduling problem: 1) a myopic sub-band

selection policy based on the channel Markov models; 2) a myopic sub-band selec-

tion policy based on the sub-band Markov models; 3) a Q-learning policy without

the knowledge of the channel and sub-band Markov models. Realistic RF front-end

reconfiguration costs such as energy consumption and time delays are considered. We

show that the proposed sub-band selection policies achieve good results comparing

to a commonly used performance upper-bound for the POMDP solution. We also

show that in both simulated and real measured RF environments, the Q-learning

technique may achieve around 80 � 90% of the performance upper-bound without

any knowledge of the RF environment, which validates the Q-learning application in

the wideband spectrum sensing problems.
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Summary of the Dissertation and

Research Directions

In this dissertation, we have developed the algorithms for spectrum sensing, spectrum

sharing, and spectrum decision making for the robust wideband operable autonomous

cognitive radios, or the Radiobots. The target Radiobot is targeted to be able to

work autonomously in alien wideband RF environments. Although the self-learning

and reasoning of the Radiobot is not a major research topic in this dissertation,

some machine learning techniques are still present. In the followings, we summarize

the main aspects and contributions of this dissertation. We also propose possible

research directions that can be addressed in the near future.
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7.1 Summary of the Dissertation

In Chapter 2, we proposed the optimal myopic spectrum sensing and access policy in

a centralized CR network environment. We also proposed the sub-optimal alternative

spectrum sensing policies with low-complexity and performance close to the myopic

policy. We also showed that our proposed myopic policies achieve close performance

to the optimal solution when considered under a POMDP formulation. A Hidden

Markov model based parameter estimation algorithm is also proposed to estimate

the channel Markov properties with linear computation complexity. This parameter

estimation algorithm is assumed to be used when the channel Markov knowledge is

absent.

In Chapter 3, we proposed the non-parametric cyclostationarity-based signal fea-

ture extraction algorithm. The proposed feature extraction algorithm is able to ex-

tract multiple superposed RF signals and distinguish signal cyclostationary feature

for di↵erent signals. The proposed feature extraction algorithm assumes no prior

knowledge of the signals, unlike the existing similar algorithms in the literature. We

also analytically evaluated the robustness of the proposed feature extraction algo-

rithm under channel fading, and Doppler e↵ects. The proposed algorithm is also

used in the multivariate non-parametric quickest detection algorithm proposed in

Chapter 4.

In Chapter 4, we proposed the average sample power and cyclostationarity-based

multivariate non-parametric quickest detection algorithm. The proposed quickest

detection algorithm is assumed to be used when the Radiobot encounters an alien

RF environment. We also proposed the parallel on-line quickest detection/o↵-line

change-point detection algorithm that is used to achieve self-awareness of the detec-

tion delays and false alarm rates. The knowledge of the achieved detection delays

and false alarm rates may help the Radiobot to perform self performance evaluation
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in order to achieve higher level of autonomous in conjunction with machine learning

techniques. We also show that the multivariate non-parametric quickest detection

algorithm has a comparable computation complexity to the uni-variate case, when

only the average sample power feature is used as in other existing solutions in the

literature. The simulation shows that the proposed multivariate quickest detection

algorithm outperforms the energy-based uni-variate case, in terms of the detection

delays and the utilization of spectrum opportunities.

In Chapter 5, we proposed a cognitive radio PHY/MAC decision-making strat-

egy for wideband bandwidth aggregation. A multi-objective optimization problem

is formulated with the objectives being the communication throughput and energy

consumption of the Radiobot device. The proposed multi-objective optimization

problem takes into account the practical concerns on imperfect spectrum sensing,

time varying channel conditions, hardware reconfiguration time delay, hardware re-

configuration power consumptions, and communication energy consumptions. The

optimal wideband bandwidth aggregation problem is solved using a combination of

the Hungarian algorithm and convex optimization. We showed that by self-adjusting

the weighting coe�cients of the objectives, the Radiobot may achieve autonomous

operation. The formulation can also be easily extended to similar optimization prob-

lems with more than two objectives.

Finally, in Chapter 6, we proposed the wideband spectrum sensing scheduling

solutions for cognitive radios that are equipped with reconfigurable RF front-ends.

Multiple sub-band selection solutions are proposed by assuming di↵erent RF en-

vironment knowledges. The sub-band selection solutions are designed for better

finding spectrum opportunities across an ultra-wideband RF environment. The pro-

posed solutions take into account realistic hardware reconfiguration overheads. We

also proposed a Q-learning based sub-band selection solution to reduce the com-

putational complexity. Performance of the proposed solutions are compared with
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a performance upper-bound of the optimal solution form the POMDP formulation.

The Q-learning based sub-band selection solution is validated by showing that it

can achieve good performance through numerical results in both simulated and real

measured RF environments.

7.2 Future Research Directions

The work that is presented in this dissertation can be extended along several direc-

tions, focusing on either spectrum sensing or decision-making applications.

7.2.1 Channel Dynamic Model Recognition

To achieve the robustness of the Radiobot operations in heterogeneous RF environ-

ments and to improve the spectrum utilization e�ciency, the suggested future work

under this research direction is summarized in the following:

• Designing the general algorithm for distinguishing various stochastic models

for RF channels under the assumptions of general arbitrary sensing durations

and sensing intervals, and the realistic channel modeling by taking into account

the channel fading, shadowing, Doppler e↵ects, etc.

• Designing the algorithm for stochastic model parameter estimation with the

consideration of the models are in general non-stationary by using time discount

factors for the observation history.

• Designing the decision rule to determine the optimized (minimizing the model

recognition as well as the parameter estimation errors) time discount factor for

the non-stationarity of the channel dynamics.

137



Chapter 7. Summary of the Dissertation and Research Directions

7.2.2 Cooperative Communications of the Radiobots

The suggested future work under this research direction is summarized in the follow-

ing:

• Extension of the PHY/MAC decision making for various QoS requirements in

a network of Radiobots with communication cooperations such as relaying each

others messages.

• Protocol for spectrum sensing cooperations, such as decentralized partial net-

work decision fusion, with realistic channel modeling.

• Exploit spacial diversity of multiple Radiobots to perform blind signal separa-

tion (BSS) in order to better perform feature extraction and classification.

• Analysis of the tradeo↵ between the cooperations in spectrum sensing overhead

and the spectrum e�ciency, as well as the communication throughput.

• Integration of the non-supervised machine learning based algorithms to ensure

the cognitive feature and to lower the decision-making computation complexi-

ties.
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