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ABSTRACT

In this paper we propose a distributed estimation scheme for

tracking the state of a Gauss-Markov model by means of in-

dependent observations at sensors connected in a network.

Our emphasis is on low communication demands to allevi-

ate the burden on eventually battery-powered sensors, which

will limit the achievable performance with respect to an ideal

centralized Kalman filter with access to all sensors measure-

ments. The cooperation is performed in a distributed way to

guarantee scalability and robustness to failures, and it is de-

signed to reduce the detrimental effects of the channel noise

on the sensor exchanges.

1. INTRODUCTION

Deployment of sensors for monitoring, collaborative informa-

tion processing and control has gained a good deal of attention

and research in recent years. If the wireless sensor network

can operate autonomously, that is, without a central repository

or fusion center collecting and processing all measurements,

important advantages become evident such as scalability and

robustness against node failure. The coordinated action of the

different sensors requires the local exchange of information to

improve on their individual estimates. We will work with the

following linear state-space model to describe the evolution

of x(k):

x(k + 1) = F (k)x(k) + u(k) (1)

where process noise u(k) is assumed to be white with co-

variance E{u2(k)} = Qu(k) and independent of x(k). In a

centralized setting, a unique node collects a set of N noisy

observations of x(k) as

y(k) = H(k)x(k) + v(k). (2)

Note that we follow the usual convention that vectors and ma-

trices are denoted by bold letters. In addition, the N × 1
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column vectors of all ones and all zeros will be denoted re-

spectively as 1 and 0. Superscript (·)t denotes the transpose.

The (i, j)-th element and the trace of the matrix A will be de-

noted by [A]ij and tr{A} respectively, whereas diag{A} is

a column vector collecting the main diagonal elements of the

matrix A. The vector H(k) in (2) is written as

H(k)
.
=

[

H1(k) H2(k) · · · HN (k)
]t

(3)

and the measurement noise v(k) is white and independent

of u(k), with diagonal covariance matrix E{v(k)vt(k)} de-

noted as Qv(k):

Qv(k)
.
=













Qv(1)(k) 0 · · · 0

0 Qv(2)(k)
. . . 0

...
. . .

. . .
...

0 · · · 0 Qv(N)(k)













.

(4)

The recursive relation for the update of the linear estimation

x̂(k) of x(k) based on the observations y(0), . . . , y(k), is the

Kalman filter, expressed in the information form by [1]

P−1(k)x̂(k) = F−1(k)(1 − K(k))P−1(k − 1)x̂(k − 1)

+ Ht(k)Q−1
v (k)y(k) (5)

where P (k) = E{(x(k) − x̂(k))2} is computed through the

following updates:

R(k) = Q−1
u (k) + F−1(k)P−1(k − 1)F−1(k) (6)

K(k) = F−1(k)P−1(k − 1)F−1(k)R−1(k) (7)

P−1(k) = F−1(k)P−1(k − 1)F−1(k) (8)

+ Ht(k)Q−1
v (k)H(k) − K(k)R(k)K(k)

for an initial uncertainty P (−1). Now, let us consider that

instead of a central observer, we have a set of N sensors, each

getting a value1 yn(k) of the vector y(k) in (2):

yn(k) = Hn(k)x(k) + vn(k), n = 1, . . . , N

1We keep the individual observations unidimensional for the sake of the

exposition, although the results can be easily generalized to vector observa-

tions.



with Hn(k) and vn(k) the nth elements of H(k) and v(k)
respectively. From the above equations, each sensor would

be able to emulate a central fusion center should it be able to

compute Ht(k)Q−1
v (k)y(k) and Ht(k)Q−1

v (k)H(k). This

was already observed in [2] and later used in [3] and [4]. For

each Kalman update, an infinite number of consensus steps

[5] must take place to agree on those quantities: this num-

ber is restricted to be one in [2], whereas in [6] state esti-

mates are additionally exchanged once the observations have

been shared and accounted for the estimates updates. The

approach in [3] is more general, and can deal with noisy ex-

changes in the vein of [7]. The performance approaches that

of the corresponding centralized counterpart for the noiseless

case when the number of consensus stages goes to infinity,

since in that case all sensors can agree on the aforementioned

quantities Ht(k)Q−1
v (k)y(k) and Ht(k)Q−1

v (k)H(k). In

practice, a low number of consensus stages could guarantee

the performance of a centralized estimator, although the as-

sociated communication demands might not be acceptable in

practical settings. In [8] the ideal exchange of estimations and

observations is used to track a time-varying signal observed

in noise, although no model is used for the dynamics of the

signal. Yet another approach with low communication over-

head is used in [9]: only the estimates at each Kalman update

are exchanged; however, inter-nodes links are assumed to be

ideal, and global statistical information from all other sensors

must be known locally. On the other side, [10] analyzes the

number of messages to exchange between succesive updates

in a distributed Kalman filter with perfect communication and

no model for the evolution of the signal. With the asymp-

totic error as target, optimum values for the exchange weights

and Kalman gain are obtained for some limit cases, assuming

identical sensors with the same quality.

In this paper we will study the formulation of a set of

Kalman filters which are entangled so that their respective

observations or state estimates are exchanged at each Kalman

update. For a network topology as detailed in the following

section, Section 3 will show how the individual Kalman fil-

ters running at each sensor must cooperate to improve their

individual estimates. Section 4 will provide numerical illus-

trations before the final remarks.

2. NETWORK MODEL

We consider an oriented graph G = (V, E), with N nodes

(sensors) vn ∈ V and edges eij ∈ E if there is a path from

node vi to node vj . We assume that the graph is connected, so

there is a sequence of edges to go from any node i to any other

node j. The elements of the adjacency matrix A are defined

as [A]ij = 1 if eji belongs to E, otherwise they are zero. The

degree matrix D is a diagonal matrix such that [D]ii is equal

to the number of connections entering node i. With that, the

Laplacian matrix L is defined as L = D−A. In other words,

the elements [L]ij of the Laplacian matrix L are defined as

[L]ij =

{

−1, eji ∈ E
[D]ii , i = j

The eigenvalues of L contain very significant information

about the topology of the graph G. In fact, if they are or-

dered as λ1 ≤ λ2 ≤ · · · ≤ λN , we have that λ1 = 0, and

λ2 > 0 for a connected graph. This second eigenvalue λ2

is known as the algebraic connectivity of the graph, and its

value plays a major role in the speed at which information

can be diffused through the network [5]. The additive noise

in the signal received at the j-th sensor from the i-th sensor is

zero-mean with variance σ2
w, and is independent for all chan-

nel realizations and different sensor links. The received noise

values at the exchange associated with the kth iteration are

collected in W (k):

W (k) =











0 w12(k) · · · w1N (k)
w21(k) 0 · · · w2N (k)

...
...

. . .
...

wN1(k) wN2(k) · · · 0











.

3. ENTANGLED KALMAN FILTERS

The upper bound performance for any distributed estimator of

x(k) in (1) corresponds to a centralized Kalman filter. This

role might be played by a fusion center with access to all

the measurements at each step or, on the other side, by the

flooding of the measurements throughout the whole network.

Since this latter option would require an enormous communi-

cation effort not scalable with the size of the network, other

options have been explored in the literature as detailed in Sec-

tion 1. As consensus implementations require fast exchanges

to align the estimates between two consecutive Kalman up-

dates, we will explore the case of one exchange between

two Kalman updates. In such a case, an unless the network

is fully connected and noiseless, it is not possible to com-

pute Ht(k)Q−1
v (k)y(k) =

∑N

n=1 Hn(k)yn(k)/Qv(n)(k)

and Ht(k)Q−1
v (k)H(k) =

∑N

n=1 H2
n(k)/Qv(n)(k) as re-

quired in (5) and (8) in a distributed form. However, the set

of values that each sensor may receive from its neighbors will

contribute to improve its isolated performance. The descrip-

tion of the extended capabilities of each sensor can follow

the ideas in [3], applied to our particular setup and explicitely

including the communication noise. Sensors must exchange

Hn(k)yn(k)/Qv(n)(k) and H2
n(k)/Qv(n)(k), so the com-

bined observations are written as

ȳ(k) = A







H1(k)y1(k)/Qv(1)(k)
...

HN(k)yN(k)/Qv(N)(k)






+ diag{AW (k)}.

(9)



Note the last term in (9) due to the communication noise. In

addition,

ȳ(k)
.
=

[

ȳ1(k) ȳ2(k) · · · ȳN (k)
]t

(10)

and the weighting matrix A = I−γL, where γ is a parameter

to be chosen2. As a result the state-space model at each sensor

is given by

x(k + 1) = F (k)x(k) + u(k) (11)

ȳn(k) = H̄n(k)x(k) + v̄n(k) (12)

for n = 1, . . . , N , if we write ȳ(k) = H̄(k)x(k) + v̄(k).
Each sensor can iterate the corresponding Kalman filter pro-
vided that the communication of H2

n(k)/Qv(n)(k) is noise-
less: these values may change slowly in practice, making ro-
bust communication easier. The covariance matrix of the vec-
tor noise containing the N components v̄n(k) is now a func-
tion of the original observation noise statistics, the weighting
matrix and the communication noise:

Qv̄(k) = A

0B@ H2
1 (k)/Qv(1)(k) . . . 0

...
. . .

...

0 . . . H2
N(k)/Qv(N)(k)

1CAA
t

+γ2σ2
wD (13)

assuming that the noise power σ2
w is the same for all links.

In consequence, after each measurement the corresponding

values are exchanged with neighbors to assist the Kalman

update at each sensor. The signal-to-noise ratio (SNR) of

the received values will determine their contribution. In

fact, the weight γ should be chosen accordingly, so low

quality exchanges would reduce the cooperation degree.

Strictly speaking, the assigned weights to different links

could be different, since as mentioned earlier, statistics are

expected to vary slowly, so each sensor can anticipate the

reliability degree of its neighbors contributions and weight

them accordingly. We will illustrate this point in numerical

results in Section 4.

Alternatively, we want to improve the performance of

the isolated sensors by exchanging their estimates with their

neighbors. Thus, information can diffuse further. Let us con-

sider for example a low quality sensor with poor observations,

only connected to another low quality sensor which gets sig-

nals from other sensors with higher quality measurements.

In the above framework, the first low quality sensor would

never benefit from those sensors which are more than one

hop away. However, if states are exchanged instead of ob-

servations, overall better performance can be expected, spe-

cially in highly unbalanced networks. The downside of this

approach is the required additional information which must

be exchanged to weight properly all the contributions. In fact,

the correlation among the different node estimates is needed

2More sophisticated weighthing coefficients can be used, see, e.g., [5].

for proper combination, which may be unfeasible to monitor

in completely distributed structures. However, for the pur-

pose of illustration, we detail next the analysis for a particular

case together with some numerical results in the next section

to evaluate the potential improvement. Thus, and after every

Kalman update, all sensors exchange their estimates before

the next measurement. We put all the N estimates at step k in

the vectors x̄(k) (before exchanging information) and x̂(k)
(after merging):

x̄(k)
.
=

[

x̄1(k) x̄2(k) · · · x̄N (k)
]T

(14)

x̂(k)
.
=

[

x̂1(k) x̂2(k) · · · x̂N (k)
]T

.

If we use the standard Kalman formulation, the update and

the merging steps are given respectively by

x̄n(k) = K1(k)x̂n(k − 1) + K
(n)
2 (k)yn(k), n = 1, . . . , N

(15)

where we are using the same weight K1(k) for all sensors,

and

x̂(k) = Ax̄(k) + diag{AW (k)}. (16)

Each sensor updates its estimate based on the relative contri-

butions from all the other sensors, using the weight matrix A.

The error vectors before and after merging are given by

Ē(k)
.
= x̄(k) − x(k)1 (17)

E(k)
.
= x̂(k) − x(k)1

with the corresponding covariance matrices

P̄ (k)
.
= E{Ē(k)Ēt(k)} (18)

P (k)
.
= E{E(k)Et(k)}. (19)

If we group all the sensors coefficients K
(n)
2 (k) as

K2(k)
.
=















K
(1)
2 (k) 0 · · · 0

0 K
(2)
2 (k)

. . . 0
...

. . .
. . .

...

0 · · · 0 K
(N)
2 (k)















and define a diagonal matrix Hd(k) out of H(k) in (2)

Hd(k)
.
=













H1(k) 0 · · · 0

0 H2(k)
. . . 0

...
. . .

. . .
...

0 · · · 0 HN(k)













then the two steps at each iteration can be detailed as follows:

(i) The error after the Kalman update and before the merging

is written as

Ē(k) = K1(k)E(k − 1)

+ (K1(k)I + K2(k)Hd(k)F (k) − F (k)I) · x(k − 1)1

+ (K2(k)Hd(k) − I)1u(k − 1) + K2(k)v(k). (20)



(ii) The error after the information merging is given by

E(k) = AĒ(k) + (A − I)x(k)1 + diag{AW (k)}. (21)

We have that (A − I)1 = 0 for A = I − γL. On the other

side,

K1(k)I + K2(k)Hd(k)F (k) − F (k)I = 0. (22)

with

K2(k) =

(

1 −
K1(k)

F (k)

)

H−1
d (k). (23)

With this, (20) and (21) can be rewritten as

Ē(k) = K1(k)E(k − 1)+

(K2(k)Hd(k) − I)1u(k − 1) + K2(k)v(k), (24)

and

E(k) = AĒ(k) + diag{AW (k)}, (25)

respectively, from which the covariance matrices in (18) and

(19) are shown next:

P̄ (k) = K1(k)P (k − 1)K1(k) + Qu(k)

· (K2(k)Hd(k) − I)11
t(K2(k)Hd(k) − I)t

+ K2(k)Qv(k)Kt
2(k) (26)

P (k) = AP̄ (k)At

+ E{diag{AW (k)}diagt{AW (k)}}. (27)

The covariance error (27) after merging is rewritten as

P (k) = P̄ (k) − γP̄ (k)Lt − γLP̄ (k)

+ γ2LP̄ (k)Lt + γ2σ2
wD (28)

or, as a function of P (k − 1),

P (k) = K2
1 (k)AP (k − 1)At + Qu(k)

· A(K2(k)Hd(k) − I)11
t(K2(k)Hd(k) − I)At

+ AK2(k)Qv(k)K2(k)At + γ2σ2
wD. (29)

In order to analyze the potential of improvement of the ex-

change of estimates, we use the optimum centralized value

for K1(k), which can be proved to be the expression at the

top of next page. This expression is for evaluation purposes,

although it cannot be computed in a distributed form with one

exchange per Kalman update. Next we show some numerical

results to illustrate the effect of the links noise on the entan-

gled Kalman filters based on (12) and their potential degrada-

tion with respect to an ideal implementation of (15) and (16).

4. NUMERICAL SIMULATIONS

Let us consider a network with N = 20 identical sensors

randomly placed, with nodes communicating through sym-

metric noisy links as a function of their distance. The low-

est five eigenvalues of the Laplacian matrix L are equal to

0, 1.7, 1.97, 2.1, 2.93. We have computed the analytical av-

erage mean square error (mse) of all the N Kalman filters

applied based on the model (12), for the stationary regime

and the following fixed parameters: F = 0.95, Hn = 1, n =
1, . . . , N, Qu = 0.5, Qv = 1I. The results are plotted in Fig.

1 for different channel SNRs and two different weighting cri-

teria:

(i) The parameter γ is equal to 1/ max/[L]nn regardless

of the SNR.

(ii) The parameter γ is chosen to maximize the observation

SNR.

As expected, when the SNR gets very small, performance de-

grades significantly unless γ decreases accordingly. In the

limit, γ = 0 and the performance becomes that of an isolated

Kalman filter.

−40 −30 −20 −10 0 10 20 30
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0

SNR [dB]

m
s
e

channel noise aware

channel noise unaware

local performance

Fig. 1. Average stationary mean square error (mse) perfor-

mance for a network of 20 sensors which exchange their ob-

servations.

On the other side, we wanted to analyze the potential degra-

dation of the entangled Kalman filters applied on (12) with

respect to the ideal exchange of estimates (16) using the cen-

trally computed coefficient (30). For some cases the degrada-

tion is negligible. In some others, there is a marginal improve-

ment by exchanging the estimates. Thus, Fig. 2 compares the

evolution of the average mse for the previous network of 20

sensors for the exposed cases in the paper: exchange of obser-

vations (12) and exchange of estimates (16). The model val-

ues are F = 0.99, Hn = 1, n = 1, . . . , N, Qu = 0.5, Qv =



K1(k) =
F (k)tr{AH−1

d (k)Qv(k)H−1
d (k)At}

tr{F 2(k)AP (k − 1)At + Qu(k)N + AH−1
d (k)Qv(k)H−1

d (k)At}
. (30)

2I. The experimental results correspond to the averaging of

200 realizations. The exposed gain requires the knowledge of

global statistics to compute the Kalman coefficients.
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Fig. 2. Analytical and experimental mean square error (mse)

performance for a network of 20 sensors. Observations and

states estimates are exchanged through ideal links. γ = 0.05.

5. CONCLUDING REMARKS

We have shown how different sensors can follow the evolution

of a common parameter by sharing their successive observa-

tions or estimates through noisy exchanges. The goal has not

been to achieve the performance of a centralized Kalman filter

with access to all the individual measurements, but rather to

improve on the performance of individual sensors with a low

communication burden, as imposed by practical limitations of

sensor networks. The amount of information which must be

exchanged between succesive measurements will determine

the quality of the estimates. If only one set of exchanges is

allowed between two consecutive Kalman updates, then the

exchange of estimates makes it possible to propagate the in-

formation further than one hop, although it requires global

statistical information for proper functioning. If more ex-

changes are allowed, then several rounds of consensus can

be applied either to the observations or the states. It is even

possible to devise hybrid strategies which exchange observa-

tions and states estimates to improve on the results exposed

in this work.
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