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Abstract— This paper examines the problem of tracking mul-
tiple spacecraft using a combination of ground- and space-
based sensors. The problem is formulated in a simplified two-
dimensional setting to reduce computational complexity while
retaining elements of the problem that pose theoretical or
practical difficulties (such as inverse square-law dynamics). As
a baseline approach for comparision purposes, a centralized
Extended Kalman Filter (EKF) estimator is used to provide po-
sition/velocity estimates of all tracked objects. These estimates
and their associated covariances are used to execute a closed-
loop sensor tasking approach to determine which sensors will
track which objects. A tasking approach from the literature
is utilized as a baseline methodology and compared to an
ad-hoc modification which may offer improved performance
in certain situations. The paper concludes with a numerical
example demonstrating the approaches as well as a summary
of avenues for future research.

I. INTRODUCTION

Space Situational Awareness (SSA), that is, the monitoring

of activities surrounding in- or through-space operations

and the assessment of their implications, has received a

great deal of attention in recent years, motivated initially

by the publication of the Rumsfeld Commission Report [1]

and more recently by the successful anti-satellite missions

performed by both China and the United States [2], [3].

There are multiple decompositions of what SSA represents;

from a capabilities point of view, SSA includes such things

as:

• the ability to detect and track new and existing space

objects to generate orbital characteristics and predict

future motion as a function of time;

• monitoring and alert of associated launch and ground-

site activities;

• identification and characterization of space objects to

determine country of origin, mission, capabilities, and

current status/intentions; and

• understanding of the space environment, particularly as

it will affect space systems and the services that they

provide to users;
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• the generation, transmission, storage, retrieval, and dis-

covery of data and information produced by sensor sys-

tems, including appropriate tools for fusion/correlation

and the display of results in a form suitable for operators

to make decisions in a timeframe compatible with the

evolving situation.

An excellent summary of the current system used by the

United States to perform the detection and tracking functions

of SSA, the Space Surveillence Network (SSN), is contained

in [4], which includes current methods for tasking the

network as well as proposed improvements.

This paper is organized as follows. We first establish a

precisely posed mathematical formulation of a simplified

form of the SSA sensor network tasking problem to establish

a benchmark problem and common framework for testing

the wide variety of proposed methods estimation and control

of collaborating and networked systems. We will focus on

the specific problem of tracking orbiting space objects, and

will formulate a centralized estimation/sensor management

strategy based on the Extended Kalman Filter combined

with a Fisher Information gain based tasking strategy which

can be used as a point of departure for future distributed

approaches. We furthermore propose an ad-hoc modification

of the tasking strategy that provides an alternate value model

to base sensor tasking decisions on, and provide a numerical

example that illustrates the possible benefits of this proposed

approach. We conclude with a discussion of extensions and

future work related to the problem and approaches discussed

in this paper.

II. SYSTEM MODEL & DYNAMICS

We will propose an extremely simplified model for the

detection and tracking of space objects as an initial focus for

this work. The model is represented graphically in Figure 1.

This paper will use the nomenclature developed in [5] to

the maximum extent possible, extending this framework in

certain areas where necessary. Let S = {s1, s2, . . . , sm}
represent the set of sensors, that is, an entity that will

accept tasks and will produce data and information; let O =
{o1, o2, . . . , on} represent the set of objects, that is, an entity
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Fig. 1. Simplified planar model of orbital and sensor platform dynamics

that is not controllable or able to be tasked, and furthermore

which it is desired to establish information about.

Sensors and objects will occupy one of two physical domains

captured by the problem: the planet surface, where the

resulting motion is dictated by the rotation of the planet about

its axis; or in an orbit, where the resulting motion is dictated

by orbital equations of motion. We will assume that all of

the objects being tracked reside in the space domain and

allow sensors to reside either in orbit or on the planetary

surface. We will denote the set of all sensors on the planet

surface as P; that is, P = {sj : sj is on the planet surface},

and the set of all sensors in orbit as K; that is, K = {sj :
sj is in orbit}.

We restrict ourselves to a two-dimensional case simply to

limit the computational complexity of the numerical simu-

lations and to allow easier visualiztion of the results. The

extension of the methodologies presented here to the three-

dimensional case is a trivial exercise. Thus, sensors and

objects will possess a state vector including position and

velocity in two dimensions, represented in a inertial Cartesian

coordinate with origin fixed at the center of the Earth, that we

denote as Xs
j = [xs

j , y
s
j , ẋ

s
j , ẏ

s
j ]

T, j = 1, 2, . . . ,m for sensors

and Xo
i = [xo

i , y
o
i , ẋ

o
i , ẏ

o
i ]

T, i = 1, 2, . . . , n for objects,

respectively.

The dynamics of motion for entities will be determined by

the domain (surface or orbital) that they occupy. Thus, for

terrestrial sensors,

Ẋs
j =









ẋs
j

ẏs
j

−ω2
Ex

s
j

−ω2
Ey

s
j









,∀sj ∈ P, (1)

where ωE is the earth’s angular velocity. For space-based

sensors,

Ẋs
j =













ẋs
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ẏs
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−µEx
s
j

(ds
j
)3
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s
j
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, ∀ sj ∈ K, (2)

where µE is the Earth’s gravitational constant and ds
j

∆
=

√

(xs
j)

2 + (ys
j)

2.

All objects to be tracked are assumed to be in orbit, and thus

Ẋo
i = f(Xo

i ) =











ẋo
i

ẏo
i

−µEx
o
i

(do
j
)3

−µEy
o
i

(do
j
)3











+Wi, ∀ oi ∈ O, (3)

where do
i

∆
=
√

(xo
i )

2 + (yo
i )

2 and Wi represents process

noise that affects the dynamics of the objects, typically used

to represent unknown or unmodeled forces.

Remark 2.1: More complex models of entities can include

the ability to maneuver objects in orbit (that is, an ability

to induce an impulsive change to their velocity state); the

inclusion of angular orientation and angular velocity states

that describe an object’s attitude (which may in turn affect

the ability to bring a sensor to bear in time to achieve a

task); states that represent object properties such as albedo,

radar cross-section, temperature, etc. (some of which could

depend on the object’s position, velocity, and attitude, and

which would have effects on the ability of certain sensors to

detect and or track an object); and the effects of perturbations

including earth oblateness effects (J2), N-body gravitational

effects, drag, solar pressure, and other non-conservative

and/or non-deterministic forces that will affect the motion

of entities in orbit. The trade between the computational

tractability of the resulting model (and any estimation or

tasking approaches based upon it) and the fidelity that the

model represents the true motion of the various objects is a

trade that must be evaluated for each situation - some effects

may be better handled through detailed physics modeling

(which is potentially too computationally intensive to include

for the multi-object system) which is then appropriately

abstracted to efficiently include the primary effects for a

system-level tasking model.

III. SENSORS

For this work, we will model sensors as simple range-angle

sensors; we first define

ρ(Xo
i , X

s
j) =

√

(xo
i − xs

j)
2 + (yo

i − ys
j)

2, (4)

ψ(Xo
i , X

s
j) = tan−1

(

yo
i − ys

j

xo
i − xs

j

)

− tan−1

(

ys
j

xs
j

)

.(5)
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We will use the shorthand notation ρi,j
∆
= ρ(Xo

i , X
s
j) and

ψi,j
∆
= ψ(Xo

i , X
s
j) for the remaining development where it

does not cause ambiguity.

We will restrict the sensors to generate data only within

a limited field-of-regard, e.g. an area around the sensor’s

position that it can effectively detect and track targets within.

We denote this area as Γj and define it’s boundary as the area

swept out by a ray of length∆j relative to the sensor’s current

position (the sensor’s maximum range) and an angle Ψj

measured in both directions from the local vertical direction

at the sensor location (the sensor’s maximum off-zenith

viewing angle). Thus

Γj =
{

X : ρ(X,Xs
j) ≤ ∆j and ψ(X,Xs

j) ≤ Ψj

}

. (6)

These quantities are illustrated in Figure 2. For ground-based

sensors, which are limited by the local horizon, −π/2 ≤
ψi ≤ π/2; space based sensors, assuming they are allowed

to arbitrarily re-orient their sensor payloads, would allow

−π ≤ ψi ≤ π.
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�
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Fig. 2. Definition of quantities involved in sensor model

Remark 3.1: Note that the sensor model developed here

differs from the range-angle sensor model developed in [5].

In (5) the angular measurement is defined as relative to

the local vertical direction at the sensor’s current location

whereas in [5], the angular measurments are defined with

respect to the intertial reference frame axes. Equation (5) is

a more accurate model of the measurements that range-angle

type sensors provide (e.g., azumith-elevation-range type mea-

surements), as well as retaining the nonlinear transformations

between local-vertical and earth-inertial coordinate frames

which increase the measurement nonlinearity that must be

dealt with in the problem.

Remark 3.2: More complex sensor models would include

more detailed representations of sensor characteristics such

as sensor noise characteristics, probability of detection and

how this varies with parameters such as object distance,

object velocity, and other object properties; limitations on

sensor capabilities such as slew rates, minimum elevation

angles; and variations of the required time to acquire an

object before sensor data is produced with these parameters.

IV. ESTIMATION

Our development of a centralized estimator for this system

will follow the development of [5], although there are

several minor changes due to differences in the sensor model

as noted in Section III, above, and the reduction to two

dimensions for the sake of simplicity.

We will only require estimation of the state vectors of the

objects; we will assume that the sensors know their own

position and the positions of those they can communicate

with exactly. For centralized estimation, we restrict our

development to the sampled-data EKF (SDEKF) of [5].

A. Forecast Step

We denote the forecast state estimate of object i by X̄i(t) =

[x̄i ȳi ˙̄xi ˙̄yi]
T

. Data is assumed to be produced by the sensors

at discrete instants with regular intervals of period h, thus

leading to data assimilation activities defined at instances

t = kh, k = 1, 2, . . .. The data assimilation state estimate

as X̂i(kh) =
[

x̂i ŷi ˙̂xi ˙̂yi

]T

, the pseudo forecast-error co-

variance as P̄i(t), and the pseudo data-assimilation error co-

variance as P̂i(kh). Thus, the forecast step of the centralized

SDEKF will consist of the state estimate propagation

˙̄Xi(t) = f(X̂i(t)), t ∈ [(k − 1)h, kh], (7)

and the pseudo error-covariance forecast

˙̄P i(t) = Âi(t)P̂i(t) + P̂i(t)Â
T
i (t) +Qi, t ∈ [(k − 1)h, kh],

(8)

where

Âi(t) =
∂f(X(t))

∂X
|X(t)=X̂i(t)

(9)

is the Jacobian of f evaluated along the trajectory of the

state estimate, and Qi = E(WT
i Wi). Beyond the restriction

to two dimensions, the form of Â(t) here is identical to that

given in [5].

B. Tasking

The resource management problem can now precisely be

stated as: decide, based on known information (e.g., the

differential equations of motion, the known locations of

the sensors and their associated fields of regard, and the

estimated positions of any satellites that are currently in

the field of regard of a sensor), which of the objects in the

sensor’s current field of view to observe at the current time.

There have been several approaches to this problem that have

been examined in the literature [6]. For the current work, we
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will examine the approach of [7] and then propose an ad-hoc

modification of it to address a potential deficiency.

For the following development, denote the set of sensor

indices that have data for a particular object at oi at time

kh as Si(k) = {j : Xo
i (kh) ∈ Γj(kh)} ⊂ S and denote the

number of such sensors as |Si(k)| = Mi(k). We will drop

the explicit dependence on the time variable where it does

not cause ambiguity to do so.

1) Fisher-Information Based Tasking: The tasking approach

of [7] is based on the information form of the covariance

update equation (25),

[P̂i+1]
−1 = [P̄i]

−1 +

Mi
∑

j=1

Ωi,j , (10)

where Ωi,j is the Fisher Information Matrix for sensor (Si)j ,
e.g., the jth element of the set Si, observing object i. We

compute Ωi,j as

Ωi,j = ĈT
i,(Si)j

R(Si)j
Ĉi,(Si)j

, (11)

where Rj is the covariance of the measurement noise Vj(kh),
and the linearized measurement map for sensor j applied to

object i, Ĉi,j(k), is defined as

Ĉi,j(k) =
∂g(X(kh), Y (kh))

∂X

∣

∣

∣

∣

∣ X(kh) = X̂i(kh),
Y (kh) = Xs

j(kh)

. (12)

Due to our modified definition of the angle measurement

used in the current work, this in turn yields (dropping the

dependence on k without ambiguity)

Ĉi,j =

[

Cρi,j 01×2

Cψi,j 01×2

]

, (13)

where

Cρi,j =
[

xo
i−x

s
j

ρi,j

yo
i −y

s
j

ρi,j

]

(14)

Cψi,j =
[

−(yo
i −y

s
j)

ρ2
i,j

xo
i−x

s
j

ρ2
i,j

]

. (15)

With the Fisher Information Matrix Ωi,j computed, we

can compute the corresponding Fisher Information Gain for

sensor j observing object oi as

µF
i,j = tr(Ωi,j). (16)

2) Modified Approach: A modified form of µi,j is pro-

posed based on the observation that the Fisher Information

approach described above only takes into account the po-

tential reduction of the covariance matrix as it’s measure

of value, without looking at the estimate covariance matrix

size directly. We therefore propose the following ad-hoc

modification of the Fisher-Information approach that directly

accounts for the size of the covariance estimate:

µM
i,j = α tr(Ωi,j) + (1 − α) β tr(P̄ o

i ) (17)

where α is a Pareto variable that allows the information

gain to be continuously varied between a purely Fisher

information gain approach to a purely covariance forecast

based approach, and β is a scaling variable used to normalize

the relative sizes of the tr(Ωi,j(k)) and tr(P̄ o
i (k)) terms in

(17).

Note that the definition (17) invalidates the interpretation of

this quantity as the potential reduction in the size of the

estimate covariance as was the case for µFi,j .
3) Tasking Solution: We now formulate the following linear

programming problem: find the binary variables ξi,j , i =
1, 2, . . . N , j = 1, 2, . . . ,Mi, that maximize

N
∑

i=1

Mi
∑

j=1

µi,j ξi,j , (18)

subject to

N
∑

i=1

ξi,j ≤ T, j = 1, . . . ,Mi, (19)

where ξi,j ∈ {0, 1}, and where µi,j represents either µFi,j
or µMi,j , depending on which tasking method is being used.

Note that (19) simply enforces a limit that each sensor can

look at no more than T objects at any instant. For notational

convenience, we will assemble the the variables ξi,j into the

elements of a matrix, e.g. Ξ(i, j)
∆
= ξi,j

To solve the sensor management problem, at each time step

we determine what measurements will be available for each

object (e.g., computing the set Si); we then use the forcast

state estimate for the object X̄i(kh) to compute either the

µFi,j or µMi,j for each sensor-object pair. Once this has been

completed across all sensor-object pairs, we form Ωi,j , and

then solve the linear program (18).

The resulting Ξ determines which object each sensor will

collect data on for that time step. Using this solution, we

define the set of indices of all sensors directed to observe

object i at a time step as J∗

i = {j : ξ∗i,j 6= 0} and the

total number of such sensors as |J∗

i | = li (dropping the

dependence on k), then the data collected on object i at time

kh is given by Yi(kh) = [Yi,1, Yi,2, . . . Yl]
T

, where

Yi,j = g(Xo
i (kh), X

s
(Si)(J∗

i
)j

(kh)). (20)

C. Data Assimilation

Assuming that an object has at least one sensor observing it

at time kh (e.g., Si 6= ∅ and J∗

i 6= ∅), then we can assign

the index j′ = (Si)(J
∗

i )j , j
′ = 1, 2, . . . , li and compute the

data assimilation gain Ki,j′ as

Ki,j′ = P̄ xyi,j′ [P̄
yy
i,j′ ]

−1, (21)

where

P̄ xyi,j′ = P̄iĈ
T
i,j′ (22)

P̄ yyi,j′ = Ĉi,j′ P̄iĈ
T
i,j′ +Rj′ . (23)
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The data-assimilation state estimate is then given by

X̂i(kh) = X̄i(kh) +Ki,j′(k)[Yi(kh) − Ȳi(kh)] (24)

P̂i(kh) = P̄i(kh) −Ki,j′(k)P̄
yy
i,j′(k)K

T
i,j′(k), (25)

where Ȳi(kh) =
[

Ȳi,1, Ȳi,2, . . . Ȳli
]T

, where

Ȳi,j′ = g(X̄i(kh), X
s
j′(kh)). (26)

Note that if Si = ∅ (e.g., no sensors can observe the object i)
or J∗

i = ∅ (e.g., the tasking solution directed the sensors that

could observe object i to observe a different object instead),

then we simply define X̂i(kh) = X̄i(kh) (e.g., there is no

data on object i to assimilate, so the forecast estimate is the

only estimate produced at this time step).

V. NUMERICAL EXAMPLES

A. Description

To numerically demonstrate the differences in the tasking

methods previously discussed, a network of four ground-

based sensors and one orbiting sensor were simulated. The

four ground-based sensors were placed ninety degrees apart

on a 2-D Earth with the space based sensor following a

high eccentricity orbit partially covering Low Earth Orbits

(LEO) through Geostationary Orbits (GEO) orbits. Sixteen

objects were simulated in a variety of orbits ranging from

LEO through GEO, including non-circular (eccentric) orbits.

Sensor and object positions and velocities were generated

using a seventh order Runge-Kutta method for a period of

two sidereal days divided into 1000 evenly spaced intervals

based on predefined initial conditions using (2) and (3).

Sensor data was derived from this orbit data using (4) and

(5) and adding zero mean Gaussian noise, using a standard

deviation on range measurements of σ2
ρ = 10−1 km2 and on

angular measurments of σ2
ψ = 10−6 rad2. The sample period

for the numerical integration was also used as the sampling

period for when the sensors could sample new data from

observed objects.

The sensor regions were defined with R =
[10000, 44157, 25371, 9371, 30000] km and Ψ =
[180◦, 10◦, 20◦, 50◦, 15◦]. The orbiting sensor, listed

first, could sense objects in any direction within a fixed

radius.

The estimator is initialized with the object initial positions

and velocities corrupted by additive Gaussian noise with a

standard deviation of 10 km (for x or y position) or 1 m/s

(for ẋ or ẏ velocity values).

B. Metrics

To demonstrate the relative performance of the two tasking

approaches discussed in this paper, we will use two metrics

that consolidate estimate covariance information across all of

the objects being tracked. These metrics both make use of

the determinant of the estimated object covariance matrix,

P̂i, due to its relationship to the hypervolume V of this

covariance as follows:

det (P̂i) =
4
∏

p=1

λp =
4
∏

p=1

σ2
p. (27)

Thus, the hypervolume of the estimate error ellipsoid Vi ∝
√

det P̂i. Due to this relationship, we define

Javg(kh) =
1

N

N
∑

i=1

det
(

P̂i(kh)
)

, (28)

Jmax(kh) = max
i=1,...,N

det
(

P̂i(kh)
)

. (29)

C. Results

Three difference cases were simulated and then compared.

We compare three cases:

• Case A: µFi,j is based on the pure Fisher Information

gain approach (IV-B.1), and the number of objects able

to be simultaneously sensed by a sensor is unity (T =
1).

• Case B: µMi,j is based on the modified approach (IV-B.2),

and T = 1.

• Case C: Sensors are allowed to measure data simulta-

neously on all objects within their viewing limitations

(e.g., T = ∞). This eliminates the need to make any

decisions, and represents a lower bound for performance

of any decision making algorithm.

A comparison of these cases based on the metrics defined

earlier are shown below in Figures 3 (showing Javg) and 4

(showing Jmax). Note that since Case C represents a lower

bound on the achieveable performance for Cases A and B,

we subtract it’s metric value from the values of the other

cases to better showcase the differences between the two

approaches.

0 2 4 6 8 10 12 14 16 18

x 10
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det,avg

C

J
det,avg

B
 − J
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C

Fig. 3. Cases A and B compared using J
A,B
avg − J

C
avg plotted on a

logarithmic scale.

It can be seen from these figures that the modified approach

presented in this paper is beneficial during a significant

portion of the simulation period. As will be discussed in the
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next section, more work is required to develop a rigorous

understanding of when such behavior can or cannot be

expected and/or to examine such results over a representative

distribution of sensor and object parameters to see if such

results extrapolate beyond the particular example provided

here.

VI. CONCLUSIONS

This paper establishes a simple benchmark problem that

can be used to frame basic research efforts in estimation

and resource management for SSA applications. A sensor

management approach is implemented based on both a

Fisher Information strategy and an ad-hoc modification to

this strategy that directly incorporates a term proportional

to the estimate covariance size in a weighted combination

fashion. The proposed modification shows some promise in

performance comparisons with the original approach.

Future research efforts along the lines of this inquiry include:

• A more rigorous examination and formulation of the

ad-hoc modification approach presented here, and in

particular an investigation as to how the approaches

might compare or be synergistic with covariance control

approaches for sensor management [6];

• Development of more realistic communications topol-

ogy modeling for the sensor network, specifically for

the space-based sensors, and an investigation into the

applicability of distributed estimation [8], [9], [10]

and/or collaborative control approaches to address the

estimation and tasking problems, respectively;

• Investigations into what benefits the use of higher-

order estimation approaches such as Unscented Kalman

Filters or more general sigma-point/particle filters or

other approaches [11], [12] would provide in terms of

allowing better decisions to be made in the tasking of

the sensor network.
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