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Abstract—This paper considers a problem of distributed
tracking with consensus on a time-varying graph with noisy
communications links. A distributed tracking with consensus
algorithm is proposed to handle a time-varying network topology
in which every node generates own local tracking estimates and
communicates over noisy links. The conditions on the connectivity
graph are established so that distributed consensus can be
achieved in the presence of noisy communication links when the
graph topology is time-varying. The steady-state performance of
the proposed distributed tracking with consensus algorithm is
analyzed and compared with that of distributed local Kalman
filtering with centralized fusion. Simulation results and perfor-
mance analysis of the proposed algorithm are also given.

I. INTRODUCTION

Multi-Sensor Tracking problems have attracted the attention
of many researchers in robotics, systems, and control theory
over the past three decades [1]. Modern target tracking prob-
lems are of great importance in surveillance, security, and
information systems for monitoring the behavior of agents
using sensor networks, such as tracking pallets in warehouses,
vehicles on roadways, or firefighters in burning buildings.
With the introduction of the concept of consensus, distributed
tracking and coordination without any fusion center has also
received considerable attention in recent years [2], [3].

Recent work in [4], [5] considers the distributed consensus
tracking over a fixed graph with noiseless communication
among nodes. A distributed Kalman filter with embedded
consensus filters were proposed in [4] and further extended to
heterogeneous and nonlinear sensing models in [5]. [6] studies
a distributed discrete-time coordinated tracking problem under
a fixed communication graph and proposes a PD-like discrete-
time consensus algorithm to address the problem. In [7],
the authors proposed a greedy stepsize sequence design to
guarantee the convergence of distributed estimation consensus
over a network with noisy links.

Distributed tracking with consensus, addressed in this paper,
refers to the problem that a group of nodes that need to
achieve an agreement over the state of a dynamical system by
exchanging tracking estimates over a network. For instance,
space-object tracking with a satellite surveillance network
could benefit from distributed tracking with consensus, due
to the fact that individual sensor nodes may not have enough
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observations of sufficient quality and different sensor nodes
may arrive at different local estimators regarding the same
space object of interest [8]. Information exchange among
nodes may improve the quality of local estimators and help
avoid conflicting and inefficient decisions. Other examples of
application of tracking with consensus include flocking and
formation control, real-time monitoring, target tracking and
GPS systems [6], [8].

The contributions of this work are as follows: 1) model
the problem of distributed tracking with consensus on a time-
varying graph with noisy communications links, 2) develop
a framework by combining distributed Kalman filtering with
consensus updates to handle the issue of time-varying network
topology and noisy communication links, 3) establish the
conditions on the connectivity graph so that the distributed
consensus can be achieved in the presence of noisy com-
munication links when the graph topology is time-varying,
and 4) analyze the steady-state performance of the distributed
tracking with consensus and compare with that of distributed
local Kalman filtering with centralized fusion.

The outline of the paper is as follows. Section II introduces
our assumed system model. A distributed tracking with con-
sensus algorithm is introduced in Section III and conditions for
consensus are discussed and the rate of convergence is quanti-
fied. The steady-state performance of the distributed tracking
with consensus is also analyzed in Section III. Section IV
provides detailed simulation results and performance compar-
ison of the proposed distributed tracking with consensus and
distributed Kalman filtering with centralized fusion. Finally,
concluding remarks are made in Section V.

II. SYSTEM MODEL

A network of n sensors is deployed to track the state of a
target of interest. Let network topology at time k denoted by an
undirected graph G(k) = (V,E(k)), where V = {1, 2, · · · , n}
and E(k) ⊆ V × V for k ≥ 0. The neighborhood of node i
at time k is denoted by Ωi(k) = {l ∈ V |(i, l) ∈ E(k)}. Node
i has degree di(k) = |Ωi(k)|. Let the degree matrix at time k
be the diagonal matrix D(k) = diag(d1(k), · · · , dn(k)), where
diag(d1, · · · , dn) represents a diagonal matrix with d1, · · · , dn
on its main diagonal. The adjacency matrix at time k is A(k) =
[Ail(k)], Ail(k) = 1, if (i, l) ∈ E(k), 0 otherwise. The graph
Laplacian matrix is L(k) = D(k) − A(k). Let L = E[L(k)]
denote the mean Laplacian for k ≥ 0. The eigenvalues of the
Laplacian can be ordered as 0 = λ1

(
L
)
≤ λ2

(
L
)
≤ · · · ≤

λn

(
L
)
. For a connected graph, λ2

(
L
)
> 0 [9]. A random

graph in which the existence of an edge between a pair of



vertices in the set V = {1, 2, · · · , n} is determined randomly
and independent of other edges with probability p ∈ (0, 1]
is denoted by G(n, p). Let p(l, i) be the probability that link
(l, i) of the graph exists (for random graphs considered in this
paper we will always assume that p(l, i) = p for ∀l, i ∈ V ).
The direct sum of an N ×N matrix B and an M ×M matrix
C will be an (N +M)× (N +M) matrix, denoted by B⊕C,
whereas the Kronecker product of an N × N matrix B and
an M ×M matrix C will be an NM ×NM matrix, denoted
by B ⊗ C.

The system dynamics of the target and the sensing model
of the ith sensor are as follows:

x(k + 1) = Fx(k) + w(k), x(0) ∼ N (x(0), P0).

yi(k) = Hix(k) + vi(k), yi ∈ Rm, (1)

and we assume that the Hi’s can be different for each node.
Both w(k) and vi(k) are zero-mean white Gaussian noise
(WGN) and x(0) ∈ RN is the initial state of the target. The
statistics of the process and measurement noise are given by

E[w(k)w(k′)T ] = Qδkk′ ,E[vi(k)vi′(k′)T ] = Riδkk′δii′ , (2)

where δkk′ = 1 if k = k′ and δkk′ = 0, otherwise.
At the end of tracking update, node i will have its filtered

estimate x̂i(k|k) with associated covariance matrix P̂i(k|k).
In order to improve the tracking estimation accuracy, it will
exchange its filtered estimate through noisy communication
links and try to reach consensus over the network. Note that,
here the goal is to obtain a consensus tracking estimate over
the local estimates at each k, and thus, the consensus problem
is essentially a problem of consensus in estimation.

Figure 1 shows the system model of distributed tracking
with consensus on a time-varying graph with noisy communi-
cations links. Let xi(k, j) denote the node i’s updated tracking
estimate at the j-th consensus iteration that follows the k-th
tracking update step with xi(k, 0) = x̂i(k|k), where x̂i(k|k) is
the i-th node’s filtered tracking estimate in the k-th tracking
update. The received data at node l from node i at iteration j
can be written as

zl,i(k, j) = xi(k, j) + ϕl,i(j), for 0 ≤ j ≤ J, (3)

where ϕl,i(j) denotes the receiver noise at the node l in receiv-
ing the estimator of node i at iteration j with E[ϕl,i(j)] = 0N
and E[ϕl,i(j)ϕ

T
l,i(j)] = Σl,i, zi,i(k, j) = xi(k, j) and J is

the number of iterations in consensus update. The distributed
tracking with consensus problem as formulated above may
have other applications beyond the space object tracking
problem treated in [8] such as in multi-target tracking with
a group of autonomous robots, battlefield life signs detection
by using UAVs (Unmanned Aerial Vehicles), package tracking
in warehouses using sensor networks, etc.
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Fig. 1. Block diagram of distributed tracking with consensus on a time-varying
graph with noisy communications links.

III. DISTRIBUTED TRACKING WITH CONSENSUS
ALGORITHM

A. Algorithm

In this section, we propose a distributed tracking and
consensus algorithm for the above distributed tracking problem
over a time-varying graph with noisy communications links.
This is based on the architecture that was first proposed in [8]
in the special context of consensus tracking in a satellite sensor
network for situational awareness. At the tracking update step,
node i passes its observation yi(k) through its local Kalman
filter as follows:

x̂i(k|k − 1) = Fxi(k − 1|k − 1),

P̂i(k|k − 1) = FP i(k − 1|k − 1)FT +Q,

Ki(k) = P̂i(k|k − 1)HT
i (HiP̂i(k|k − 1)HT

i +Ri)
−1,

x̂i(k|k) = x̂i(k|k − 1) +Ki(k)(yi(k)−Hix̂i(k|k − 1)),

P̂i(k|k) = (I −Ki(k)Hi)P̂i(k|k − 1), (4)

where xi(k−1|k−1) = xi(k−1, J) with xi(−1, J) = x(0) and
P i(k−1|k−1) = P i(k−1, J) with P i(−1, J) = P0. Denote
P (k − 1, j) as the covariance matrix in the j-th consensus
iteration after the (k−1)-th tracking update. The P i(k−1, J)
in (4) can be obtained by extracting the i-th N × N main
diagonal block of P (k − 1, J).

Node i will have its filtered estimate x̂i(k|k) in tracking
update and uses it as initial estimate for consensus update
exchange xi(k, 0) = x̂i(k|k) with initial covariance matrix
P (k, 0) = P̂1(k|k)⊕P̂2(k|k)⊕· · ·⊕P̂n(k|k), where ⊕ denotes
the direct sum of matrices. During the (j + 1)-th consensus
update, each node i forms a linear estimate of the following
form as its consensus estimate:

xi(k, j + 1)

=xi(k, j) + γ(j)
n∑

l=1

Ai,l(j)(zi,l(k, j)− zi,i(k, j)), (5)

where γ(j) is the weight coefficient at iteration j. Let
X(k, j) = [x1(k, j)T x2(k, j)T · · · xn(k, j)T ]T . Then, the
consensus update dynamics can be written in vector form as
follows:

X(k, j + 1) = X(k, j)− γ(j)[(L(j)⊗ IN )X(k, j) + Φ(j)], (6)

where ϕi(j) = −
∑n

l=1 Ai,l(j)ϕi,l(j) and Φ(j) =
[ϕ1(j)

T , · · · ,ϕn(j)
T ]T . Let us define e(k, j) be the error

vector at the j-th consensus iteration after the k-th tracking
update:

e(k, j) , X(k, j)− (1⊗ IN )x(k). (7)

From (6) and (7), it follows that

e(k, j + 1) = (A(j)⊗ IN )e(k, j)− (γ(j)⊗ IN )Φ(j) (8)

+
(
(A(j)⊗ IN )− I

)
(1⊗ IN )x(k),

where A(j) = In − γ(j)L(j).
Assume that the filtered estimate x̂i(k|k) at the end of

the measurement update stage is an unbiased estimate, so



that X(k, 0) is unbiased. From (8) it can be shown that
the unbiasedness in the consensus estimator X(k, j) can be
maintained if matrix A satisfies

(
(A⊗ IN )− I

)
(1⊗ IN ) = 0,

which is equivalent to requiring
(
(A − In)1

)
⊗ IN = 0. It

follows that the unbiasedness in consensus estimator X(k, j)
requires 0 is an eigenvalue of the Laplacian matrix L(j) with
the associated eigenvector 1. Then, it can be easily seen that

P (k, j + 1) = (A(j)⊗ IN )P (k, j)(A(j)⊗ IN )T (9)

+ γ2(j)E{Φ(j)Φ(j)T }.

After J consensus iterations, each node i will feed xi(k, J)
back to their local Kalman filters by setting xi(k|k) = xi(k, J)
and P i(k|k) = P i(k, J) before starting the next tracking
update for k+1. Figure 2 shows the timing diagram of tracking
and consensus updates process in the proposed distributed
tracking with consensus algorithm.

consensus updates
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Fig. 2. Timing diagram of tracking and consensus updates in the proposed
algorithm for distributed tracking with consensus.

Algorithm 1 Distributed Tracking with Consensus Algorithm
Initialize: x(0), F , Hi, Q,Ri

while new data exists do
Kalman filtering in tracking process:

x̂i(k|k − 1) = Fxi(k − 1|k − 1)
P̂i(k|k − 1) = FP i(k − 1|k − 1)FT +Q
Ki(k) = P̂i(k|k−1)HT

i (HiP̂i(k|k−1)HT
i +Ri)

−1

x̂i(k|k) = x̂i(k|k−1)+Ki(k)(yi(k)−Hix̂i(k|k−1))
P̂i(k|k) = (I −Ki(k)Hi)P̂i(k|k − 1)

update the initial state of consensus process:
xi(k, 0)← x̂i(k|k)
P (k, 0)← P̂1(k|k)⊕ P̂2(k|k)⊕ · · · ⊕ P̂n(k|k)
j ← 0

while j ≤ J − 1 do
xi(k, j+1) = xi(k, j)+γ(j)

∑n
l=1 Ai,l(j)(zi,l(k, j)−

zi,i(k, j))
j ← j + 1

end while
xi(k|k) = xi(k, J)
P i(k|k) = P i(k, J)
k ← k + 1

end while

B. Conditions for achieving consensus

In this section, we summarize results on convergence of
the proposed distributed tracking with consensus algorithm
and its convergence rate. The proofs are omitted due to
space limitations. For a fixed k and J ≫ 1, the consensus
update process can be considered as a consensus in estimation

problem discussed in previous literature. In the following, to
simplify the notation, we omit the tracking time step k in
X(k, j).

Define the consensus subspace C as, C = {X ∈ RnN |X =
1n ⊗ a, a ∈ RN}, meaning that if X(j) ∈ C, then xi(j) =
xl(j) = a for 1 ≤ i, l ≤ n.

Following two results characterize the convergence behavior
of the proposed algorithm.

Theorem 1: Consider the consensus algorithm in (6) with
initial state X(0) ∈ RnN . If the connectivity graph Laplacian
L(j) with mean L = E[L(j)] is such that λ2(L) > 0, and if
p(l, i) > 0 for (l, i) ∈ E(j), then there exists an almost sure
finite real random vector Θ such that

P[ lim
j→∞

X(j) = 1n ⊗Θ] = 1. (10)

Proof: Omitted due to space constraints.
Theorem 2: Consider the consensus algorithm in (6) with

initial state X(0) ∈ RnN . If the connectivity graph Laplacian
L(j) with mean L = E[L(j)] is such that λ2(L) > 0,
and if p(l, i) > 0 for (l, i) ∈ E(j), the convergence
rate of the proposed consensus algorithm is bounded by
−λ2(L)(

∑
0≤j≤∞ γ(j)).

Proof: Omitted due to space constraints.
From the asymptotic unbiasedness of Θ, we have

limj→∞ E[X(j)] = 1n ⊗ r, where r = 1
n (1

T ⊗ IN )X(0).
Thus, for J large enough, at the end of the consensus update,
all the node estimates xi(J) will converge to the average r.
Theorem 2 shows that the convergence rate depends on the
topology through the algebraic connectivity λ2(L) and through
the weights γ(j), for j ≥ 0. Thus, we can speed up the
convergence process by optimizing these two parameters.

C. Steady-state analysis for noiseless time-varying graphs

In this part, we analyze the steady-state performance of
the proposed distributed tracking with consensus algorithm.
When the filter reaches steady-state, the error covariance
matrix is time-invariant and the corresponding filter gain is
constant. Therefore, finding the steady-state of the proposed
algorithm will help understanding its asymptotic behavior,
analyzing error covariance and filter design. From (9), it can
be seen that the propagation of communication noise implies
the non-existence of an upper bound to the covariance matrix.
Therefore, the covariance matrix in Kalman filter may not also
converge and the filter may not reach steady state. However,
time-varying graph assumption does not affect the existence
of steady-state. From the results of Section II-B, for noiseless
time-varying graphs, average consensus is achieved over the
network if the connectivity graph Laplacian L(j) with mean
L = E[L(j)] is such that λ2(L) > 0, and if p(l, i) > 0
for (l, i) ∈ E(j). The outputs of the consensus update
Xi(k, J) and P (k, J) depend only on the inputs Xi(k, 0) and
P (k, 0). Hence, the combined system of distributed tracking
with consensus can be transformed into a Kalman filter with
time-invariant parameters. Therefore, steady-state can still be
reached [10].



In the following, we assume a scalar target state x ∈ R1 and
noiseless time-varying graphs, where the connectivity graph
Laplacian L(j) with mean L = E[L(j)] is such that λ2(L) >
0, and p(l, i) > 0 for (l, i) ∈ E(j). Note that, since a closed
form equation for P̂i(k+1|k) can not be easily obtained when
the target state x ∈ RM for M > 1, the following derivation
would not apply to vector state. With these assumptions, the
covariance matrix (9) in the j-th consensus iteration after the
k-th tracking update simplifies to

P (k, j + 1) = A(j)P (k, j)A(j)T . (11)

Since 1TL(j) = 0 for j ≥ 0, we have that 1TP (k, j + 1)1 =
1TP (k, j)1. Then, it follows that

lim
J→∞

P (k, J) =
1TP (k, 0)1

n2
11T =

∑n
i=1 P̂i(k|k)

n2
11T . (12)

From the result of Theorem 1 and the asymptotic unbiasedness
of Θ, with noiseless communication assumption, it can be
shown that for 1 ≤ i ≤ n

lim
J→∞

xi(k, J) =
1

n

n∑
i=1

xi(k, 0) =
1

n

n∑
i=1

x̂i(k|k). (13)

By feeding the outputs of consensus update xi(k, J) and
P (k, J) back to the local Kalman filter of node i, from (4),
(12) and (13), we have for 1 ≤ i ≤ n

P̂i(k + 1|k) = Q+
1

n2

n∑
q=1

F (I −Kq(k)Hq)P̂q(k|k − 1)FT ,

x̂i(k + 1|k) (14)

= F
1

n

n∑
q=1

[x̂q(k|k − 1) +Kq(k) (yq(k)−Hqx̂q(k|k − 1))] .

From (14), we have x̂i(k + 1|k) = x̂l(k + 1|k) and P̂i(k +
1|k) = P̂i(k+1|k) for 1 ≤ i, l ≤ n. Let x̂i(k+1|k) = x̂(k+
1|k) and P̂i(k+1|k) = P̂ (k+1|k). Then, the combined system
of distributed tracking with consensus can be transformed into
a single Kalman filter as follows:

x̂(k + 1|k) = Fx̂(k|k − 1)

+
F

n

n∑
i=1

Ki(k) (yi(k)−Hix̂i(k|k − 1)) ,

Ki(k) = P̂ (k|k − 1)HT
i [HiP̂ (k|k − 1)HT

i +Ri]
−1,

P̂ (k + 1|k) = Q+
1

n2

n∑
i=1

[FP̂ (k|k − 1)FT − FKi(k)

×
(
HiP̂ (k|k − 1)HT

i +Ri

)
Ki(k)

TFT ]. (15)

Theorem 3: Consider the system dynamics in (1) and the
Kalman filter in (15). Assume that the connectivity graph
Laplacian L(j) with mean L = E[L(j)] is such that λ2(L) >
0, and p(l, i) > 0 for (l, i) ∈ E(j). If the pair (F, I) is
controllable and the pair (F,Hi) is observable for 1 ≤ i ≤ n,
then the prediction covariance matrix P̂ (k|k−1) converges to
a constant matrix

lim
k→∞

P̂ (k|k − 1) = P,

where P is the unique definite solution of the discrete algebraic
Riccati equation (DARE)

P = Q+
1

n2

n∑
i=1

[FPFT − FPHT
i

(
HiPHT

i +Ri

)−1
HiPFT ].

(16)

Proof: The proof is a generalization of the proof in [10].

Remark 1: As a consequence of Theorem 2, the filter gain
converges to

lim
k→∞

Ki(k) = PHT
i [HiPHT

i +Ri]
−1. (17)

From (16), it can be seen that limn→∞ P = Q. i.e. as the size
of the sensor network increases, the steady-state covariance
matrix is reduced. This implies that if the network size is large
enough, asymptotically the tracking is noiseless and follows
the target exactly. For Hi = H and Ri = R for 1 ≤ i ≤ n, we

have P =
−B+
√

B2+4H2QR

2H2 , where B = (1− F 2

n )R−H2Q.

IV. NUMERICAL EXAMPLES

In this section, we consider the performance of the dis-
tributed tracking with consensus algorithm and compare it
with centralized Kalman filter and the distributed local Kalman
filtering with centralized fusion. The performance of the
centralized Kalman filter is well-understood [11] and provides
a benchmark performance for distributed local Kalman fil-
tering with centralized fusion. In local Kalman filtering with
centralized fusion, all nodes send their filtered estimates to a
fusion center. The fusion center then generates a fused estimate
x̂fusion(k) =

1
n

∑n
i=1 x̂i(k|k).

The assumed parameters in the first simulation setup are
as follows: F = 1, Q = 1, x(0) = 0, P0 = 0, Ri = 0.25,
Σl,i = Σ = 0, n = 6, J = 30, Hi = 1 for i = 1, 3, 5 and
Hi = 0.5 for i = 2, 4, 6. The connectivity graph Laplacian

L(j) =


L1 j = 4m
L2 j = 4m+ 1
L3 j = 4m+ 2
L4 j = 4m+ 3

for m = 0, 1, 2, · · · , which is

described in Figure 3. As we can see, the graph is connected on
average and p(l, i) > 0 for (l, i) ∈ E(j). Thus, it satisfies the
condition in Theorem 1 on the connectivity graph Laplacian.

Figure 4 shows the node consensus estimates xi(k, J) over
a graph with noiseless communication links and switching
topologies. It can be seen that all node estimates xi(k, J)
converge to the same value and follow the target state, as
asserted by Theorem 1. Figures 5 and 6 show the node
estimates xi(k, j) in the consensus update after the 16-th
tracking update and the variance of all the node estimates,
respectively. From Figure 5, it can be seen that the node
estimates converge to the average which is also confirmed in
Figure 6, where the variance decreases as consensus iteration
number increases and becomes static (around 10−8) after
consensus is reached. Figures 7 and 8 show the prediction
covariance matrix P̂i(k|k− 1) and Kalman gain Ki(k) of the
filter in (15), respectively. It can be seen that as the Kalman



filter reaches the steady state, both the prediction covariance
matrix and Kalman gain converge, as asserted by Theorem
3. Note that the limit of the Kalman gain is different for
different nodes in Figure 8 because the observation matrix
Hi is different for each node.

Fig. 3. A time-varying graph with switching topologies.
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Fig. 4. Node consensus estimates xi(k, J) over a graph with switching
topologies.
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Fig. 5. Node estimates xi(k, j) in consensus update.

In the second simulation, we compare the performance of
the three algorithms over a random graph with noisy com-
munication links. We consider a random connectivity graph
G(n, p) with n = 20 and the probability that each link exists
p = 0.5. The other parameters of the simulation setup are:
F = 1, Q = 1, x(0) = 0, P0 = 0, Ri = 0.25, Hi = 1,
Σl,i = Σ = 0.1 and J = 30.

Figure 9 shows the node estimates of the three algorithms
in a time-varying graph with noisy communication links.
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Fig. 7. Prediction covariance matrix P̂i(k|k − 1) versus tracking time step.

As we can see, the node estimates of the three algorithm
follow the target’s trajectory. In Figure 9, the curve with cross
marker denotes the first node’s estimate by using distributed
tracking with consensus algorithm, the dashed curve denotes
the distributed local Kalman filtering with centralized fusion,
the curve with circle marker denotes the centralized Kalman
filter and the solid curve denotes the target’s trajectory. Fig-
ure 10 compares the resulting mean squared error (MSE)
of the three algorithms, where the MSE of the distributed
tracking with consensus is the average MSE of all the nodes
1
n

∑n
i=1

[(
xi(k, J)− x(k)

)T (xi(k, J)− x(k)
)]

. In Fig. 9, it
can be seen that the MSE of the proposed distributed tracking
with consensus algorithm is close to that of the distributed
local Kalman filtering with centralized fusion. As expected,
both of them are higher than the MSE of the centralized
Kalman filter, which acts as a benchmark. The results in
Figures 9 and 10 show that the performance of the proposed
distributed tracking with consensus algorithm is close to that
of the centralized one in a time-varying graph with noisy
communication. Since the proposed algorithm has advantages
of robustness and scalability, it may be preferable in practical
applications.

In the third simulation, we consider the two dimensional
tracking problem in [5]. The connectivity graph is a random
graph G(n, p) with n = 50 and the probability that each link
exists p = 0.5. The initial location of the target at (15,-10)
in meter. The other parameters of the simulation setup are as

follows: F = I2 + ϵF0 + ϵ2

2 F
2
0 + ϵ3

6 F
3
0 , F0 =

[
0 −2
2 0

]
,
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Fig. 8. Kalman gain Ki(k) versus tracking time step.
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Fig. 9. Comparison of the proposed distributed tracking with consensus
algorithm with distributed local Kalman filtering with centralized fusion and
centralized Kalman filter (node estimates).

ϵ = 0.015, Q = (ϵc2w)
2I2, cw = 5, x(0) = [15,−10]T in

meter, Hi = [1, 0] for i is odd and Hi = [0, 1] for i is even,
Ri = c2v

√
i for i = 1, · · · , n with cv = 30, Σl,i = Σ = 0.01,

J = 10. The target is moving on noisy circular trajectories.
The target is not fully observable by an individual node, but
is collectively observable by all the nodes.

Figure 11 shows the node estimates (trajectory) of the
proposed distributed tracking with consensus algorithms over
a time-varying graph with noisy communication. As we can
see, the distributed tracking consensus algorithm overcomes
the impact of partial observation in each node and improves the
overall observation quality. Note that the estimates are close to
the trajectory of the target but with a small gap. That is because
the observation noise covariance is rather large at each node.
In all, the performance of the proposed algorithm can still be
considered satisfactory.

V. CONCLUSION AND FURTHER WORK

In this paper, we considered the problem of distributed
tracking with consensus on a time-varying graph with noisy
communications links. We developed a framework consisting
of tracking and consensus updates to handle the time-varying
topology and noisy communication issue. We discussed the
conditions of consensus and analyzed the steady state behavior
of the algorithm. Our simulation results show the distributed
tracking with consensus algorithm improves the estimation
quality of each node and its performance is close to distributed
Kalman filtering with centralized fusion.
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Fig. 10. Comparison of the proposed distributed tracking with consensus
algorithm with distributed local Kalman filtering with centralized fusion and
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