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Abstract—In this paper we address the problem of distributed
tracking with consensus on a time-varying graph with incomplete
data and noisy communication links. We develop a distributed
and collaborative tracking with consensus algorithm by com-
bining distributed Kalman filtering with consensus updates to
handle a time-varying network topology in which not every node
has local observations to generate own local tracking estimates.
We introduce the concepts of active node set and connectivity
graph to characterize such a network, and by merging these
two, an effective network graph is obtained. Simulation results
and performance analysis of the proposed algorithm are given
and compared with that of distributed local Kalman filtering
with centralized fusion.

I. INTRODUCTION

Distributed consensus estimation in sensor networks has
gained considerable attention in recent years [1]. The problem
has been studied with both fixed as well as time varying
communication topologies, taking into account issues such
as link failure, packet losses, quantization noise or additive
channel noise [2]–[5]. Recent work in [4], [6], [8] have also
considered the distributed consensus tracking over networks
with noiseless communication links among nodes.

Distributed tracking with consensus, addressed in this paper,
refers to the problem that a group of nodes need to achieve an
agreement over the state of a dynamical system by exchanging
tracking estimates over a network. For instance, space-object
tracking with a satellite surveillance network could benefit
from distributed tracking with consensus, due to the fact that
individual sensor nodes may not have enough observations
of sufficient quality and different sensor nodes may arrive at
different local estimates regarding the same space object of
interest [6]. Information exchange among nodes may improve
the quality of local estimates and help avoids conflicting and
inefficient decisions. Other examples include flocking and
formation control, real-time monitoring, target tracking and
GPS systems [6], [7].

In this work, we consider the problem of distributed tracking
with consensus on a time-varying graph with incomplete data
and noisy communication links, where the time-varying graph
consists of fixed nodes that are connected together and mobile
nodes that have active links with other nodes only within their
communication radii. We develop a framework by combining
distributed Kalman filtering with consensus updates to handle

Sudharman K. Jayaweera and Yongxiang Ruan are with the Communica-
tions and Information Sciences Lab (CISL), Department of Electrical and
Computer Engineering, University of New Mexico, Albuquerque, NM, USA
Email: jayaweera@ece.unm.edu and yruan@unm.edu.

R. Scott Erwin is with the Air Force Research Laboratory (AFRL), Space
Vehicles Directorate, Kirtland AFB, NM 87117.

a time-varying network topology in which not every node has
local observations to generate own local tracking estimates
(incomplete data). We introduce the concepts of an active node
set and a connectivity graph to characterize such a network.
By merging the active node set with the connectivity graph,
an effective network graph is obtained.

Following notation will be used in this paper: At time k,
an undirected graph is denoted by G(k) = (V,E(k)), where
V = 1, 2, · · · , n and E(k) ⊆ V × V for k ≥ 0. The
neighborhood of node i at time k is denoted by Ω i(k) =
{l ∈ V |(i, l) ∈ E(k)}. Node i has degree di(k) = |Ωi(k)|.
Let the degree matrix at time k be the diagonal matrix
D(k) = diag(d1(k), · · · , dn(k)), where diag(d1, · · · , dn)
represents a diagonal matrix with d1, · · · , dn on its main
diagonal. The adjacency matrix at time k is A(k) = [Ail(k)],
Ail(k) = 1, if (i, l) ∈ E(k), 0 otherwise. The graph Laplacian
matrix is L(k) = D(k) − A(k). The Laplacian is a positive
semidefinite matrix so that its eigenvalues can be ordered as
0 = λ1

(
L)

) ≤ λ2

(
L

) ≤ · · · ≤ λn

(
L

)
. For a connected graph,

λ2

(
L

)
> 0 [5]. We will use the notation G(n, p) to denote

a random graph with n vertices, in which each edge is taken
randomly and independently with probability p ∈ (0, 1].

II. PROBLEM FORMULATION

A. System Model

Consider an n-node sensor network with a connectivity
graph G(k) = (V,E(k)) at time k. Assume that the graph
G(k) is undirected and time-varying due to relative motion
or battery constraints of nodes. The objective is to perform
distributed tracking of a target state that is modelled as a linear,
finite-dimensional system [9]

x(k + 1) = Fx(k) + u(k); x(0) ∼ N (x(0), P0), (1)

where x(0) ∈ R
N is the initial state of the target assumed to

be Gaussian distributed. The sensing model of the ith sensor
is

yi(k) = Hix(k) + vi(k); yi ∈ R
M , (2)

where yi(k) represents the i-th node’s measurement for 1 ≤
i ≤ n and we assume that the Hi’s can be different for
each node. Both u(k) and vi(k) are zero-mean white Gaussian
noise (WGN). The statistics of the process and measurement
noise are given by E[u(k)u(k ′)T ] = Qδkk′ , E[vi(k)vl(k

′)T ] =
Riδkk′δil, where δkk′ = 1 if k = k′ and δkk′ = 0, otherwise.

At the end of the k-th tracking update step, node i which has
an observation of the target will have a filtered local estimate



x̂i(k|k) with associated covariance matrix P̂i(k|k). In order
to improve the consistency of its estimate against those of the
other nodes, node i will exchange this filtered estimate with
other nodes over noisy communication links. Due to time-
varying topology of the network, at any given time k not
all nodes may observe the target. These nodes will not have
filtered local tracking estimates. Note that, here the goal is to
obtain a consensus tracking estimate over the local estimates
at each k, and thus, the consensus problem is essentially a
problem of consensus estimation.

Fig. 1. Block diagram of distributed tracking with consensus on a time-varying
graph with incomplete data and noisy communication links.

Figure 1 shows the system model of distributed tracking
with consensus on a time-varying graph with incomplete data
and noisy communication links. Let x i(k, j) denote the node
i’s updated tracking estimate at the j-th consensus iteration
that follows the k-th tracking update step with x i(k, 0) =
x̂i(k|k). The received data at node i from node l at iteration j
can be written as zi,l(k, j) = xl(k, j)+wi,l(j), for 0 ≤ j ≤ J ,
where wi,l(j) denotes the receiver noise at the node i in receiv-
ing the estimates of node l at iteration j with E[wi,l(j)] = 0N
and E[wi,l(j)wT

i,l(j)] = Σi,l, zi,i(k, j) = xi(k, j) and J is the
number of iterations in each consensus update cycle.
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Fig. 2. Connectivity graph and effective network graph.
B. Network Model

We define the active node set S j in a time-varying graph
G(j) as the set of nodes that have local estimates to be shared
with others at the beginning of the j-th consensus iteration
[6]. Define the effective network graph G̃(j) =

(
V (j), Ẽ(j)

)
of a network G(j) with active node set S j as a graph G(j)
with the outgoing edges of the nodes that do not have data
removed. Note that, the nodes that do not observe the target
will not have filtered estimates to share at the beginning of
consensus update process. However, as information exchange
among nodes progresses, some of these nodes may be able
to form their own local estimates to be shared with others at

the beginning of iteration j for j > 0. Therefore, the active
node set Sj is time-varying and is a function of S j−1 and
G(j−1). Figure 2 shows the relation between the connectivity
graph G(j) and the effective network graph G̃(j) for a graph
of 6 nodes with active node set S j = (1, 2, 4, 6), where solid
circles denote active nodes.

Let ISj denote an n×n diagonal matrix generated from the
active node set Sj , where

[ISj ]ii′ =

{
1 if i = i′ and i′ ∈ Sj

0 else
. (3)

By combining the connectivity graph G(j) and active node
set Sj , we obtain the effective network graph G̃(j) for
j ≥ 0. The adjacency matrix of the effective network graph
is A(j) = A(j)ISj . The corresponding degree matrix D(j)
can then be generated from the A(j), leading to the Laplacian
matrix L(j) = D(j)− A(j).
III. DISTRIBUTED AND COLLABORATIVE TRACKING WITH

CONSENSUS ALGORITHM

For the above distributed tracking problem over a time-
varying graph with incomplete data and noisy communication
links, we propose a distributed and collaborative tracking and
consensus algorithm which is based on the architecture that
was first proposed in [6]. At the k-th tracking update step, node
i is assumed to observe the target and passes its observation
yi(k) through a Kalman filter as follows [9]:

x̂i(k|k − 1) = Fxi(k − 1|k − 1),

P̂i(k|k − 1) = FP i(k − 1|k − 1)FT +Q,

Kk = P̂i(k|k − 1)HT
i (HiP̂i(k|k − 1)HT

i +Ri)
−1,

x̂i(k|k) = x̂i(k|k − 1) +Kk(yi(k)−Hix̂i(k|k − 1)),

P̂i(k|k) = (I −KkHi)P̂i(k|k − 1), (4)

where xi(k−1|k−1) = xi(k−1, J) with xi(−1, J) = x(0) and
P i(k−1|k−1) = P i(k−1, J) with P i(−1, J) = P0. Denote
P (k − 1, j) as the covariance matrix in the j-th consensus
iteration after the (k−1)-th tracking update. The P i(k−1, J)
in (4) can be obtained by extracting the i-th N × N main
diagonal block of P (k − 1, J). Then, node i will have its
filtered estimate x̂i(k|k) in tracking update and uses it as initial
estimate for consensus update exchange by setting x i(k, 0) =
x̂i(k|k) with initial covariance matrix P (k, 0) = P̂1(k|k) ⊕
P̂2(k|k)⊕ · · · ⊕ P̂n(k|k), where ⊕ denotes the direct sum of
matrices. For nodes i ∈ (S0)c, it will only have its predicted
estimate x̂i(k|k − 1) and P̂i(k|k − 1) from the Kalman filter
in (4) without observation. It may arbitrarily set x̂i(k|k) = 0
and P̂i(k|k) = εIN for some ε > 0 and use them as the initial
estimate for the consensus stage.

During the j-th consensus update, each node i forms its
consensus estimate by combing received noisy estimates from
its neighbors [5]:

xi(k, j + 1)

=xi(k, j) + γi(j)

n∑
l=1

Ai,l(j)(zi,l(k, j)− zi,i(k, j)), (5)



where γi(j) is the i-th node’s weight coefficient at iteration
j. We set γi(j) = γ(j) for i ∈ Sj and γi(j) = 1∑

n
l=1 Ai,l(j)

for i ∈ (Sj)c and
∑n

l=1 Ai,l(j) �= 0. Here (5) is distributed
average consensus with imperfect communication, where each
sensor receives noise corrupted versions of its neighbors’ states
and the weight coefficient is different for each node [5].
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Fig. 3. Timing diagram of tracking and consensus updates in the proposed
algorithm for distributed tracking with consensus.

Let X(k, j) = [x1(k, j)
T x2(k, j)T · · · xn(k, j)

T ]T . Then,
the consensus update dynamics can be written in vector form
as follows:

X(k, j + 1) (6)

=X(k, j)− [(Γ(j)L(j)) ⊗ IN ]X(k, j)− (Γ(j)⊗ IN )W(j),

where Γ(j) = diag(γ1(j), γ2(j), · · · , γn(j)), wi(j) =
−∑n

l=1 Ai,l(j)wi,l(j) and W(j) = [w1(j)
T , · · · ,wn(j)

T ]T .
Define e(k, j) as the error vector in the j-th consensus iteration
that follows the k-th tracking update: e(k, j) � X(k, j)− (1⊗
IN )x(k). From (6), it follows that

e(k, j + 1) = (A(j)⊗ IN )e(k, j)− (Γ(j)⊗ IN )W(j) (7)

+
(
(A(j)⊗ IN )− I

)
(1⊗ IN )x(k),

where A(j) = In−Γ(j)L(j). Note that, this coefficient matrix
A(j) is slightly different from the one in [6]. In [6], A(j) =
Ĩ(j)−γ(j)L̃(j), where Ĩ(j) and L̃(j) are the modified identity
and Laplacian matrices.

Fig. 4. A time-varying graph with switching topologies.

Assume that the filtered estimate x̂i(k|k) at the end of the
measurement update stage is an unbiased estimate, so that
xi(k, 0) is unbiased for i ∈ S0. From (5), for i ∈ (S j)c,
we have xi(k, j + 1) = 1∑

n
l=1 Ai,l(j)

∑n
l=1 Ai,l(j)

(
xl(k, j) +

wi,l(j)
)
. Then, xi(k, j+1) is unbiased for i ∈ (Sj)c if xl(k, j)

is unbiased for l ∈ Sj . From (7) the unbiasedness in the
consensus estimate X(k, j) can be maintained if matrix A(j)

satisfies
(
(A(j)⊗ IN )− I

)
(1⊗ IN) = 0. From this, it follows

that the unbiasedness in consensus estimate X(k, j) requires
0 is an eigenvalue of the Laplacian matrix L(j) with the
associated eigenvector 1. Similar results on the unbiasedness
of the consensus estimate was obtained in [6]. Then, it can
easily be seen that

P (k, j + 1) = (A(j)⊗ IN )P (k, j)(A(j)⊗ IN )T (8)

+ E{(Γ(j)⊗ IN )W(j)W(j)T (Γ(j)⊗ IN )T }.
After J consensus iterations, each node i feeds x i(k, J)

back to the Kalman filter by setting xi(k|k) = xi(k, J) with
covariance matrix P i(k|k) = P i(k, J) before starting the
next tracking update for k + 1. Figure 3 shows the timing
diagram of tracking and consensus updates process in the
proposed distributed and collaborative tracking with consensus
algorithm, summarized in Algorithm 1.

Algorithm 1 Distributed and Collaborative Tracking with
Consensus Algorithm
Initialize: x(0), F , Hi, Q,Ri

while new data exists do
Kalman filtering in tracking process:

x̂i(k|k − 1) = Fxi(k − 1|k − 1)
P̂i(k|k − 1) = FP i(k − 1|k − 1)FT +Q
Ki(k) = P̂i(k|k−1)HT

i (HiP̂i(k|k−1)HT
i +Ri)

−1

x̂i(k|k) = x̂i(k|k−1)+Ki(k)(yi(k)−Hix̂i(k|k−1))
P̂i(k|k) = (I −Ki(k)Hi)P̂i(k|k − 1)

update the initial state of consensus process:
xi(k, 0)← x̂i(k|k)
P (k, 0)← P̂1(k|k)⊕ P̂2(k|k)⊕ · · · ⊕ P̂n(k|k)
j ← 0

while j ≤ J − 1 do
xi(k, j+1) = xi(k, j)+γ(j)

∑n
l=1 Ai,l(j)(zi,l(k, j)−

zi,i(k, j))
P (k, j + 1) = (A(j) ⊗ IN )P (k, j)(A(j) ⊗ IN )T +
E{(Γ(j)⊗ IN )W(j)W(j)T (Γ(j)⊗ IN )T }
j ← j + 1

end while
xi(k|k) = xi(k, J)
P i(k|k) = P i(k, J)
k ← k + 1

end while

IV. NUMERICAL EXAMPLES

In this section, we consider the performance of the dis-
tributed tracking with consensus algorithm and compare it
with the distributed local Kalman filtering with centralized
fusion, in which all nodes send the filtered estimates to a
fusion center, and the fusion center generates a fused estimate
x̂fusion(k) = 1

|S0|
∑

i∈S0 x̂i(k|k). The assumed parameters in
the first simulation setup are as follows: F = 1, Q = 1,
x(0) = 0, P0 = 0, Hi = 1, Ri = 0.25, Σl,i = Σ = 0.01,
n = 6, J = 30 and S0 = {1, 3, 4, 6}. Figures 5-6 show
the performance of the proposed distributed tracking with
consensus on a time-varying graph with switching topologies.
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The topologies of the graph are described in Fig. 4, where
m = 0, 1, 2, · · · . As can be seen for Fig. 5, the proposed
algorithm ensures that all nodes very closely follow the target
trajectory. Note that, the filtered estimate x̂1(k|k) is plotted
for node 1 ∈ S0 and the predicted estimate x̂2(k|k − 1) is
also plotted for node 2 ∈ (S0)c. Moreover, Figs. 6 shows that
indeed the consensus algorithm helps bring local estimates
closer within very few exchanges even in the presence of noise.

In the second simulation, we consider a random connectivity
graph G(n, p) with n = 50 and the probability that each
link exists p = 0.5. The probability of each node having
an observation at a given time instant is ps = 0.9. The
other parameters of the simulation setup are as follows [8]:

F = I2 + εF0 +
ε2

2 F
2
0 + ε3

6 F
3
0 , F0 =

[
0 −2
2 0

]
, ε = 0.015,

Q = (εc2w)
2I2, cw = 5, x(0) = [15,−10]T , Hi = [1, 0]

for i is odd and Hi = [0, 1] for i is even, Ri = c2v
√
i for

i = 1, · · · , n with cv = 30, Σl,i = Σ = 0.01, J = 10. Figure
7 shows the node estimates (trajectory) of the two algorithms
in this time-varying graph with incomplete data. As we can
see, the proposed algorithm performs almost the same as the
local Kalman filtering with centralized fusion. In Fig. 7, the

solid curve denotes the target’s trajectory and the dashed curve
denotes the distributed local Kalman filtering with centralized
fusion.
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Fig. 7. Comparison of the proposed distributed tracking with consensus
algorithm with local Kalman filtering with centralized fusion (trajectory).

V. CONCLUDING REMARKS

In this paper, we developed a distributed and collabora-
tive tracking with consensus algorithm to achieve distributed
tracking in a sensor network with incomplete data and a
noisy time-varying graph. Our simulation results showed the
proposed algorithm improves the estimation quality of each
node and its performance is close to distributed local Kalman
filtering with centralized fusion. The proposed algorithm does
not require global knowledge of network topology and shows
an advantage in scalability and robustness to dynamic changes
of the network topology, which is preferable in practical
applications.
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