
Distributed Tracking with Consensus on Noisy
Time-varying Graphs: Convergence Results and

Applications
Sudharman K. Jayaweera and Y. Ruan

ECE Deaprtment
University of New Mexico
Albuquerque, NM, USA

Email: jayaweera@ece.unm.edu

R. Scott Erwin
Air Force Research Laboratory

Space Vehicles Directorate
Kirtland AFB, NM 87117

Jed Carty
ECE Deaprtment

University of New Mexico
Albuquerque, NM, USA

Abstract—In this paper we consider the problem of distributed
tracking with consensus on a time-varying graph with noisy
communications links and sensing constraints. We develop a
framework to handle the time-varying network topology in which
not every node has local observations to generate own local
tracking estimates. Our approach introduces the concepts of
active node set and connectivity graph to characterize such a
network, and by merging these two, an effective network graph is
obtained. Then we propose a distributed tracking-with-consensus
algorithm for such a network model. We establish the conditions
on the connectivity graph so that distributed consensus can be
achieved in the presence of noisy communication links when the
effective network graph is time-varying. We also discuss how
this problem is motivated by the problem of distributed tracking
of space-borne Objects of Interests (OoI’s) in a hybrid space
surveillance network (SSN) formed by both ground and satellite
nodes. Simulation results of the proposed distributed tracking
with consensus algorithm are given for a two-dimensional hybrid
sensor network. They show that our algorithm performs almost
the same as the distributed local Kalman filtering with centralized
fusion on a noisy time-varying graphs with incomplete data,
while the proposed algorithm has the additional advantages of
flexibility and scalability.

I. INTRODUCTION

Distributed tracking-with-consensus, addressed in this pa-
per, refers to the problem that a group of nodes need to
achieve an agreement over the state of a dynamical system
by exchanging tracking estimates over a network. Note that,
our distributed tracking-with-consensus problem is different
from the consensus-in-tracking problem found in literature:
The latter refers to the problem in which at each tracking step
a consensus exchange of local tracking estimates is performed
and the consensus is aimed to be achieved asymptotically in
tracking time steps [1]. The former, on the other hand, refers
to the problem in which at each tracking step there is an
asymptotically large number of consensus iterations among
nodes in the network with the aim of achieving consensus
on distributed tracking estimates at each tracking time step.
This is the problem considered in this paper, and later we will
discuss how this problem arises in the important context of
space situational awareness (SSA) when distributed tracking

of space-borne Objects of Interests (OoI’s) using a hybrid
space surveillance network (SSN) is of interest [2], [3].

In this paper, we formulate the problem of distributed track-
ing with consensus on a time-varying graph with incomplete
data and noisy communication links, where the time-varying
graph consists of fixed nodes that are connected together and
mobile nodes that could only have active links with other
nodes within their communication radius. Next, we propose an
algorithm by combining distributed Kalman filtering with con-
sensus in estimation [4], [5] to handle a time-varying network
in which not every node has local observations to generate own
local tracking estimates (incomplete data). We then establish
the conditions on the so-called connectivity graph of the sensor
network so that the distributed consensus can be achieved even
in the presence of noisy communication links when the graph
topology is time-varying. We detail an application scenario
from SSA in which the considered problem of tracking-with-
consensus naturally arise. We provide simulation examples to
show the convergence performance of the proposed distributed
tracking with consensus algorithm compared to that with the
distributed local Kalman filtering with centralized fusion and
centralized Kalman filter.

The remainder of this paper is organized as follows: Section
II introduces our assumed system and network models, and
Section III presents the proposed distributed tracking with
consensus algorithm. In Section IV conditions for achieving
distributed consensus are discussed and the rate of convergence
is quantified. In Section V we describe how the problem
addressed here arises in the context of SSA and the use of
the the proposed algorithm in that context. The simulation
results and performance comparisons are given in Section VI.
Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

A. System Model

Consider an N -node sensor network with a connectivity
graph G(k) =

(
V,E(k)

)
at time k made of both mobile and

fixed nodes. Assume that the graph G(k) is undirected, but

time varying due to nodes moving in and out of communica-
tion ranges of each other (or terminating transmissions to save
battery power). There is a set of multiple, independent targets.
A particular target’s dynamics evolves according to

x(k + 1) = Fx(k) + w(k); x(0) ∼ N
(
x(0), P0

)
. (1)

where w(k) is zero-mean white Gaussian process noise
(WGN), x(0) ∈ RM is the initial state of the target, and
E
[
w(k)w(k′)T

]
= Qδkk′ with δii′ = 1 if i = i′ and δii′ = 0,

otherwise.
The problem facing the sensor network is to track these

targets. However, due to relative motion of nodes and targets
etc not every node can observe a given target at a given time.
Hence, nodes perform local distributed Kalman filtering based
on their own local observations. This, of course, leads to a set
of possibly different distributed estimates corresponding to the
same target state, which is undesirable in practice. To counter
this, the nodes exchange distributed tracking estimates over
noisy communication links and try to reach consensus over
the network. Since targets are independent, in the following
we limit our discussion to tracking a single target.

We denote the discrete time index by k. Due to sensing
constraints, the observations are only taken at each k = iJ ,
for i = 0, 1, · · · and J > 0. The sensing model of the n-th
sensor, for k = iJ and i = 0, 1, · · · , is

yn(i) = Hnx(k) + vn(i), yn ∈ RL, (2)

where vn(i) is zero-mean WGN and E
[
vn(i)vn′(i′)T

]
=

Rnδii′δnn′ . Note that, the observation matrices Hn’s can be
different for each node.

Tracking updates are performed at k = iJ instances, and
i denotes the tracking time step (i = 0, 1, · · ·). As shown in
Fig. 2, at the end of the i-th tracking update, each node n who
had an observation of the target will have a filtered estimate
x̂n(i|i) with an associated covariance matrix P̂n(i|i).

Fig. 1: Timing diagram of tracking and consensus updates in
the proposed algorithm for distributed tracking with consensus.

In order to improve the tracking estimate accuracy and,
more importantly, to reach at a consensus estimate among
all nodes, the nodes then perform a J number of consensus
exchanges of their local tracking estimates between any two
tracking steps. i.e. for each i > 0, consensus updates are
performed at k = iJ + j where 0 ≤ j < J denotes the
consensus iteration number as shown in Fig. 5. The exchanges
starts by sharing the filtered estimates with neighbors over
noisy communication links. Note that, the goal here is to reach
at a consensus estimate over the distributed local estimates at

Fig. 2: Block diagram of distributed tracking with consensus
on a time-varying graph with incomplete data and noisy
communication links.

each tracking time step i. Hence, the consensus problem is
essentially a problem of consensus in estimation.

Let xn(i, j) denote the node n’s updated tracking estimate
at the j-th consensus iteration that follows the i-th tracking
update step with xn(i, 0) = x̂n(i|i), where x̂n(i|i) is the n-
th node’s filtered tracking estimate in the i-th tracking update.
The received data at node n from node l, for n 6= l, at iteration
j is written as zn,l(i, j) = xl(i, j) + φn,l(j), for 0 ≤ j <
J , where φn,l(j) denotes the communications noise at the
node n in receiving the estimator of node l at iteration j. We
assume that E

[
φn,l(j)

]
= 0M , E

[
φn,l(j)φTn,l(j)

]
= Σn,l and

zn,n(i, j) = xn(i, j).

B. Network Model

As mentioned above, the sensor network of interest consists
of both mobile and fixed nodes. Due to time-varying topology
of the network, at any given tracking time step i some nodes
may not be able to observe the target, and thus will not have
filtered local tracking estimates. We define the active node set
Sk in a time-varying graph G(k) as the set of nodes that have
updated local estimates to be shared with others in the j-th
consensus iteration after the i-th tracking update [3], where
k = iJ + j, i = 0, 1, · · · and 0 ≤ j < J . Define effective
network graph of a network G(k) =

(
V (k), E(k)

)
with

active node set Sk as G̃(k) =
(
V (k), Ẽ(k)

)
, where Ẽ(k) =

E(k)∩
(
∪n∈Sk Υout

n (k)
)

and Υout
n (k) = { ~(n, l)| ~(n, l) ∈ E(k)}

denotes the set of directed edges with initial vertex as n at time
k. The effective network graph G̃(k) is a directed graph, which
is obtained by removing the outgoing edges of the nodes that
do not have data in G(k). For a static graph G(k) = G(V,E),
Ẽ(k) can be written as Ẽ(k) = Ẽ(k−1)∪l∈Sk−1

(
∪n∈Ωl

Υout
n

)
,

where Ẽ(0) = E ∩
(
∪n∈S0 Υout

n

)
. The nodes that do

not observe the target will not have updated local estimates
to share at the beginning of consensus update process (at
j = 0). However, as information exchange among nodes
progresses, some of these nodes may be able to form their
own updated local estimates at a consensus iteration j for
j > 0. Therefore, the active node set Sk is time-varying and
Sk = Sk−1∪l∈Sk−1Ωl(k−1), where S0 is the set of nodes that
have observations of the target in the 0-th tracking update step.
Figure 3 shows the relation between the connectivity graph
G(k) and the effective network graph G̃(k) for a graph of
6 nodes with active node set Sk = (1, 2, 4, 6), where solid

circles denote active nodes.

Fig. 3: Connectivity graph and effective network graph.

Let ISk denote an N ×N matrix generated from the active
node set Sk as follows:

[ISk]nn′ =
{

1 if n = n′ and n′ ∈ Sk
0 else .

Note that, ISk is a diagonal matrix with n′-th diagonal element
equal to zero for n′ ∈ (Sk)c, where (·)c denotes the set
complement. By combining the connectivity graph G(k) with
the active node set Sk, we obtain the effective network graph
G̃(k) for k ≥ 0. Thus, the adjacency matrix [6] of the
effective network graph is given by A(k) = A(k)ISk , where
A(k) = [Anl(k)] is the adjacency matrix of the graph G(k)
at time k. Note that Anl(k) = 1, if (n, l) ∈ E(k), and
Anl(k) = 0 otherwise. The corresponding degree matrix D(k)
can then be obtained from A(k), and the Laplacian matrix
becomes L(k) = D(k)− A(k).

III. PROPOSED DISTRIBUTED TRACKING WITH
CONSENSUS ALGORITHM

Based on the architecture that was first proposed in [3]
in the context of consensus tracking in a satellite sensor
network for situational awareness, in the following we propose
a distributed tracking and consensus algorithm for the above
distributed tracking problem over a time-varying graph with
incomplete data and noisy communication links. As in Fig. 5,
at tracking time step i, node n is assumed to have completed its
consensus iterations corresponding to time i− 1. If the output
of this consensus update following the (i− 1)-th tracking up-
date step is xn(i−1, J) with the associated covariance matrix
Pn(i− 1, J), then node n sets xn(i− 1|i− 1) = xn(i− 1, J)
and Pn(i− 1|i− 1) = Pn(i− 1, J). Next, at the i-th tracking
update step, each node n where n ∈ Sk for k = iJ , passes
its observation yn(i) through its local Kalman filter as follows
[7]:

x̂n(i|i− 1) = Fxn(i− 1|i− 1),

P̂n(i|i− 1) = FPn(i− 1|i− 1)FT +Q,

Kn(i) = P̂n(i|i− 1)HT
n

(
HnP̂n(i|i− 1)HT

n +Rn

)−1

,

x̂n(i|i) = x̂n(i|i− 1) +Kn(i)
(

yn(i)−Hnx̂n(i|i− 1)
)
,

P̂n(i|i) =
(
I −Kn(i)Hn

)
P̂n(i|i− 1), (3)

where xn(i− 1|i− 1) = xn(i− 1, J) with xn(−1, J) = x(0)
and Pn(i−1|i−1) = Pn(i−1, J) with Pn(−1, J) = P0. Let

X(i−1, j) =
[
x1(i−1, j)T , x2(i−1, j)T , · · · , xN (i−1, j)T

]T
.

Denote P (i− 1, j) as the covariance matrix corresponding to
X(i− 1, j). Note that, Pn(i− 1, J) in (3) can be obtained by
extracting the n-th M×M main diagonal block of P (i−1, J).

Node n uses its filtered estimate x̂n(i|i) obtained by the
above tracking update step as the initial estimate for consensus
update exchanges by setting xn(i, 0) = x̂n(i|i) with initial
covariance matrix P (i, 0) = P̂1(i|i)⊕ P̂2(i|i)⊕· · ·⊕ P̂N (i|i),
where ⊕ denotes the direct sum. On the other hand, for nodes
n ∈ (Sk)c, for k = iJ , we may arbitrarily set x̂n(i|i) = 0 and
P̂n(i|i) = εIM for some ε > 0.

During the (j+1)-th consensus update, each node n forms a
linear estimate of the following form as its consensus estimate
where k = iJ + j:

xn(i, j + 1)

=xn(i, j) + γn(j)
N∑
l=1

An,l(k)
(

zn,l(i, j)− zn,n(i, j)
)
, (4)

where γn(j) is the n-th node’s weight coefficient at iteration
j and 0 ≤ j < J . For k = iJ + j, we set γn(j) = γ(j)
for n ∈ Sk and γn(j) = 1∑N

l=1 An,l(k)
for n ∈ (Sk)c and∑N

l=1 An,l(k) 6= 0, so that the consensus update dynamics can
be written in vector form as follows for k = iJ + j:

X(i, j + 1) = X(i, j)−
[(

Γ(j)L(k)
)
⊗ IM

]
X(i, j)−

(
Γ(j)⊗ IM

)
Φ(j), (5)

where Γ(j) = diag
(
γ1(j), · · · , γN (j)

)
, Φ(j) =[

φ1(j)T · · ·φN (j)T
]T

and φn(j) = −
∑N
l=1 An,l(k)φn,l(j).

Let us define e(i, j) to be the error vector at the j-th
consensus iteration after the i-th tracking update: e(i, j) ,
X(i, j)− (1⊗ IM)x(iJ). From (5), it follows that

e(i, j + 1) =
(
A(j)⊗ IM

)
e(i, j)−

(
Γ(j)⊗ IM

)
Φ(j)

+
((

A(j)⊗ IM
)
− I
)

(1⊗ IM)x(iJ), (6)

where A(j) = IN − Γ(j)L(k) is a coefficient matrix and k =
iJ + j.

Note that, if the filtered estimate x̂n(i|i) at the end of
the measurement update stage is an unbiased estimate, then
xn(i, 0) is also unbiased for all n ∈ Sk and k = iJ . From
(4), since xn(i, j + 1) = 1∑N

l=1 An,l(k)

∑N
l=1 An,l(k)

(
xl(i, j) +

φn,l(j)
)

for n ∈ (Sk)c, then xn(i, j + 1) is also unbiased
for n ∈ (Sk)c if xl(i, j) is unbiased for l ∈ Sk. From (6), it
can be shown that the unbiasedness in the consensus estimator
X(i, j) can be maintained if matrix A(j) satisfies the condition((

A(j) ⊗ IM
)
− I

)
(1 ⊗ IM) = 0, which is equivalent to

requiring
((

A(j) − IN
)
1
)
⊗ IM = 0. It follows that the

unbiasedness in consensus estimator X(i, j) requires 0 to be
an eigenvalue of the Laplacian matrix L(k) with the associated
eigenvector 11. Then, it can be easily seen that

P (i, j + 1) =
(
A(j)⊗ IM

)
P (i, j)

(
A(j)⊗ IM

)T
(7)

+ E
{(

Γ(j)⊗ IM
)
Φ(j)Φ(j)T

(
Γ(j)⊗ IM

)T}
.

1Note that, similar results on the unbiasedness of consensus estimator was
obtained in [3].

As shown in Fig. 5, after J consensus iterations each node n
will feed xn(i, J) back to their local Kalman filters by setting
xn(i|i) = xn(i, J) and Pn(i|i) = Pn(i, J) before starting
next tracking update at time i + 1. Recall that here Pn(i, J)
is the n-th M ×M main diagonal block of P (i, J).

IV. CONVERGENCE ANALYSIS OF THE PROPOSED
ALGORITHM

In this section, we analyze the convergence of the proposed
distributed tracking with consensus algorithm and characterize
its rate of convergence. We assume that the information
exchange rate during the consensus updates is much higher
compared to the data sampling rate for the tracking updates.
Hence, we can assume that J � 1, guaranteeing enough time
for information to be exchanged over the network so that
consensus can be reached if the weights

{
γ(j)

}
are chosen

properly. As mentioned above, for a fixed i and J � 1, the
problem is that of consensus in estimation. Thus, to simplify
notation, in the following we drop the tracking time step index
i in X(i, j).

In the following theorem, we state a result that establishes
almost-sure (a.s.) convergence of the sequence of component-
wise averages

{
Xavg(j)

}
j≥0

of the proposed distributed track-
ing with consensus algorithm to a finite random variable Θ,
where Xavg(j) = 1

N (1T ⊗ IM)X(j). The proof is lengthy, and
thus due to space limitations, we omit the proof.

Theorem 1 (a.s. convergence to a finite random vector):
Consider the consensus algorithm in (5) with initial state
X(0) ∈ RNM . If the connectivity graph Laplacian L(k) with
mean L = E

[
L(k)

]
is such that λ2(L) > 0, and if p(l, n) > 0

for (l, n) ∈ E(k), then there exists an almost sure finite real
random vector Θ such that

P
[

lim
j→∞

X(j) = 1N ⊗Θ
]

= 1.

Proof: Omitted due to space, but steps follow closely
those of the proof in the scalar case given in [9].

Theorem 1 essentially states that the proposed distributed
tracking with consensus algorithm will reach consensus almost
surely and the consensus estimate limj→∞ x(j) is a finite ran-
dom vector Θ. Since the consensus algorithm in (5) falls in the
framework of stochastic approximation, we may also analyze
the convergence rate of the consensus algorithm based on the
ODE method (Ordinary Difference Equation) [8]. The next
theorem characterizes an upper bound to the convergence rate
of the proposed distributed tracking with consensus algorithm.

Theorem 2 (convergence rate): Consider the consensus
algorithm in (5) with initial state X(0) ∈ RNM . For a fixed
i, let Ji = inf{j|(Sk)c = ∅ and k = iJ + j, j ≥ 0}.
For k = iJ + j and j ≥ Ji, the effective network graph
Laplacian is L(k) = L+ L̃(k) with mean L = E

[
L(k)

]
. If the

connectivity graph Laplacian L(k) with mean L = E
[
L(k)

]
is such that λ2(L) > 0, and if p(l, n) > 0 for (l, n) ∈ E(k),
the convergence rate of the proposed consensus algorithm is
bounded by −λ2(L)

(∑
Ji≤j≤∞ γ(j)

)
.

Proof: From the asymptotic unbiasedness of Θ, we have
limj→∞ E

[
X(j)

]
= 1N ⊗ r, where r = Xavg(Ji). For j ≥ Ji,

define Ξ(j) = INM − γ(j)(L ⊗ IM), where L = E
[
L(k)

]
.

Using the fact that L(k) and X(j) are independent, and
E
[
Φ(j)

]
= 0NM , from (5), we have that ∀j ≥ Ji

E
[
X(j + 1)

]
= Ξ(j)E

[
X(j)

]
=

j∏
l=Ji

Ξ(l)E
[
X(Ji)

]
. (8)

From the persistence condition γ(j) > 0,
∑
j≥0 γ(j) = ∞

and
∑
j≥0 γ

2(j) ≤ ∞ [9], it follows that γ(j) → 0.
Hence, without loss of generality, we can assume that γ(j) ≤

2
λ2(L)+λn(L)

,∀j [10]. From the mixed-product property of
Kronecker product (A ⊗ B)(C ⊗ D) = AB ⊗ CD and(
INM − γ(j)L

)
1N = 1N [11], we have

1N ⊗ r = Ξ(j)
(
1N ⊗ r

)
. (9)

From (8) and (9), it can be shown that

‖E
[
X(j)

]
− 1N ⊗ r‖,

≤
∏

Ji≤l≤j−1

ρ
(
1− γ(l)L

)
‖E
[
X(Ji)

]
− 1N ⊗ r‖,

=
∏

Ji≤l≤j−1

(
1− γ(l)λ2(L)

)
‖E
[
X(Ji)

]
− 1N ⊗ r‖,

where last step follows from Lemma 8 of [4] and ρ(·) denotes
the spectral radius of a matrix. Since 1 − γ ≤ e−γ and 0 ≤
γ ≤ 1, we then have that

‖E
[
X(j)

]
− 1N ⊗ r‖

≤
(
e−λ2(L)

(∑
Ji≤l≤j−1 γ(l)

))
‖E
[
X(Ji)

]
− 1N ⊗ r‖. (10)

Therefore, as j → ∞, the convergence rate is bounded by
−λ2(L)

(∑
Ji≤l≤∞ γ(l)

)
, which depends on the algebraic

connectivity λ2(L) and the weights γ(j), for j ≥ Ji.
Theorem 2 shows that the convergence rate of the proposed

algorithm depends on the topology through the algebraic
connectivity λ2(L) of the effective network graph G̃(k) and
through weights γ(j), for j ≥ Ji. Since for k = iJ + j
and j ≥ Ji, ISk = I and L(k) = L(k) , we have
L = E

[
L(k)

]
= E

[
L(k)

]
. In (10), λ2(L) is the algebraic

connectivity of the mean Laplacian corresponding to the time-
varying network graphs. For a static network, this reduces
to the algebraic connectivity of the static Laplacian L. We
can speed up the convergence process by optimizing algebraic
connectivity λ2(E

[
L(k)

]
) of the connectivity graph G(k) and

weights γ(j), for k = iJ + j and j ≥ Ji.

V. SPACE-OBJECT TRACKING AND SCHEDULING WITH A
HYBRID SPACE SURVEILLANCE NETWORK

The task of a space surveillance network is to keep track
of space-born objects of interest (OoIs). However, this is a
challenging problem especially if we presume an SSN made
of a handful of ground-based sensor nodes connected in a
centralized architecture. The number of possible space OoIs
that could be present in the space region of interest (RoI), on

0 10 20 30 40 50
−12

−10

−8

−6

−4

−2

0

2

4

tracking time step (i)

n
o

d
e

es
ti

m
at

es

the proposed algorithm
distriubted Kalman filtering with centralized fusion
centralized Kalman filter
target

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

tracking time step (i)

M
S

E

the proposed algorithm
distributed Kalman filtering with centralized fusion
centralized Kalman filter

(a) (b)

Fig. 4: Comparison of the proposed distributed tracking with consensus algorithm with distributed local Kalman filtering with
centralized fusion and centralized Kalman filter. (a) node estimates. (b) mean squared error.

the other hand, may be several orders of magnitudes larger
than the number of sensor nodes. There is the possibility that
such a fixed-node architecture may not be able to fully cover
the space RoI, leaving some space objects never to be detected.
As a solution to these constraints we recently proposed to
integrate a small number of space-born mobile sensor nodes
(i.e. satellites) to a ground-based fixed SSN [12].

Even with such a hybrid SSN, due to resource constraints
it is important to assign detected targets to the sensor nodes
judiciously for the purpose of tracking. This node-target
scheduling is also important due to the sensing limitations
of nodes and the finite maximum number of targets each
node can sense/track at any given time. Traditionally, this
tracking and node-target scheduling would be implemented in
a centralized processing architecture. While a centralized SSN
architecture has its own advantages, a distributed architecture
may possibly be flexible and more efficient: The distributed
architecture is easily scalable and perhaps more robust against
node failures. However, since not all nodes may be able to
observe a given target with the same quality, in a distributed
processing architecture different sensor nodes may arrive at
different local estimators regarding the same space object
of interest. This, of course, would then lead to inconsistent
distributed node-target scheduling decisions across the nodes
in a hybrid SSN. This is clearly undesirable since it could lead
to conflicting node actions leading disastrous outcomes.

The solution to this is to achieve consensus among dis-
tributed nodes in an SSN. The problem is then exactly the one
we considered in this paper. Following each tracking update
step, the nodes in an SSN performs a sequence of consensus
exchanges among themselves to arrive at a consensus state
estimate for a given target. The node-target scheduling deci-
sions will be based on these consensus estimates, and thus will
be consistent across the whole network. The only difference
however, is that in the case of SSA, the target dynamics given

by orbital equations are highly non-linear. Hence, rather than
the standard KF, as discussed above, one needs to employ a
suitable nonlinear tracking algorithm for the distributed local
tracking step: For example, in [12] the Extended Kalman
Filter (EKF) was considered. Indeed, in [12] it was established
that a sufficient number of repeated exchanges can diffuse
information throughout the whole SSN allowing all distributed
estimators to converge to a single consensus estimator.

VI. NUMERICAL EXAMPLES

In this section, we evaluate the performance of the proposed
distributed tracking with consensus algorithm on a simulated
sensor network, and compare it with that of the centralized
Kalman filter and the distributed local Kalman filtering with
centralized fusion. In distributed local Kalman filtering with
centralized fusion, all nodes send their filtered estimates to a
fusion center (FC). The FC then generates a fused estimate
x̂fusion(i) = 1

|Sk|
∑
n∈Sk x̂n(i|i) for k = iJ and i = 0, 1, · · · .

In the first simulation we compare the performance of the
proposed algorithm with the distributed local Kalman filtering
with centralized fusion and the centralized Kalman filter over a
random graph with noisy communication links and incomplete
data. We consider a random connectivity graph G(N, p) with
N = 20 and the probability that each link exists p = 0.5. The
other parameters of the simulation setup are: F = 1, Q = 1,
x(0) = 0, P0 = 0, Rn = 0.25, Hn = 1, Σl,n = Σ = 0.1,
Sk = {n|1 ≤ n ≤ 10, n ∈ Z} for k = iJ , i = 0, 1, · · · and
J = 30. Figure 4a shows the node estimates from the three
algorithms. As we see from Fig. 4a, the node estimates of the
three algorithms follow the target’s trajectory very closely.

Figure 4b compares the resulting mean squared error (MSE)
of the three algorithms, where the MSE of the distributed
tracking with consensus is defined to be the average MSE over
all nodes 1

N

∑N
n=1

[(
xn(i, J)− x(iJ)

)T (xn(i, J)− x(iJ)
)]

.
From Fig. 4b it can be seen that the MSE of the proposed

distributed tracking with consensus algorithm is close to that of
the distributed local Kalman filtering with centralized fusion.
As expected, both of them are higher than the MSE of the
centralized Kalman filter, which acts as a benchmark. The
results in Fig. 4b show that the performance of the proposed
distributed tracking with consensus algorithm is close to that of
the distributed local Kalman filtering with centralized fusion
in a time-varying random graph with noisy communication
and incomplete data. Essentially, distributed consensus does
not loose much compared to combining all estimates at a
central fusion node! Of course, the proposed algorithm has
the advantages of fully distributed implementation, robustness
and scalability.

50 100 150 200 250 300 350 400 450 500
1

2

3

4

5

6

7

8

9
x 10

5 MSE of node estimates

Time (k)

M
S

E
 (

km
2)

Distributed tracking without consensus
Distributed tracking with consensus
and noise variance = 0.1

Distributed tracking with centralized
 data fusion

Distributed tracking with consensus
with no communication noise

Fig. 5: The MSE performance. J = 10 in the consensus
algorithm.

As our next example, we choose a two-dimensional SSN
with 5 sensors total, 4 of which are ground based with the
remaining node orbiting around the Earth. Four ground based
sensors are spaced evenly around the Earth and the orbiting
sensor is assumed to have an orbital radius of 6320 km. We
consider a single target of interest that has a slightly eccentric
orbit (e = 0.0597) with a mean orbital radius of 11776 km.
The sample time T = 172s for the simulation, and each
simulation lasts one sidereal day (86164s). In our simulation,
we model the 2-D nonlinear orbital dynamics of the target
and the sensor node in an orbit, and replace the KF with the
EKF. We omit the details here. Figure 5 shows the average
Mean-Squared Error (MSE) defined as 1

n

∑n
i=1 ||x̂ − x||2, at

each time instant k with the proposed distributed consensus
algorithm assuming both zero communications noise as well
as noise with σ2

c = 0.1. Figure 5 also shows the average
MSE if local nodes run their own local EKF’s without any
data/estimate exchanges, as well as the MSE if these local
estimates were fused by a central fusion node. As seen in 5
the consensus exchanges among nodes as in the proposed al-
gorithm reduce the average MSE of distributed local estimates.
In some cases, the consensus can help reduce the average MSE
even beyond that with central fusion of distributed estimates.
This is because with the proposed consensus algorithm there

is the likelihood that at some point even a node which does not
have any observations might get a better local estimate due to
the information received from other nodes. From then on, this
node might be able to predict a reasonably good estimate for
the target location. Without consensus exchanges, however,
these nodes will always have bad estimates and thus fusing
them at a central node may not necessarily help.

VII. CONCLUSIONS

In this paper, we considered the problem of distributed
tracking with consensus on a time-varying graph with incom-
plete data and noisy communication links. We developed a dis-
tributed and collaborative algorithm that performs distributed
tracking with consensus in order to obtain a consensus target
estimate across all the nodes in the network. We discussed the
conditions for achieving consensus and quantified the conver-
gence rate of the proposed algorithm. We discussed how this
problem of tracking with consensus over time-varying noisy
networks arises naturally in the context of space situational
awareness when one needs to track space-borne objects with
an SSN. Our simulation results showed that the performance
of the proposed distributed tracking with consensus algorithm
is close to that of the distributed local Kalman filtering with
centralized fusion.

ACKNOWLEDGMENT

This research was supported in part by the Space Vehicles
Directorate of the Air Force Research Laboratory (AFRL), and
in part by the National Science foundation (NSF) under the
grant CCF-0830545.

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[2] B. Teixeira, M. A. Santillo, R. S. Erwin, and D. S. Bernstein, “Space-
craft tracking using sampled-data kalman filters,” IEEE Control Sys.
Magazine, pp. 78–94, Aug. 2008.

[3] S. K. Jayaweera, “Distributed space-object tracking and scheduling
with a satellite-assisted collaborative space surveillance network,” AFRL
Summer Faculty Fellowship Program, Final project report, July 2009.

[4] S. Kar and J. M. F. Moura, “Sensor networks with random links: Topol-
ogy design for distributed consensus,” IEEE Trans. Signal Process.,
vol. 56, no. 7, pp. 3315–3326, July 2008.

[5] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Automat-
ica, vol. 43, no. 7, pp. 1192–1203, July 2007.

[6] F. R. K. Chung, Spectral Graph Theory. Providence, RI: American
Mathematical Society, 1997.

[7] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

[8] N. Ghasemi, S. Dey, and J. Baras, “Stochastic average consensus filter
for distributed hmm filtering: Almost sure convergence,” Institute for
Systems Research Technical Reports, Tech. Rep., May 2010.

[9] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor
networks: Link failures and channel noise,” IEEE Trans. Signal Process.,
vol. 57, no. 1, pp. 355–369, Jan. 2009.

[10] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, pp. 65–78, 2004.

[11] A. J. Laub, Matrix Analysis for Scientists and Engineers. SIAM:
Society for Industrial and Applied Mathematics, 2004.

[12] S. K. Jayaweera, R. S. Erwin, and J. Carty, “Distributed space situational
awareness (d-ssa) with a satellite-assisted collaborative space surveil-
lance network,” in 18th World Congress of the International Federation
of Automatic Control (IFAC), Milan, Italy, Aug. 2011, in review.

