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ABSTRACT

Distributed estimation and detection is of interest for
those situations for which the sensor net must achieve
an agreement by exchanging information without resort-
ing to the use of an external fusion center. In this paper
we deal with the distributed estimation of a parameter
for both static and time-varying cases, for which it is
important to have similar estimates as accurate as possi-
ble. The cooperation is performed in a distributed way to
guarantee scalability and robustness to failures, and it is
designed to reduce the detrimental effects of the channel
noise on the sensor exchanges.

1. INTRODUCTION

Deployment of sensors for monitoring, collaborative in-
formation processing and control has gained a consider-
able attention and research in recent years. If a wireless
sensor network can operate autonomously, that is, with-
out a central repository or a fusion center collecting and
processing all measurements, important advantages be-
come evident such as scalability and robustness against
node failure. The coordinated action of different sensors
requires the local exchange of information to improve
on their individual estimates. A good deal of research
has been done in the early years of this decade, well
exposed in [1] and [2], exploiting the appealing math-
ematical properties of consensus analysis, that is, the
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study of algorithms driving all the sensors to a common
value. The extension of the basic theory to more realistic
scenarios if of paramount importance, for which packet
losses, quantization noise or additive channel noise need
to be considered to different extent. In this work we fo-
cus our attention on the independent noise case, that is,
on the role played by the additive noise on the process-
ing of the received values. Since practical sensors im-
pose tight restrictions on battery usage, it is desirable
to minimize the energy allocated to coordination and, in
particular, to the required exchanges for distributed es-
timation. We will expose the basic principles of noise
resilient schemes for both static and dynamic cases.

2. NETWORK MODEL

We consider a graph G = (V,E), with N nodes (sen-
sors) vn ∈ V and edges eij ∈ E if there is a path
from node vi to node vj . The elements of the adja-
cency matrix A are defined as [A]ij = 1 if eji belongs
to E, otherwise they are zero. In this study the graphs
are undirected (A = AT ) and connected, so there is a
sequence of edges to go from any node i to any other
node j. The degree matrix D is a diagonal matrix such
that [D]ii is equal to the number of connections entering
node i. With that, the Laplacian matrix L is defined as
L = D − A. In other words, the elements [L]ij of the
Laplacian matrix L are defined as

[L]ij =
{ −1, eji ∈ E

Dii, i = j.
(1)



In addition, we define the number of total connections
of graph G as Δ(G) .= 1T D1. The eigenvalues λn of
L contain significant information about the topology of
the graph G. In fact, if they are ordered as λ1 ≤ λ2 ≤
· · · ≤ λN , we have that λ1 = 0, and λ2 > 0 for a
connected graph. This second eigenvalue λ2 is known
as the algebraic connectivity of the graph, and its value
plays a major role in the speed at which information can
be diffused through the network [2]. The corresponding
eigenvectors will be denoted by un, with u1 = 1. The
additive noise in the signal received at the j-th sensor
from the i-th sensor is zero-mean with variance σ2

w, and
is independent for all channel realizations and among
different sensor links. The received noise values at the
exchange associated with the kth iteration are collected
in W (k):

W (k) =

⎛
⎜⎜⎜⎝

0 w12(k) · · · w1N (k)
w21(k) 0 · · · w2N (k)

...
...

. . .
...

wN1(k) wN2(k) · · · 0

⎞
⎟⎟⎟⎠ .

(2)

3. ENTANGLED KALMAN FILTERS

We need to track an autoregressive (AR) process x(k)
given by

x(k + 1) = Fx(k) + u(k)

where process noise u(k) is assumed to be white with
constant covariance E{u(k)uH (k)} = Qu. In a cen-
tralized setting, a unique node collects a set of N noisy
observations of x(k) as

y(k) = Hx(k) + v(k). (3)

If the measurement noise v(k) is white and independent
of u(k), with covariance matrix denoted as Qv, then
the Kalman filtered estimator, that is, the recursive rela-
tion for the update of the linear estimation x̂(k) of x(k)
based on the observations y(0), . . . ,y(k), is given by
[3]

x̂(k) = (1 − K(k)H)F x̂(k − 1) + K(k)y(k)(4)

with the corresponding recursion for the gain K(k) de-
tailed in [3]. Now, let us consider that instead of a cen-
tral observer, we have a set of N sensors, each getting a
value yn(k) of the vector y(k) in (3):

yn(k) = Hnx(k) + vn(k), n = 1, . . . , N

with Hn and vn(k) the nth elements of H and v(k) re-
spectively. After the update shown in (4), all sensors ex-
change their estimates before the next measurement. We
put all the N estimates at step k in the vectors x̄(k) (be-
fore exchanging information) and x̂(k) (after exchang-
ing information) respectively:

x̄(k) .=
[

x̄1(k) x̄2(k) · · · x̄N (k)
]T

(5)

x̂(k) .=
[

x̂1(k) x̂2(k) · · · x̂N (k)
]T

.

The Kalman update and the merging states are given re-
spectively by

x̄n(k) = K1(k)x̂n(k−1)+K
(n)
2 (k)yn(k), n = 1, . . . , N

x̂(k) = A(k)x̄(k) + diag{A(k)W (k)}
where diag{B} is a column vector collecting the main
diagonal elements of the matrix B, and A(k) is de-
tailed later in (8). If we group all the sensors coefficients
K

(n)
2 (k) as

K2(k) .=

⎛
⎜⎜⎜⎜⎝

K
(1)
2 (k) 0 · · · 0

0 K
(2)
2 (k)

. . . 0
...

. . . . . .
...

0 · · · 0 K
(N)
2 (k)

⎞
⎟⎟⎟⎟⎠

and define a diagonal matrix Hd out of H in (3)

Hd
.=

⎛
⎜⎜⎜⎜⎝

H1 0 · · · 0

0 H2
. . . 0

...
. . . . . .

...
0 · · · 0 HN

⎞
⎟⎟⎟⎟⎠

then it can be proved that the covariance matrix P (k) of
the error E(k) = x̂(k) − x(k)1 evolves as

P (k) = K2
1 (k)(I−γ(k)L)P (k−1)(I−γ(k)LT )+Qu

·(I−γ(k)L)(K2(k)Hd−I)11T (K2(k)Hd−I)(I−γ(k)LT )

+(I−γ(k)L)K2(k)QvK2(k)(I−γ(k)LT )+γ2(k)σ2
wD.

with

K2(k) =
(

1 − K1(k)
F

)
H−1

d . (6)

At each step k we must find the set of parameters K1(k),
K2(k) and γ(k) jointly minimizing the trace of P (k).
Although a solution cannot be found in closed-form, and



the corresponding function is not convex, we can apply
a Gauss-Seidel iteration to find the solution of the set of
non-linear algebraic equations ∇tr{P (k)} = 0, which
has shown to converge in a low number of steps for all
tested cases. An off-line computation of this sequence
of parameters makes it possible to find the asymptotic
values for K1,K2 and γ for a given topology. Thus,
local information can diffuse through the network, al-
though there is a gap with respect to the corresponding
centralized Kalman filter performance due to the non-
ideal exchanges of values among different sensors and
the imposed limitations to the communication, which
prevents the network from achieving a consensus as to
the value of x(k). If a higher rate of exchanges can be
applied, then other solutions such as that shown in [7]
can improve the performance by doing several rounds
of merging between two consecutive Kalman updates.

4. DISTRIBUTED ESTIMATION OF STATIC
PARAMETERS

For the static case we have that H = 1, F = 1 and
Qu = 0, and the corresponding weights boil down to
K1(k) = 1 and K2(k) = 0. In such a case, we have that
the sensors exchange their estimates with non-constant
weights:

x(k + 1) = A(k)x(k) + diag{A(k)W (k)}. (7)

In the absence of noise, alignment of all the elements
of x(k) can be guaranteed in the limit k → ∞ with a
constant Perron matrix A = I − γL, and 0 < γ <
1/max [Dii] [2]. In such a case A has an eigenvalue
equal to 1 with the corresponding eigenvector 1, and
limk→∞ Ak = 11T /N . This parameterization is es-
pecially suited for circulant topologies, that is, those for
which the Laplacian L can be expressed as a circulant
matrix, since all nodes have the same connections. The
presence of additive noise in the exchanges makes this
scheme blow up [4], unless the weights decrease. In
consequence, we use a time-varying step size parame-
ter γ(k) to be discussed later such that the sequence of
matrices is written as

A(k) = I − γ(k)L. (8)

As stated in [5], the sequence γ(k) needs to be positive
and such that

∞∑
k=0

γ(k) = ∞,

∞∑
k=0

γ2(k) < ∞ (9)

to ensure the asymptotic convergence of x(k) to a con-
stant vector. If we express the error vector E(k) =
x(k) − x1 as a funcion of γ(k),

E(k + 1) = (I − γ(k)L)E(k) + γ(k)diag{AW (k)}
then the error covariance R(k) follows the recursion

R(k+1) = (I−γ(k)L)R(k)(I−γ(k)LT )+γ2(k)σ2
wD

from which

R(k + 1) = R(k) − γ(k)R(k)LT − γ(k)LR(k)

+ γ2(k)LR(k)LT + γ2(k)σ2
wD. (10)

If consensus is achieved then the covariance matrix R(k)
will asyptotically approach a constant matrix equal to
σ2∞11T , where σ2∞ denotes the limit estimation error.
In order to find its value, we write the recursion for the
average value of the elements of R(k):

1
N2

1T R(k + 1)1 =
1

N2
1T R(k)1 +

Δ(G)
N2

γ2(k)σ2
w

(11)
where we have used the symmetry of the graph, that is,
L = LT and that L1 = 0. In consequence, for a starting
covariance matrix R(0) = σ2I,

1
N2

1T R(k+1)1 =
1
N

σ2 +
Δ(G)
N2

σ2
w

k∑
j=0

γ2(j). (12)

In the limit, γ(k) gets to zero and R(k) becomes the
constant matrix σ2∞11T with

σ2
∞ =

σ2

N
+

Δ(G)
N2

σ2
w

∞∑
j=0

γ2(j). (13)

The value of γ(k) minimizing the trace of the error co-
variance matrix R(k + 1) at each step can be seen to be
given by

γ(k) =
tr{R(k)LT + LR(k)}
2tr{LR(k)LT + σ2

wD} . (14)

and will be used in the simulations in next section.

5. NUMERICAL RESULTS

We have compared the performance of different distrib-
uted estimation schemes for the static case: (i) Fixed-
weights, first-order (CO-BLUE, [6]); (ii) Fixed-weights,



second-order (RD-BLUE, [7]); (iii) M-BLUE. For anal-
ogy reasons, we use the term M-BLUE to describe the
myopic strategy jointly described by Equations (7), (8)
and (14). In the first two cases, the sensors exchange
their internal states, collected in the vector Φ(k), as

Φ(k + 1) = f(x(0)) + A1Φ(k) + A2Φ(k − 1)
+ diag{A1W (k) + A2W (k − 1)}

and compute the change in their states to obtain the esti-
mates

x(k) = Φ(k) − Φ(k − 1) (15)

with A2 = 0 in the first-order case. The weights of A1

and A2 have been chosen to yield the same asymptotic
error, whereas the function f(x(0)) must guarantee the
unbiasedness of the estimates. We have run 103 realiza-
tions in a fully connected network with N = 10 sensors,
for two different values of ρ

.= σ2/σ2
w. The results are

included in Figure 1, which shows how the convergence
speed depends on the level of additive noise as expected.
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Fig. 1. Average stationary mean square error (mse) per-
formance for a network of 10 sensors.

6. CONCLUDING REMARKS

We have shown how different sensors can follow the
evolution of a common parameter by sharing their suc-
cessive estimates through noisy exchanges. The sensors
share their estimates within the limits of the network
topology, in an attempt to improve the global perfor-
mance. A consensus strategy has also been presented

for the static scenario, for which sensors are expected to
achieve a common estimate after a series of exchanges.
In both cases there is a trade-off between the need to
share information to improve the estimates accuracy and
the quality of the noisy links.
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