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Abstract—Demand Response (DR) plays an important role in
electricity market design, in both reducing utility’s investment on
peak generation and improving electricity bill savings and incen-
tive payments earned by customers. Improved resource-efficiency
of electricity production is achieved by closer alignment of elec-
tricity pricing information with energy consumption behaviors.
In this paper, a block scheduling model of load management for
price-based Demand Response is presented under two different
real-time pricing schemes: linear pricing scheme and threshold
pricing scheme. For linear pricing, the problem is formulated as
a convex optimization problem and the optimal demand response
profile is given as a two-dimensional water-filling solution either
with flat water levels or different water levels for different
customers. From the perspectives of the customers as a whole or
as selfish individuals, the demand-response computations lead to
centralized or distributed optimizations, respectively. A trade-off
strategy which attempts to balance these competing objectives
is also provided. This trade-off strategy divides customers into
local groups within which group-wise distributed optimization is
performed to improve the overall performance so that the Price
of Anarchy (PoA) is reduced. For threshold pricing, which might
be more applicable in certain scenarios, detailed characterization
of different optimal load profiles are given assuming a discrete
load unit model. A search algorithm is also proposed to find
the optimal load profiles for both constant and dynamic pricing
threshold scenarios. The effect of dynamic pricing threshold on
customers’ electricity consumption behaviors is highlighted.

Index Terms—Demand response (DR), real-time pricing, load
management, two-dimensional water-filling, block scheduling.

I. INTRODUCTION

In most current electricity markets, fixed pricing schemes
with constant rates are being widely used. Customers face
retail electricity prices that are flat over months or even years
[1]. A problem with fixed pricing schemes is the disconnection
between short-term marginal electricity production costs and
retail rates paid by customers, which leads to inefficient overall
resource usage. Due to lack of information on generation costs,
electricity consumption behavior of customers may not adjust
to supply-side conditions. Thus fixed constant pricing results
in suboptimal customer behavior as well as higher electricity
costs than they would otherwise be in an optimally efficient
system [2].

There is a growing consensus that Demand Response (DR)
can play an important role in market design [3]. Lack of DR
has been shown to be a major contributing factor for energy-
market meltdowns [4]. In [1], for example, DR is defined
as “Changes in electric usage by end-use customers from
their normal consumption patterns in response to changes in

the price of electricity over time, or to incentive payments
designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopar-
dized.” DR not only reduces the capacity investments in peak
generation units to serve occasional heightened demand, but
also provides short-term reliability benefits as it can offer load
relief to resolve system and local capacity constraints. There
are two basic demand response options: Price-based demand
response and incentive-based demand response. Price-based
demand response includes real-time pricing (RTP), critical-
peak pricing (CPP), and time-of-use (TOU) rates. Customers
can respond to the price structure with changes in energy
use, reducing their electricity bills if they adjust the timing
of their electricity usage to take advantage of lower-priced
periods and avoid consuming when prices are higher [1].
Incentive-based demand response schemes pay participants
to reduce their loads at times requested by the program
sponsor, triggered either by a grid reliability problem or high
electricity prices. DR programs typically specify a method
for establishing customers baseline energy consumption level
below which demand reductions are not allowed. In power
systems, the energy requests that customers send to utility
consist of two parts: nonflexible load request and flexible load
request [5]. The nonflexible part is the minimum amount of
energy that utility needs to provide at a specific time. The
flexible part can be reallocated over time according to a certain
load management strategy. For any load management strategy
there are two common primary goals: peak load shaving and
load profile flattening. Under real-time pricing, the electricity
price is determined by real time load information.

This paper presents a block scheduling model of load
management for price-based demand response scheduling. In
this model, the size of the time block is set to be small enough
so that all load shifting within the time block can be considered
as cost free and acceptable to customers. The solution to
this block processing problem can then be the basis for
implementations of arbitrarily long scheduling periods. Two
types of real-time pricing schemes, linear pricing and threshold
pricing, are discussed in this paper. We consider optimal
demand-response when customers cooperate as a group as well
as when each customer is only interested in minimizing its
own cost. Naturally these two scenarios, as shown to lead to
centralized and distributed optimizations.

The rest of this paper is organized as follows: In Section
II, the system model and the problem formulation for block



scheduling are presented. The block scheduling for linear
pricing is presented and solved in Section III. Water-filling
solutions for both centralized and distributed scenarios are
analyzed and compared. Section IV presents block scheduling
model and its solutions for threshold pricing scheme assuming
discrete load units. Simulation results of constant and dynamic
threshold scenarios are contained in Section V. The conclu-
sions from this study are given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMATION

We assume that customers send their electric energy re-
quests to the utility at the beginning of each processing time
block which consists of T time intervals, for t = 1, 2, . . . , T .
For each time t, the load requests consist of two parts: a
nonflexible part which has to be satisfied at the specific time,
and a flexible part for which certain amount of reallocation
within the current block is acceptable. Different customers
may have different weights on the two parts of the load
request. For example, hospitals might have a high demand
of nonflexible loads while a load request from a household
could have a significant flexible portion.

Fig. 1. System model: Communications between the utility and customers.
We denote by lFt,k and lNt,k respectively the flexible and non-

flexible loads requested by customer k, for k = 1, 2, . . . , U ,
for time interval t, where U is the total number of customers
in the market. Denote by lF the total requested flexible loads,
so that lF =

∑U
k=1

∑T
t=1 l

F
t,k. The amount of flexible load of

customer k that the utility will schedule to satisfy at time t
after load reallocation is denoted by xt,k, where xt,k ≥ 0 and∑U

k=1

∑T
t=1 xt,k = lF .

Customers send their initial load requests lFt,k’s and lNt,k’s
for the current processing time block to the utility. The utility
then optimally reallocate flexible loads from all customers at
each time instant lFt =

∑U
k=1 l

F
t,k, while supporting all non-

flexible load requests at each time interval lNt =
∑U

k=1 l
N
t,k to

minimize the overall generation cost. Based on the minimum-
cost generation schedule, the utility may determine a pricing
scheme for all customers. Note that such price determinations
may not be performed at each processing block but in a longer-
term basis, which is beyond the scope of this paper. The
interaction between customer and utility is shown in Fig. 1.

Based on the pricing information, the customers will attempt
to optimize their load scheduling. Since electricity consumers
usually show certain clustering effects, for example, a com-
munity with a large number of customers might consider

coordinating among themselves the consumption behaviors so
that instead of minimizing individual consumption cost of each
customer, minimizing the total consumption cost of the whole
community becomes the goal.

III. BLOCK SCHEDULING FOR LINEAR PRICING SCHEME

Under linear pricing, the unit price for customer k at time
interval t is given by Pt,k = Kp(l

N
t,k+xt,k) $/kWh, where Kp

is a positive price scaling factor. The cost of customer k at time
interval t is then Ct,k = Pt,k(l

N
t,k+xt,k) = K(lNt,k+xt,k)

2, and
the cost of customer k over the processing time block is Ck =∑T

t=1 Ct,k. Since electricity consumers usually show certain
clustering characteristics, there are two reasonable approaches
to minimizing the electricity consumption costs of customers.
One is the centralized optimization, in which the objective
is to minimize the total cost of all customers on the market
as a whole, which can be interpreted as the social optimal.
However, from the perspective of an individual customer, the
k-th customer may be interested in minimizing its own cost
Ck =

∑T
t=1 K(lNt,k +xt,k)

2 during the processing time block.
This clearly leads to a distributed optimization problem.

A. Centralized Block Scheduling

In the following we first consider the centralized optimiza-
tion problem to minimize the total cost of all U users in the
market:

minimize
x

C(x) = K

U∑

k=1

T∑
t=1

(xt,k + lNt,k)
2 (1)

subject to − xt,k ≤ 0, t = 1, 2, . . . , T, k = 1, 2, . . . , U,
U∑

k=1

T∑
t=1

xt,k − lF = 0.

The objective function (1) is quadratic and constraints
are linear. Thus the above optimization problem is con-
vex. The Lagrangian associated with the primal problem is
L(x, λ, v) = K

∑U
k=1

∑T
t=1(x

2
t,k + 2lNt,kxt,k + (lNt,k)

2) −∑U
k=1

∑T
t=1 λt,kxt,k+v(

∑U
k=1

∑T
t=1 xt,k− lF ), where λt,k’s

are the Lagrange multipliers associated with inequality con-
straints and v is the Lagrange multiplier associated with the
equality constraint. With the primal problem being convex, the
optimal primal and dual solutions are achieved if and only if
the following Karush-Kuhn-Tucker (KKT) conditions are held
[6]:

U∑

k=1

T∑
t=1

x∗
t,k − lF = 0 (2)

−x∗
t,k ≤ 0,∀t, k ,

λ∗
t,k ≥ 0,∀t, k ,

−λ∗
t,kx

∗
t,k = 0,∀t, k ,

∂L(x∗, λ∗, v∗)
∂x∗

t,k

= 2Kx∗
t,k + 2KlNt,k − λ∗

t,k + v∗ = 0,∀t, k .



By solving the above set of equations, it can be shown that
the optimal load profile is given by

x∗
t,k =

{
0 if w∗ < lNt,k

w∗ − lNt,k if w∗ ≥ lNt,k ,

= [w∗ − lNt,k]
+ . (3)

where [a]+ = max(0, a) and w∗ is the unique solution to
U∑

k=1

T∑
t=1

max(0, w∗ − lNt,k) = lF . (4)

Note that, the left hand side of (4) is a piecewise-linear
increasing function of w∗, with breakpoints at lNt,k, ensuring
the uniqueness of its solution. In general, there may not be
a closed form solution for w∗, requiring numerical compu-
tation. However, this solution structure (3) is well known
in information theory and is referred to as the water-filling
solution [7]: We can think of lNt,k as the height of the bottom
level at location (t, k) on a two-dimensional plane. Starting
from zero, we allocate flexible loads to the location with the
lowest nonflexible load. As flexible loads increase, some of
the them are put into locations with higher nonflexible loads.
We continue to allocate flexible loads in this way until we
have allocated all of lF . At this time, the height of the flat
flexible load level would be the solution w∗ of (3). This
process is similar to the way in which water distributes itself
in a vessel. The depth of water at location (t, k) is then the
optimal value x∗

t,k. Figure 2 shows an example of the two
dimensional water-filling solution of the above optimization
problem. In our simulation setup, for each time interval t,
the flexible and nonflexible loads are generated according to
uniform distributions U(0, ut) and ut’s are parameters that we
can change.
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Fig. 2. Two-dimensional water-filling solution that indicates how loads from
different customers are scheduled over the processing time block.

B. Distributed Block Scheduling

While above centralized optimization minimizes the total
cost for all customers in a global manner, this strategy might
not be optimal for all individual customers. Let us denote by
C∗ = min

t,k

∑U
k=1

∑T
t=1 K(lNt,k + xt,k)

2 and C̃∗ =
∑U

k=1 C̃
∗
k

the minimum costs from centralized and distributed optimiza-
tions. Due to space limitations, in the following we assume
that the total load requests from all customers at each time

instant is below the maximum capacity of the utility, so that the
individual customer optimization problems can be decoupled.
With this assumption the distributed problem for customer k
becomes

minimize
x

C̃∗
k = min

xt,k

T∑
t=1

K(lNt,k + xt,k)
2 , (5)

subject to − xt,k ≤ 0, t = 1, 2, . . . , T ,
T∑

t=1

xt,k − lF = 0 .
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Fig. 3. Two-dimensional water-filling with different water levels for different
customers.

By following a similar method to that above, we can show
that the solution of the distributed optimization problem is
also given by a two dimensional water-filling result but with
different water levels for different customers, as shown in Fig.
3 (for the same set of initial load requests that generates Fig.
2). It should be noted that the optimal solutions for different
customers in the distributed optimization problem (5) will
be coupled if the total loads of all customers in any time
interval were to violate the maximum capacity of the utility
. In this case the distributed optimization problem will lead
to a non-cooperative game among customers. As mentioned
above, for simplicity in this paper we do not consider this
situation. In general, the total cost is increased by going from
the centralized to distributed optimization, so that C∗ ≤ C̃∗.
In game theory, this degradation, which is caused by the
selfish behavior of customers, is referred to as the Price of
Anarchy (PoA) compared to the global optimal [8]. We may
characterize this inefficiency of the distributed solution by
C̃∗−C∗

C∗ , which is the normalized extra cost of opting for
distributed optimization over centralized optimization. If we
sum up optimal load requests over all users in Figs. 2 and
3, we get Figs. 4 and 5 showing the overall load requests
for each time interval. Fig. 6 shows the consumption cost
comparison of the two optimization schemes for two sets of
initial load requests. Note that, although for this particular
example, the price of anarchy seem to be small, it could change
with different initial load requests.
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Fig. 4. The centralized optimal load profile over time intervals.

The mismatch in the centralized vs. distributed optimization
goals makes it necessary to consider a tradeoff between the two
optimization objectives. A tradeoff optimization scheme that
balances both the total cost and the individual cost would be
welcome from both whole-market and individual perspectives.
One way of doing this is to divide customers into distributed
groups. For each customer group (instead of each individual
customer) a local water-filling solution can be obtained within
that group. By doing this the cost of each group is minimized
and different groups could have different water levels. Figure
7 shows the normalized extra cost as the customer group size
increases from 1 (corresponding to customer-wise distributed
optimization) to 20 (corresponding to centralized optimization,
assuming we have a total of 20 customers). It can be observed
from Fig. 7 that the price of anarchy decreases monotonically
as the group size increases.
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Fig. 5. The distributed optimal load profile over time intervals.
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Fig. 6. Comparison of customers’ consumption costs under centralized and
distributed optimization schemes. Set 1 is based on the same initial load
request information set that generates the two-dimensional water-filling result.
Set 2 is based on another set of initial load request information for comparison.
The two sets initial loads were generated according to different distributions.
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Fig. 7. Price of anarchy vs customer group size.

IV. BLOCK SCHEDULING FOR THRESHOLD PRICING
SCHEME

A. Problem Formation

Under certain assumptions, threshold pricing schemes might
be more realistic in practice compared to the linear pricing
scheme [9]. Given initial load requests from customers, for a
small enough load tuple ∆l, all loads {lFt,k}’s and {lNt,k}’s
can be represented as multiples of ∆l. We label the m-
th load tuple of customer k at time interval t by emt,k, for
t = 1, 2, . . . , T , k = 1, 2, . . . , U and m = 1, 2, . . . ,Mt,k,

where Mt,k =
lFt,k+lNt,k

∆l . For customer k at time interval t, there
is a threshold Lt,k which can also be represented as multiples
of ∆l, say Lt,k = M̃t,k∆l. We denote the price level of emt,k
by nm

t,k. The price level nm
t,k for tuple emt,k is given by

nm
t,k =

{
0 if m ≤ M̃t,k

m− M̃t,k if m > M̃t,k ,

= [m− M̃t,k]
+ .

Denote by Lmax the maximum load capacity of utility and
Lmax = Mmax∆l. Then we have that nm

t,k ≤ Mmax for ∀t,m.
Fig. 8 is a example of a slice for a certain customer.

The threshold pricing scheme can be described as follows:
For each customer k at time interval t, a constant basic
unit price P0 ($/kWh) applies for all emt,k’s below threshold
Lt,k. The unit price for the m-th load tuple emt,k of customer
k at time interval t above threshold Lt,k is given by
Pm
t,k = P0 + nm

t,k∆P , where ∆P ($/kWh) is the increment in
unit price. Assume that xt,k is the flexible load request that
utility will schedule to satisfy for customer k at time interval
t. The consumption cost of customer k at time interval t
is given by Ct,k = P0(l

N
t,k + xt,k), if lNt,k + xt,k ≤ Lt,k;

and Ct,k = P0Lt,k +
∑Mt,k− ˜Mt,k

nm
t,k=1 (P0 + nm

t,k∆P )∆l, if
lNt,k + xt,k > Lt,k. To minimize the total consumption cost of
all customers (centralized optimization), we need to minimize
Ctotal =

∑T
t=1

∑U
k=1 Ct,k.

B. Solution Searching Algorithm

We define the vacancy (shown in Fig. 8) value for customer
k at time interval t as vt,k = Mt,k + 1. Based on the
observation that the only way of decreasing the generation
cost is to shift some emt,k’s from higher price levels to vacancies
with lower price levels, we have the following proposition:
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Fig. 8. An illustration of threshold pricing scheme with discrete load tuples
and vacancies. Please note 1) This Figure is a one-slice example for a certain
customer. 2) In this Figure the threshold Lt,k is set to be constant over all
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Proposition 1: In the block scheduling for threshold pric-
ing scheme, the total consumption cost of all customers is
minimized if and only if max

t,k
Mt,k ≤ min

t,k
vt,k.

Proof: See Appendix 1.
For the threshold pricing scheme, the optimal load profiles

are of two categories according to whether the increment in
unit price applies or not.

1) No increment in unit price applies: In the initial load
profile, if all emt,k’s above the threshold can be allocated into
vacancies below the threshold, then all the flexible loads in
the optimal load profile will be in price level 0. All optimal
load profiles that satisfy this property are considered as being
optimal. (i.e. The optimal solution is not unique.)

2) Increment in unit price applies: In the initial load profile,
if the emt,k’s above the threshold are more than the vacancies
below the threshold, then some flexible load tuples will cause
price increments at some time intervals in the optimal load
profile.

A slight variation of proposition 1 tells more about the
optimal load profile in this case: Noticing that max

t,k
Mt,k ≤

min
t,k

vt,k ⇔ max
t,k

vt,k ≤ min
t,k

vt,k + 1, the optimal load

profile is flat in a ∆l-flat sense. By “∆l-flat” we mean that
max

(t1,k1),(t2,k2)
|(lNt1,k1

+ xt1,k1) − (lNt2,k2
+ xt2,k2)| ≤ ∆l. As

∆l → 0, we have max
t,k

vt,k = min
t,k

vt,k. Thus, the optimal

load profile again converges to a two-dimensional water-filling
result. Hence, the optimization problem to minimize the utility
generation cost can be stated as follows: Given initial load
request information: price levels nm

t,k’s (Mt,k’s) and vacancy
levels vt,k’s for t = 1, 2, . . . , T with threshold level Lt,k, by
doing a load reallocation which is also an updating process
of nm

t,k’s and vt,k’s, we can minimize the total consumption
cost of all time intervals if and only if the achieved load
profile (possibly not unique) with M∗

t,k’s and v∗t,k’s satisfy the
optimization condition: max

t
M∗

t,k ≤ min
t,k

v∗t,k.

To find the optimal load profile, we may start from min
t,k

vt,k

and search upward to max
t,k

vt,k until the testing level v∗t,k
satisfies the following conditions:

1. In the initial load request profile, the number of emt,k’s
above the testing level v∗t,k is strictly less than the number of

all vacancies on and below testing level v∗t,k.
2. In the initial load request profile, the number of emt,k’s on

and above the testing level v∗t,k is equal to or greater than the
number of all vacancies below testing level v∗t,k.

Thus the above centralized optimization can be solved again
by two-dimensional water-filling result but with the water level
flat in “∆l”-flat sense. The solution for distributed optimiza-
tion can be characterized similarly to the two-dimensional
water-level solution with different water levels for different
customers, and the details are omitted due space limit.

V. SIMULATION RESULTS

In the following, we simulated the proposed load man-
agement strategy for an electric utility with the threshold
generation cost model during a period of T = 24 hours with
each time interval 1 hour, and for a electricity market of 20
customes. Load tuple size is set to be ∆l = 1 GWh. The utility
has a maximum capacity Lmax = 60 GWh. The threshold
was set to be Lt = 15 GWh, ∀t. For each time interval,
the flexible and nonflexible loads were generated according
to uniform distributions U(0, ut) and ut’s were adjustable. As
Lmax is normalized to 1, all loads can be expressed as certain
percentages of maximum utility capacity.

Scenario 1: Figure 9 shows that in the initial load request
profile, all flexible loads can be reallocated to vacancies under
the threshold and all nonflexible are below the threshold. Thus
a constant unit generation cost applies for all load tuples.
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Fig. 9. Constant unit generation cost applies for all load tuples.

Scenario 2: Figure 10 shows that in the initial load request
profile, the number of flexible loads above the threshold (Lt =
15 GWh) is greater than the number of vacancies below the
threshold. Thus, in the optimal load profile, extra increment in
unit generation cost will apply. However, since the nonflexible
loads are not high, the optimal load profile keep “∆l”-flat.

Scenario 3: Figure. 11 presents the situation in which the
nonflexible loads are very high at some time intervals. In this
case, the optimal load profile is not “∆l”-flat.

Recall that the two principal goals of DR are peak-load
shaving and load-profile flattening. Thus based on the principle
that heavy load hours corresponds to higher unit price and
vise versa, we may set lower threshold Lt,k’s for heavy load
time intervals (for example, during day and evening hours)
and higher threshold Lt,k’s for lighter load time intervals
(for example, during midnight hours) [10]. Such dynamic
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Fig. 10. “∆l”-flat optimal profile with increment in unit generation cost.

price-thresholding can naturally incentivize the customers to
schedule their demand-responses in a way that will lead to
peak-load shaving and load profile flattenning. An example of
the dynamic threshold pricing is shown in Fig. 12. From the
perspective of the customers, dynamic threshold model can
have a great influence on customers’ electricity consumption
behaviors: Customers are encouraged to make use of off-
peak time periods. Indeed, Fig. 12 (b) shows how customers’
optimal response shifts most of their flexible loads to off-peak
hours.
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Fig. 11. Optimal profile is not “∆l”-flat and with high nonflexible loads.
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Fig. 12. dynamic threshold scenario.

VI. CONCLUSION

In this paper, a block scheduling model of load management
for price-based Demand Response was presented under two
real-time pricing schemes: For linear pricing, the problem was
formed as a convex optimization problem and the optimal load
profile was obtained as a two dimensional water-filling with
a flat water level in the case of centralized optimization. The
distributed optimization problem was also solved by a two-
dimensional water-filling result but with different water levels

for different customers. While the centralized optimization
minimized the total social cost of all customers globally, the
distributed optimization minimized the cost for each individual
customers. Further analysis on Price of Anarchy (PoA) and
a tradeoff strategy that balances the two optimization goals
were also provided. For threshold pricing, which may be more
realistic in practice, we presented and solved the discrete load
unit model and proposed a search algorithm to obtain the
optimal solution for centralized optimization. In the end, a
dynamic threshold pricing scheme was proposed in order to
encourage the customers adapt an optimal demand-response
profile that will naturally lead to peak-load shaving and load
profile flattening, and its effectiveness was shown with a
representative numerical example.

APPENDIX

A. Proof of Proposition 1

Proof: Necessity: Assume we have minimized the gener-
ation cost but there are some time-customer pairs (t1, k1) and
(t2, k2) such that Mt1,k1

> vt2,k2
, then by shifting the load

tuple e
Mt1

t1,k1
from price level Mt1,k1

to the vacancy vt2,k2
we

can further decrease the cost, this contradicts the minimum
cost assumption.

Sufficiency: If the price cost function is not minimized, then
there exists some load shifting strategy that enable us to further
decrease the generation cost. Thus there exists time-customer
pairs (t3, k3) and (t4, k4) such that Mt3,k3 > vt4,k4 . Thus if
max
t,k

Mt,k ≤ min
t,k

vt,k holds, there will be no load shifting

strategy that could further decrease the cost function, meaning
the current generation cost is the minimum.
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