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Abstract—Matching demand to supply is one of the key
features of smart grid infrastructure. Transforming conventional
static customers into active participants who interact with the
electrical utility in real time is the central idea of Demand
Response (DR)\Demand Side Management (DSM) in smart grid.
In this paper, we decouple utility cost minimization and customer
social welfare maximization into two stages. Since the utility
is usually more risk averse than risk neutral in real life, this
decoupling approach is more realistic than the usually adopted
optimization setup, in which the two objectives are combined in a
single weighted sum. With a block processing model introduced,
in the first stage a convex optimization problem is formulated to
minimize utility’s generation cost and delay operation cost. An
optimal load demand scheduling solution, of the form of water-
filling, is derived analytically. Based on the optimal load profile
generated in this first stage, repeated Vickrey auctions over time
intervals are adopted to allocate load demands among customers
while maximizing the social welfare. Despite the fact that truthful
bidding is a weakly dominant strategy for all customers in the
auctioning game, collusive equilibria do exist and jeopardize
utility’s profit severely. Analysis on the structure of the Bayesian
Nash equilibrium solutions shows that by introducing a positive
reserve price the Vickrey auction can be made to be more robust
against such collusion by customers. Moreover the corresponding
Bayesian Nash equilibrium is essentially unique and guarantees
the basic profit of the utility. We further discuss how customers’
valuations and bidding strategies change over time for the
repeated Vickrey auction model. Simulation results emphasizing
the influences of reserve price and time interval size on utility’s
profit is also presented.

Index Terms—Demand response, repeated Vickrey auctions,
Bayesian Nash equilibria, block scheduling.

I. INTRODUCTION

In a conventional electrical power market, power genera-

tion is usually required to match to power demand. This is

because the distributed nature of power demands, as well

as the different energy consumption behaviors of customers

in the power network, make power demand fluctuating over

time and difficult to be controlled precisely. This behavior

is expected to become more significant as high penetration

of renewable generations and PHEVs appear in generation

side and consumption side separately. As a result of the

highly time varying generation and consumption profiles, the

utility needs to provide enough electrical power to meet peak

demand rather than the average to prevent potential blackout

events. However, this static and centralized generation pattern

is apparently inefficient and thus costly. For example, the U.S.

national load factor is about 55%, and 10% of generation

and 25% of distribution facilities are used less than 400

hours per year, i.e., 5% of the time [1]. Finding possible

approaches to improve this inefficient performance is one

of the strong incentives to consider a smart grid. In smart

grid infrastructure, the key feature of matching demand to

supply by transforming currently static consumers into active

participants is the central idea of Demand Response (DR)

and Demand Side Management (DSM) [2] which can greatly

improve power system efficiency and thus yield huge savings.

The literature on DR\DSM so far fall into three main

categories. The first category of approaches adopt optimization

techniques [3]–[5]. The optimization objectives are usually

minimizing utility’s cost, maximizing social welfare or a

weighted combination of them. It turns out that these opti-

mization problems are usually difficult to solve analytically.

For example, under the constraint of utility’s generation ca-

pacity, the load demands of different customers are coupled

with each other making the problem intractable. Thus the

solutions in this category are usually algorithm based and

might only guarantee suboptimal results. The second category

of approaches adopt ideas similar to random access protocols

in data communications [6], [7]. These approaches usually

assume that customers in the power network are completely

“blind” with respect to each other and can only communicate

with the utility: Customers send load demands to the utility

and compete for the limited power generated over time. The

utility deals with these demands according to carefully se-

lected protocols by supporting, postponing or declining them.

However, the lack of knowledge of future power demands

makes these approaches inefficient on demand scheduling

over time. Finally, the third category contains game theoretic

approaches. In [8], a network traffic model was adopted

and the equivalence between congestion games and potential

games was utilized to analyze the equilibrium solutions. In

[9], both scenarios under which customers are price taking in

a competing market and price anticipating in an oligopolistic

market were discussed.

The main contribution of this paper is that we propose a

decoupling approach which divides the two objectives: utility

cost minimization and customers social welfare maximization

into two stages. In the first stage, on receiving the initially

submitted load demands from customers, the utility generates

an optimal load profile over time that minimizes its cost

under the generation capacity constraint. In the second stage,

based on the load demand profile obtained in the previous

stage, repeated auctions are adopted to allocate loads among



customers in the network to maximize the social welfare. This

decoupling gives better description of electricity networks than

the usually adopted optimization scheme does, in which the

two objectives are combined into a weighted sum. Since in

reality the utility always tries to avoid blackout and brownout

events, it is more risk averse than risk neutral.

The rest of the paper is organized as follows: In section

II we formulate the problem with a block processing model.

In order to minimize the utility’s cost, a convex optimization

problem is formulated and solved analytically in section

III. In section IV, the repeated Vickrey auction model is

adopted as the distributed scheduling approach to allocate

load demands among customers while maximizing the social

welfare. Detailed analysis on the structure of the Bayesian

Nash equilibrium solution set, as well as several desired

properties of the auctioning game are discussed in section V.

The conclusions from this study are given in Section VI.

II. PROBLEM FORMATION

We assume an electricity market consisting of one electrical

utility and K customers. A block processing model is adopted

here in which load demands are scheduled in a periodic block-

by-block manner. Each block consists of I time intervals and

the size of each time interval is T hours. The utility and

customers interact as follows: At the beginning of each time

block, all customers submit their load demands of the current

time block to the utility based on their energy requirements

and electricity pricing information. The load demands from

customers consist of two parts: nonflexible load demands and

flexible load demands. The nonflexible load demands reflect

the basic energy requirements of customers, which specify

how much electrical energy is needed during each time interval

of a time block. We denote by lNi,k and l̃Fi,k (i = 1, 2, . . . , I ,

k = 1, 2, . . . ,K) the nonflexible and flexible load demands

from customer k in time interval i, denote by lNi =
∑K

k=1 l
N
i,k

and l̃Fi =
∑K

k=1 l̃
F
i,k the total nonflexible and flexible load

demands over all customers in time interval i, similarly lN =
∑I

i=1 l
N
i and l̃F =

∑I
i=1 l̃

F
i denote the total nonflexible and

flexible load demands during that time block. We assume that

the utility guarantees supporting all nonflexible load demands

during each specified time interval. Thus, in any time interval

the sum of nonflexible load demands over all customers is

assumed to be no greater than the generation capacity of the

utility. On the other hand we assume that no customer cheats

on its nonflexible load demand, e.g. declaring more nonflexible

load demand than its actual basic requirement. This can be

achieved by having a regulatory authority in a real electricity

market. We assume that despite the time interval information

specified by flexible load demands, from the beginning of a

time block all customers want their flexible load demands be

supported as early as possible. Energy support from the utility

during later time intervals induces a delay cost which is an

increasing function of both the delay time and the amount

of energy that has been delayed, due to the dissatisfaction of

customers.

Upon receiving customers’ load demands, the utility checks

the generation capacity constraint and determines an optimal

generation profile that minimizes its cost over time. The

amount of flexible load demand after load reallocation in time

interval i is denoted by xi and we assume that the utility

provides constant power of
lNi +xi

T
within each time interval.

Based on the optimal load profile xi (i = 1, 2, . . . , I), the

electrical energy is further allocated among customers in a

way that maximizes the social welfare. The whole interaction

procedure between the utility and customers is illustrated in

figure 1.

Fig. 1. Interaction model between electrical utility and customers

III. UTILITY OPTIMIZATION: LOAD DEMAND

SCHEDULING OVER TIME

In the first stage, we formulate and solve the problem of

minimizing the utility cost by scheduling load demands over

time intervals, assuming specific generation cost and delay cost

forms. We assume that in time interval i, the generation cost

per unit energy (in monetary measure) is a linear function of

the total load demands in that time interval, say, α(lNi + xi),
where α is a positive scaling factor [10]. Thus the generation

cost for time interval i and for the entire time block are given

by Cg,i = α(lNi + xi)
2 and Cg =

∑I
i=1 Cg,i respectively.

Moreover, we assume that if xi amount of load demands have

been delayed by i time intervals, the associated delay cost

is given by Cd,i = iTxiγ
−(I−i)T , where γ is the positive

delay cost scaling factor. Thus the total delay cost for a

processing block is Cd =
∑I

i=1 Cd,i. Note that, when the

total load demands (the nonflexible plus the flexible) in a time

block is greater than the total energy that can be generated

during that time block, no optimal reallocation solution exists

unless the utility cuts down the flexible load demands. For

fairness, the following strategy is adopted: If the total amount

of load demand is greater than the total generation capability,

the utility will cut every customer’s flexible load demand by

the same proportion to keep the total load demand equal to

the generation capability, i.e, if l̃F + lN > ILM , where LM

is the constant generation capacity of utility in each time

interval. The new flexible load demand is lF =
∑K

k=1 l
F
k and

lFk = l̃Fk −β(l̃Fk + lNk ) where β = l̃F+lN−ILM

l̃F+lN
for all k. Based

on this centralized scheme, we may, without loss of generality,

assume that the load demand in any time interval never exceed



the generation capacity and thus drop the generation capacity

constraint. Denoting by weighted sum C = Cg+δCd the total

cost of utility, where δ is the weight coefficient for delay cost,

we have the following optimization problem

minimize
x

C(x) = α

I
∑

i=1

(xi + lNi )2 + δ

I
∑

i=1

(iTxiγ
−(I−i)T )

subject to − xi ≤ 0, i = 1, 2, . . . , I,
I

∑

i=1

xi − lF = 0.

Note that this optimization problem is convex, by solving

the Karush-Kuhn-Tucker (KKT) conditions, the optimal solu-

tion can be written as

x∗i =

{

0 if w∗ < ŵi

w∗ − ŵi if w∗ ≥ ŵi ,
(1)

where ŵi = lNi + δ
2α (iTγ

−(I−i)T ) and w∗ is the unique

solution to
∑I

i=1 max(0, w∗ − ŵi) = lF . For δ = 0 (i.e.,

delay cost is completely ignored), the solution (1) reduces to

x∗i =

{

0 if w∗ < lNi
w∗ − lNi if w∗ ≥ lNi ,

which is the so-called water-filling solution with water level

w∗ [10]. To better interpret the solutions above, we consider

an electricity network during a time block of I = 24 intervals

with T = 1 hour. The customers’ load demands of different

time intervals are generated according to different distributions

corresponding to time dependent electrical energy consump-

tion behavior. Given a set of initial load demands, the optimal

allocation results for different δ values are shown in figure 2.

It is seen that the solution (1) is slightly different from the

water-filling result as there is no constant water level when

delay cost is considered. This is because the allocation results

xi (i = 1, 2, . . . , I) is determined not only by the nonflexible

load lNi , but also by another time interval dependent term
δ
2α (iTγ

−(I−i)T ). Indeed, solution (1) is of a water-filling like

form if we interpret ŵi = lNi + δ
2α (iTγ

−(I−i)T ) as the new

modified nonflexible load in which δ
2α (iTγ

−(I−i)T ) acts as an

additional time related nonflexible load. The water level drops

over time since later time intervals induce greater additional

nonflexible load demands. It can be seen that the water level

gets steeper as the delay cost weight δ increases. However,

once the load demand of a time interval achieves LM , no

more load demands can be allocated to that interval. Thus

after δ increases to a certain value, the optimal load profile

becomes saturated (fixed). In this saturated profile, all except

the last time interval with positive flexible load demands get

LM amount of flexible load demands. The generation cost also

achieves its maximum value corresponding to the saturated

profile.

Figure 3 shows the saturated load profile (with LM normal-

ized to 1) and generation costs (with the minimum normalized

to 1) for different values of δ, given the average initial load

demands. Note that the generation cost is nondecreasing over

δ’s, which is intuitively reasonable because the utility has

smaller and smaller flexibility on the scheduling operation as

δ increases.

0 5 10 15 20 25
0

0.5

1

1.5

a)

n
o

rm
a

li
z

e
d

 l
o

a
d

 d
e

m
a

n
d

initial load demand from customers

 

 

non6exible + 6exible

non6exible

maximum capacity L
M

0 5 10 15 20 25
0

0.5

1

1.5

b)

n
o

rm
a

li
z

e
d

 l
o

a
d

 d
e

m
a

n
d

Delay cost weight δ = 0

 

 

non6exible + 6exible

non6exible

maximum capacity L
M

0 5 10 15 20 25
0

0.5

1

1.5

c)

n
o

rm
a

li
z

e
d

 l
o

a
d

 d
e

m
a

n
d

Delay cost weight δ = 1

 

 

non6exible + 6exible

non6exible

maximum capacity L
M

0 5 10 15 20 25
0

0.5

1

1.5

d)

n
o

rm
a

li
z

e
d

 l
o

a
d

 d
e

m
a

n
d

Delay cost weight δ = 3

 

 

non6exible + 6exible

non6exible

maximum capacity L
M

Fig. 2. Optimal load profile comparison for different delay cost weights
(δ’s): a) Initial load demand from customers. b) Optimal load profile with no
delay cost. c) Optimal load profile with delay cost weight δ = 1. d) Optimal
load profile with delay cost weight δ = 3.
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Fig. 3. Saturated optimal load demand profile (upper) and generation cost
for different δ’s (lower)

Though the water-filling like solution is based on the spe-

cific forms of generation cost and delay cost, the decoupling

framework still works for other cost functions. The resulting

optimal allocation profile xi (i = 1, 2, . . . , I) can always be

used for next stage energy allocation among customers.

IV. DISTRIBUTED ALLOCATION AMONG CUSTOMERS:

REPEATED VICKREY AUCTIONS

Based on the optimal generation profile obtained in the first

stage, a customer-wise allocation scheme is further needed

for each time interval. The desired allocation scheme should

have several properties: 1) Because the number of customers

is large, as well as the status of customers (connected or

disconnected) vary over time, the allocation scheme need to

be robust to adding\removing customers. 2) Customers should

be able to specify how much money they are willing to pay



according to their own budgets. 3) Selfish customers, who are

only interested in maximizing their own profit needs to be

taken into account. Customers cheat on the amount of money

they are willing to pay if doing so results in higher profit.

Thus the desired scheme should be robust to customer cheating

and should distribute electrical energy efficiently, meaning

allocating energy to customers who really need it the most.

Here we adopt repeated Vickrey auctions, which works well

for all purposes above as will be shown.

Though the electrical energy is infinitely divisible, the

concept of a basic unit, say 1KWh, is needed to describe the

minimum amount of energy to be functional for customers.

Thus we assume that the utility is scheduling dxie amount

of load demand instead of xi (i = 1, 2, . . . , I), where dxie
is the smallest integer no smaller than xi. In the end of the

block, all extra generated energy
∑I

i=1(dxie − xi) will be

stored. In the repeated auction scheme, for each time interval

i with positive dxie, all K customers participate in a Vickrey

auction for dxie number of electrical energy units. No auction

will be held in the rest time intervals. In the auction for time

interval i, customer k (k = 1, 2, . . . ,K) submits dxie number

of bids bmi,k’s (m = 1, 2, . . . , dxie) to indicate how much it

is willing to pay for each additional energy unit. Thus bid

bmi,k is the amount of money customer k is willing to pay for

its m-th energy unit. Let bi,k = (b1i,k, b
2
i,k, . . . , b

dxie
i,k ) denote

the bid vector of customer k at time interval i. Assume bi,k

∈ B := {bi,k ∈ R
dxie
+ |b1i,k ≥ b2i,k ≥ · · · ≥ b

dxie
i,k , ∀k =

1, 2, . . . ,K}. Note that, in practice restricting bid vector to

have non-increasing components makes sense. Because if a

customer has no energy, it needs energy the most urgently

and its valuation for its first unit of energy is the highest. As

it gets more and more energy units, its demand gets saturated

gradually and the marginal valuation is thus non-increasing.

If a customer k is only interested in getting xi,k ≤ dxie
number of energy units in the auction in time interval i, then

the last dxie − xi,k elements of its bid vector are all zeros.

In the auction for time interval i, a total of K × dxie bids

bmk ’s (k = 1, 2, . . . ,K;m = 1, 2, . . . , dxie) are placed and the

dxie energy units are awarded to the dxie highest of these

bids, which are deemed winning bids. Ties are broken by

choosing with equal probability among all possible rankings

among tying bids. The number of energy units awarded to a

customer is equal to the number of winning bids submitted

by that customer. Thus if customer k has mi,k ≤ dxie of the

highest bids, then it is awarded mi,k units of electrical energy

at time interval i. Denote by c−k the dxie-vector of competing

bids facing customer k, so that c−k
1 is the highest of the other

bids, c−k
2 is the second highest of the other bids, and so on.

To win exactly m energy unit, customer k’s m-th highest bid

must defeat the m-th lowest competing bid. If customer k wins

mi,k units of electrical energy, then the amount it pays is the

sum of mi,k highest losing bids of the other customers, which

is
∑mi,k

m=1 c
−k
dxie−mk+m

.

A. Truthful Bidding Strategy for One-shot Vickrey Auction

In the auction of each time interval, all customers have

their own valuations, which determine the bidding strate-

gies, attached to all energy units for sale. In the electric-

ity market, customers do not know other’s valuations pre-

cisely (incomplete information) since valuations of differ-

ent customers are determined by their own energy needs

and consumption behaviors (private valuation). Denoted by

vi,k = [v1i,k, v
2
i,k, . . . , v

dxie
i,k ] the private valuation vector of

customer k at time interval i, where vmi,k represents the

marginal value of obtaining the m-th unit of energy. These

marginal values are assumed to be non-increasing so that

v1i,k ≥ v2i,k ≥ · · · ≥ v
dxie
i,k , ∀k, for similar reasons when we

assumed non-increasing marginal bids. The total value to the

customer k of obtaining exactly mi,k ≤ dxie units is then

the sum of the first mi,k marginal values:
∑mi,k

j=1 v
j
i,k. Note

that symmetry on valuations is usually assumed in Vickrey

auction literature ( [11], [12]), in which vi,k’s are indepen-

dently and identically distributed (i.i.d) on the valuation set

Vi,k = {vi,k ∈ [0, ωi]
dxie : ∀m, vmi,k ≥ vm+1

i,k }, where ωi

is the maximum valuation for all customers. However, the

i.i.d symmetric condition might be too strong for our problem

since the valuations of different customers could be different

depending on individual consumption behaviors. Thus we drop

the condition of identical distribution and assume more general

asymmetric customers—customer k’s valuation vector vi,k is

independently drawn from some distribution Fi,k that has

positive density everywhere on the set Vi,k.

The Vickrey auction in each time interval actually forms

a game with incomplete information, in which every cus-

tomer wants to maximize its own payoff. Here a customer’s

payoff equals the sum of valuations obtained from winning

energy units minus the total payment. Under the assumptions

above, it can be proved that the Vickrey auction is incentive

compatible, meaning truthful bidding (bidding the real value)

maximizes each customer’s payoff [11]. Thus truthful bidding

is a weakly dominant strategy for every customer and thus

forms a Bayesian Nash equilibrium.

B. Bayesian Nash Equilibria Structure: General Analysis

Though every customer’s payoff is maximized in the truthful

bidding equilibrium, Vickrey auction does not guarantee the

benefit of the utility. This is because truthful bidding is only

a weakly dominant strategy and truthful bidding equilibrium

is not the unique Bayesian Nash equilibrium in a one shot

Vickrey auction. Therefore detailed analysis on the entire

equilibrium solution set of Vickrey auction is necessary for

finding better allocation schemes in our second stage schedul-

ing. Based on [13], we divide the Bayesian Nash equilibria

into two categories.

Equilibria in the first category can be described as follows:

There exists at least one customer k who has at least one bid

bmi,k ∈ (0, ωi) with positive probability. There is a threshold

b∗i ∈ (0, ωi) for all customers such that all customers bid

truthfully for which they have a valuation exceeding b∗i .



Furthermore, there is a unique distinct customer k̂ who bids

b∗i on any unit for which his valuation is below the threshold.

The remaining customers bid zero on any unit for which their

valuation is below the threshold. Put in a more mathematical

format:

bm
i,k̂

=

{

vm
i,k̂

if vm
i,k̂
∈ [b∗i , ωi]

b∗i if vm
i,k̂
∈ [0, b∗i ),

for all m = 1, 2, . . . , dxie and

bmi,k =

{

vmi,k if vmi,k ∈ (b∗i , ωi]

0 if vmi,k ∈ [0, b∗i ],

for all k 6= k̂ and all m = 1, 2, . . . , dxie and b∗i := inf{b ∈
(0, ωi)|∃k,m s. t. ∀ε > 0, Pr{bmi,k ∈ [b, b + ε]} > 0}. If we

make stronger assumptions on the customers’ valuation distri-

bution, say assuming there exists at least one customer whose

valuation distribution over (0, ωi) assigns positive probability

to arbitrarily small positive values, which is reasonable since

in reality customers usually have continuous distribution over

the valuation set. Then we have b∗i = 0 and the first category

equilibria reduce to the truthful bidding equilibrium.

For all equilibria that are not in the first category, there is

zero probability of positive bids below the highest valuation

ωi. Each customer k (k = 1, 2, . . . ,K) bids at or above the

highest valuation ωi on m̂i,k number of units and bids zero

on the remaining units in such a manner that the total number

of positive bids across all customers equals the number of

units to be sold, i.e.
∑K

k=1 m̂i,k = dxie. The second category

of Bayesian Nash equilibria reveals the possibility that the

Vickrey auction might end up with a collusive equilibrium

that customers bid untruthfully and all energy units are sold

at a price of zero, resulting negative profit of the utility.

Generally speaking, equilibria of both categories are col-

lusive in the sense that there are positive probabilities that

customers get some energy units at a price of zero. To

guarantee the minimum profit covers the generation cost, it

is reasonable for the utility to set a positive reserve price ri
for the auction in time interval i such that each customer has

to pay at least the reserve price for any unit obtained. It has

been proved in [13] that with a positive reserve price ri, the

auction with more than two customers converges to a unique

Bayesian Nash equilibrium, in which customers refrain from

bidding on any unit for which their valuation is less than ri and

otherwise bid their valuation for each unit. Thus the Vickrey

auction with a reserve price gives a better allocation scheme

in the sense that 1) It is robust to collusion by customers,

2) It guarantees the minimum profit of the utility and 3) It

converges to the unique Bayesian Nash equilibrium.

C. Valuation and Bidding Strategy in Repeated Auctions

In the second stage, energy allocation among customers

is conducted one time interval after another. We assume the

energy units are not time interval specific, meaning energy

provided in different time intervals are equally functional to

customers. Then valuations on energy units provided in earlier

time intervals will be lower than those provided in later time

intervals. This is because the more time intervals left, the

more chances for a customer to win energy units for its

load demands. We thus model customers’ valuations over time

intervals as a product of the basic valuations and a time scaling

factor. Considering that the valuations in the last round Vickrey

auction is exactly the same as the valuations in a one-shot

Vickrey auction, we denote by vmk the valuation of customer

k for its m-th energy unit in a one-shot Vickrey auction, its

valuation in time interval i is given by vmk,i = vmk η−(I−i)T

where η is the time scaling factor. Note that for a certain

customer, if it has already won u units of energy in previous

auctions, then its highest valuation in current auction is for its

(u + 1)-th energy unit assuming the non-increasing marginal

valuations.

Different from valuations, in repeated auctions determining

the bidding strategies of customers in general is a difficult

problem in auction theory literature [11]. In our problem, the

individual bidding strategy can be affected by too many fac-

tors. For example, a customer who is active in current auction

and fails to win will bid higher in the next auction. This is

due to the deterioration of available energy units relative to

current load demands. However on the other hand, the higher

bids from those who did not win in the previous auction seems

to be mitigated by the fact that there might be fewer competing

bids in the current auction. This is because customers whose

load demands are fully supported will quit from the following

auctions automatically and the currently active customers who

won some energy units in previous auctions will have lower

(at most equal) valuations on their additional energy units.

Thus a less fierce competition could be expected. As can

be seen, the two factors mentioned above both exist in our

problem but lead to opposite bidding behaviors in repeated

auctions. Another major difficulty comes from the fact that in

repeated Vickrey auctions, once a bidder wins some units, its

behavior and interest are different from others. In other words,

even if customers are symmetric ex ante, multi-unit demands

introduce asymmetries among customers in later auctions,

which deviates the basic requirement for analyzing symmetric

bidding strategy Bayesian Nash equilibria [11].

In auction theory, a bidding strategy or bidding function

is a mapping from valuation set to bid set. An auction is

called a standard auction if items for sale are allocated to

highest bids. An auction is efficient (maximizing bidder social

welfare) if items for sale are allocated to highest valuations.

It has been proved that an equilibrium of a standard auction

is efficient if and only if the bidding function is a single

increasing function [11]. It is easy to see the Vickrey auction is

a standard auction. The bidding function in the truthful bidding



equilibrium is actually the identity function which leads to

an efficient mechanism under the non-increasing valuation

assumed above.

V. SIMULATION RESULT

In this section we implement a 24 hour block scheduling

for an electricity market, which consists of 1 utility and 5000
residential households with each household of 4 people on

average. According to the data in [14] and Electrical Informa-

tion, from 2006 to 2008 the average electricity price in U.S.A.

is 9.28 cents per KWh and the average energy consumption of

one person is about 39.39 KWh per day. Thus it is reasonable

to assume that the load demands for a household in different

time intervals are uniformly distributed between 0 and some

maximum value. The maximum value is time dependent

and ranges from 10 to 20 KWh. Moreover we assume that

customers’ valuations are uniformly distributed over (6, 10)
cents. Fig. 4 shows utility’s average profits (payments from

customers minus the total generation cost) for different reserve

prices and different time interval sizes in repeated Vickrey

auctions. Note that utility’s profit increases first as the reserve

price increases from below to above the generation cost, after a

certain point the profit decreases because the amount of energy

sold decreases. Utility’s profit drops to zero when the reserve

price is 0.1$ since all valuations from customers are below

the reserve price and no energy is sold. It can be seen that

greater time interval size gives greater utility’s profit for the

optimal reserve price, but more severe degradation for non-

optimal reserve prices.
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Fig. 4. Utility’s profit for different reserve prices and different time interval
sizes

VI. CONCLUSION

In this paper, a block processing model with finite time

intervals was adopted for DR\DSM scheduling. The two

principal objectives: utility cost minimization and customer

social welfare maximization were decoupled into two stages.

In the first stage, minimizing the weighted sum of generation

cost and delay operation cost of utility was formulated as a

convex optimization problem, and the optimal time interval re-

allocation solution was derived. It was shown that the average

generation cost increases as the delay cost weight increases

until the optimal load demand profile saturates. Based on this

optimal load profile derived in the first stage, repeated Vickrey

auctions over time intervals were adopted to allocate load

demands among customers. We showed that truthful bidding

is a weakly dominant strategy for all customers in a one

shot Vickrey auction. We also showed that collusive equilibria

do exist and can severely jeopardize utility’s profit. We then

generalized our discussion to the structure of the entire set of

Bayesian Nash equilibria of one shot Vickrey auction, which

can be divided into two categories. Since both categories of

equilibria are collusive in general, we further showed that

if the utility introduce a positive reserve price, the Vickrey

auction becomes more robust to collusion by customers and

the resulting unique Bayesian Nash equilibrium guarantees the

basic profit of the utility. Assuming increasing valuations over

time intervals, we simulated our block processing based model

of a electricity market in which the influences of reserve price

and time interval size on utility’s profit was emphasized.
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