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Abstract—This paper presents a design and an implementation
of a wideband autonomous cognitive radio (WACR) for anti-
jamming. The proposed anti-jamming scheme is aimed at evading
a jammer that sweeps across the whole wideband spectrum range
in which the WACR is expected to operate. The WACR makes
use of its spectrum knowledge acquisition ability to detect and
identify the location of the sweeping jammer. This information
and reinforcement learning is then used to learn the optimal
communications mode to avoid the jammer. In this paper, we
discuss a specific reinforcement learning mechanism based on
Q-learning to successfully learn such an anti-jamming operation
over a several hundred mega-Hz of wide spectrum in real-
time. We describe a cognitive anti-jamming communications
protocol that selects a spectrum position with enough contiguous
idle spectrum uninterfered by both deliberate jammers and
inadvertent interferers and transmits till the jammer catches up
to it. When the jammer interferes with the cognitive radio’s
transmission, it switches to a new spectrum band that will lead
to the longest possible uninterrupted transmission as learned
through Q-learning. We present results of an implementation
of the proposed WACR for cognitive anti-jamming and discuss
its effectiveness in learning the surrounding RF environment to
avoid both deliberate jamming and unintentional interference.

Index terms— Anti-jamming, q-learning, reinforce-
ment learning, sub-band selection problem, wideband au-
tonomous cognitive radios, wideband spectrum knowledge
acquisition, wideband spectrum sensing.

I. INTRODUCTION

Wideband autonomous cognitive radios (WACRs) are radios
that have the ability to make their own operating decisions
in response to the perceived state of the spectrum, network
and radio itself [1]. The key to such autonomous operation
is the radio’s ability to sense and comprehend its operating
environment. In general, it is desired that the radio have the
ability to operate over a wide frequency range making the
problem of sensing all frequencies of interest to the radio in
real-time a challenging problem. However, assuming that this
is achieved, such WACRs provide an excellent technological
option to achieve cognitive communications desired in many
application scenarios. A situation in which cognitive commu-
nications can be a great asset is when reliable communications
is needed in the presence of unintentional interference and
deliberate jammers.

In this paper, we present a design of a WACR architecture
to achieve cognitive anti-jamming and interference avoidance.

We present a general approach that may be used to scan and
sense a wide spectrum range in order to achieve real-time spec-
trum awareness. A cognitive anti-jamming and interference
avoidance communications protocol that uses this spectrum
knowledge is then developed. There is a strong justification
for basing cognitive communications protocols on machine
learning so that they can both be autonomous and responsive
to dynamic channel and network conditions. In this paper,
we employ reinforcement learning to aid our proposed anti-
jamming and interference avoidance communications protocol.
Reinforcement learning (RL) has the advantage of facilitating
unsupervised learning of an optimal decision-making policy
under reasonable spectrum dynamics.

There have been a few previous attempts at using machine
learning techniques, in particular reinforcement learning, to
achieve anti-jamming in cognitive radio networks (CRN). For
example, [2] has proposed a modified Q-learning technique
for jammer avoidance in a CRN. This ON-policy synchronous
Q-learning algorithm was shown to converge faster than the
standard Q-learning algorithm in learning the behavior of
both a sweeping jammer and an intelligent jammer. Two
other reinforcement learning approaches, namely SARSA and
QV-Learning algorithms, were investigated in [3] to develop
an anti-jamming policy against a smart jammer in a CRN.
However, reinforcement learning has found many other ap-
plications in cognitive radios than being limited to anti-
jamming operation [4]. In fact, there are many examples of
use of reinforcement learning in dynamic spectrum sharing
(DSS) systems. For instance, in [5] so-called secondary users
employed Q-learning to learn optimal transmission powers in
channels with unknown parameters. Similarly, in [6] minimax-
Q learning was used by secondary users in an anti-jamming
stochastic game to learn the spectrum-efficient throughput
optimal policy to avoid jammers.

Reinforcement learning is, of course, not the only ma-
chine learning tool that can be useful for modeling and
implementing anti-jamming cognitive communications. Two
promising alternatives are the game theoretic learning and
artificial neural networks (ANNs). For example, in [7] anti-
jamming and jamming strategies were modeled in a game-
theoretic framework allowing radios to learn good policies
using a variant of fictitious play learning algorithm. In another
study [8], the friend-or-foe detection technique was used to
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detect intelligent malicious users, acting as jammers, in a
CRN. Reinforcement learning techniques can also be used in
conjunction with game-theoretic models to help learn good
policies. For example, Q-learning based strategies are used
in [9] and [10] for anti-jamming and jamming games to
find the optimal channel-access strategies. The authors in [9]
have shown that Nash-Q and friend-or-foe Q-learning can be
effective in aggressive jamming environments and in mobile
ad-hoc networks, respectively. In [10], the authors presented
a game-theoretic anti-jamming scheme (GTAS) that used a
modified Q-learning algorithm to evade jammer attacks.

Most of the above referenced contributions, however, have
only been limited to either analysis or simulations. In this
research, however, we have developed a comprehensive cogni-
tive anti-jamming communications protocol and implemented
on a hardware-in-the-loop (HITL) simulation of a WACR
prototype. We show results for a cognitive radio that operates
over about 200MHz-wide spectrum in real-time in the presence
of common wireless interferers as well as a deliberate jammer.
Importantly, we demonstrate that a simple reinforcement learn-
ing algorithm can indeed learn the behavior of the jammer
to achieve effective cognitive anti-jamming and interference
avoidance.

The remainder of this paper is organized as follows:
Section II details our proposed WACR architecture and the
wideband spectrum knowledge acquisition framework. Section
III discusses a cognitive communications protocol for anti-
jamming and interference avoidance and its implementation
using a reinforcement learning algorithm. Section IV presents
our hardware-in-the-loop WACR prototype implementation of
anti-jamming and the results observed in the presence of both
deliberate jammer and unintentional interference. Finally, the
paper is concluded in Section V by drawing a few final
conclusions and discussing possible further work.

II. WIDEBAND SPECTRUM KNOWLEDGE ACQUISITION

The most unique aspect of a cognitive radio is the ability
to be aware of its RF environment (spectrum state) [1]. In
dynamic spectrum sharing applications, this is achieved by
what is called spectrum sensing [1], [11]. In the case of
wideband autonomous cognitive radios, on the other hand,
spectrum sensing can be more involved than simply finding
so-called spectrum white-spaces [1]. Indeed, the potential of
WACRs lies in their ability to sense and fully comprehend the
wide spectrum of interest to the radio. Such comprehension
normally includes not just finding active signals, but also
determining the characteristics of these signals so that they can
properly be identified. Hence, we define a wideband spectrum
knowledge acquisition framework consisting of 3 steps as
shown in Fig. 1 [1].

The first step in spectrum knowledge acquisition framework
is the wideband spectrum scanning. By definition, WACRs are
wideband radios that may operate over a large frequency range.
However, due to hardware constraints [1], at any given time,
it may be able to observe and process only a portion, called a
sub-band, of its operating spectrum range of interest. To gain
knowledge of the complete spectrum range, thus, a WACR

Figure 1. Spectrum knowledge acquisition consists of a planning stage and
a processing stage [1].

needs to follow an efficient algorithm to determine which sub-
band to be sensed at any given time. Clearly, this choice will
depend on the performance objectives of the radio. Wideband
spectrum scanning step can, thus, closely be coupled with the
communications protocol itself.

In the second step of the spectrum knowledge acquisition
process, the WACR detects active signals present in the sensed
sub-band. For this, our proposed design uses Neyman-Pearson
thresholding of an estimated power spectrum of the sub-band
signal. Note that, this is very different from spectrum sensing
in a DSS cognitive radio in which only a single channel is
sensed at a time and a particular type of primary signal is to be
detected. Instead, all active signals present in a sub-band is to
be detected. This step, thus, allows the WACR to extract carrier
frequencies of detected active bands but not necessarily other
specific information about the signal [1]. Thus, the wideband
spectrum knowledge acquisition framework consists of a third
step of signal classification and identification. In this final
step, detected signals are classified to identify their origin
and, in particular, what systems they may belong to. Often,
classification is better performed on certain features extracted
from the detected signals [1].

Figure 2. Block Diagram of the Cognitive Engine and its signal processing
tasks.

Figure 2 shows a cognitive engine implementation of the
above spectrum knowledge acquisition framework especially
detailing the steps associated with the spectral activity de-
tection step. First, the noise floor of each of the sub-bands
is estimated. This is used to compute the Neyman-Pearson
threshold for spectral activity detection subjected to a given
false-alarm probability. Next, an estimate of the power spectral
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density (PSD) of the sensed sub-band signal is computed. In
the absence of any a priori knowledge on possible signals in
a sub-band, a possible spectrum estimator is the periodogram
of the sensed signal, defined as:

Ŝy(F ) =
1

N

∣∣∣∣∣
N−1∑
n=0
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∣∣∣∣∣
2

(1)

where y[n] is the time-domain signal of the sensed sub-band
and N is the number of signal samples [1].

The periodogram, however, can be very erratic and noisy
even when a large number of samples, N , is used. To reduce
the effects of such noisy fluctuations on spectral activity detec-
tion, in our approach we apply frequency-domain smoothing to
the periodogram estimate of the sub-band spectrum as shown
below:

T (Y) =
1

LN

(L−1)/2∑
l=−(L−1)/2

|Y [k + l]|2 (2)

where L denotes the length of the rectangular smoothing
window, Y denotes the FFT of the sensed sub-band signal,
k is the sample in the spectrum where the rectangular window
is centered at and T (Y) is the smoothed periodogram [1].
It is imperative to smooth the periodogram to reduce the
possibility of noise causing the PSD estimator to exceed the
detection threshold while it should not, and vice versa. The
Neyman-Pearson threshold, is then, applied to the smoothed
periodogram to detect any active signals in the sub-band.

Figure 3. Periodogram estimate of the sub-band spectrum for a 40MHz-wide
sub-band centered at 2.46GHz.

Figure 4. Smoothed periodogram estimate of the sub-band spectrum, as given
by (2), for a 40MHz-wide sub-band centered at 2.46GHz.

Figures 3 and 4 show actual real-time periodogram and
smoothed PSD estimators for a system that uses 40MHz
wide sub-bands. By thresholding the smoothed periodogram
estimate (2), the WACR determines the locations and band-
widths of the active signals. This information is then utilized
by the radio reconfiguration region (see Fig.2) to determine
the idle frequency bands within the just sensed sub-band.
These are next used to determine whether there is enough
idle bandwidth to satisfy the user’s desired minimum idle
bandwidth requirement.

III. COGNITIVE ANTI-JAMMING COMMUNICATIONS

The proposed cognitive anti-jamming communications pro-
tocol avoids both deliberate and unintentional interference by
learning when to switch its transmission to a new sub-band and
when to continue to transmit in the current sub-band. This
is called the sub-band selection problem [1]. In this paper,
we develop a reinforcement learning based decision policy
based on which a WACR selects the sub-bands for sensing
and transmission to meet a given user performance criterion.
Specifically, our performance objective is anti-jamming and
interference avoidance.

For effective sub-band selection, the WACR needs to be
able to predict the sub-band that will most likely have desired
conditions to meet the performance objectives set by the user
[1]. This can effectively be achieved if we were to have a
good predictive model for the state dynamics of sub-bands.
A commonly used, and a reasonable, model is to assume that
the state dynamics are Markov. A cognitive radio learns its
environment by sensing one sub-band at a time. Hence, this
is a decision-making problem in a partially observable envi-
ronment leading to a Partially Observable Markov Decision
Process (POMDP). Although the POMDP model is elegant
in its formulation, optimal policy computation for POMDPs
can be computationally too demanding except in the case of
small-size problems [1].

In this work, we get around the computational complexity
issue by developing a low-complexity reinforcement learning
technique to learn an optimal policy for sub-band selection
for anti-jamming and interference avoidance. The WACR will
select a sub-band that has a portion of the sub-band idle for
transmission and has not been interfered with, deliberately or
unintentionally, for the longest amount of time. Note that,
the type of communications will determine the minimum
contiguous length of idle bandwidth a sub-band must have
for it to be a candidate for selection. Once the desired idle
bandwidth condition is violated in the current sub-band due
an interferer or a jammer, the WACR will select another sub-
band from among all available sub-bands.

Based on the assumed communications objectives, in this
work we have developed a novel, and simple, definition for
the state of a sub-band. In particular, each sub-band can be in
one of two possible states: Either it contains a contiguous idle
bandwidth of a required length (state 1) or it does not (state
0). With this state definition, a WACR will have to select a
new sub-band if and when the state of the current sub-band
changes to state 0. For efficient operation with effective anti-
jamming, of course, the selected new sub-band must have low
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interference with high probability. When interference is due
to a deliberate jammer, efficient selection can be achieved if
the WACR can learn the pattern of behavior of the jammer.
Our proposal employs an autonomous learning algorithm to
achieve this.

An approach to learn an effective sub-band decision policy,
as mentioned earlier in this section, is to use reinforcement
learning techniques such as Q-Learning. Q-Learning is utilized
in this application due to its low computational complexity.
Moreover, it does not require the knowledge of transition
probabilities of the underlying Markov model. Essentially,
Q-Learning is a reinforcement learning technique in which
for each state and action pair, what is called a Q-value is
computed. The Q-value is a quantification of the merit of
taking a particular action when in a given state [4]. After
each execution of an action, the WACR updates the Q-table
based on a certain observed reward. In our approach, we use a
reward function that depends on the amount of time it takes the
jammer or interferer to interfere with the WACR transmission
once it has switched to a new sub-band.

Let us denote the Q-value associated with selecting action
a in state s by Q(s, a). After each execution of an action, the
WACR updates the Q-table entries as below, where 0 < α <
1 and 0 ≤ γ < 1 denote the learning rate and the discount
factor, respectively [1]:

Q(s[n− 1, an−1])← (1− α)Q(s[n− 1], an−1)

+ α[rn(s[n− 1], an−1) + γmax
a

(s[n], a)].
(3)

Our Q-Learning based sub-band selection algorithm selects
sub-bands for sensing and transmission based on the Q-table.
However, in RL literature, it is well known that a certain
amount of exploration of state-action space is required for
effective learning. Hence, the sub-band selection policy is
defined as:

a∗ =

{
argmax
a∈A

Q(s, a) with probability 1− ε

∼ U(A) with probability ε
(4)

where U(A) denotes the uniform distribution over the action
set and ε is the exploration rate (or the exploration probability).
Note that, an exploration rate of ε implies that the learner
randomly selects an action with probability ε (explores an
action) and it selects the best action, as implied by the learnt Q-
table, with probability 1-ε (exploitation). The exploration rate
needs to be carefully selected so as to strike an acceptable
balance between exploration and exploitation [1]. A high
exploration rate may help the WACR to quickly understand
the environment but it could reduce the performance due to
excessive exploring and not exploiting what it has learned. In
contrast, a low exploration rate could make the WACR take
far more time to learn the environment and converge to the
optimal solution, when that is indeed possible [1].

IV. SIMULATION RESULTS

The hardware-in-the-loop setup is implemented on a Lab-
VIEW program using an NI-USRP software-defined radio.
Signal processing tasks of the cognitive engine are performed
by the LabVIEW program running on a laptop in real-time.

Figure 5. The setup of the hardware and a general top-layer overview of the
hardware-in-the-loop setup.

Figure 5 shows the general hardware-in-the-loop simulation
setup. The hardware portion collects real-time data, and passes
them to the cognitive engine for processing. In addition, it also
transmits the radio’s own signals as instructed by the cognitive
engine.

Our WACR prototype operates over a spectrum range of
200MHz in real-time and scans 40MHz-wide sub-bands at a
time. In this case, the Q-table is a 5x5 matrix. Specifically,
there are 5 states and 5 actions: the rows are the states and
the columns are the actions. Note that, the action is the sub-
band it selects for sensing during the next time instant in an
attempt to escape the jammer.

To demonstrate our prototype’s ability to learn a good sub-
band selection policy, our field test used a continuous sweeping
signal acting as the jammer which sweeps the 200MHz-wide
spectrum within a period of 35 seconds. We tested our learning
algorithm in two spectrum ranges: the 2GHz-2.2GHz band that
usually contained unintentional outside interferers in addition
to our sweeping jammer signal and the 3GHz-3.2GHz band
that was mostly free of additional unintentional interferers.

The jammer sweeps these frequency bands from the lower
to the higher frequency. Hence, in the absence of any other
interference the optimal sub-band selection policy to avoid the
jammer is intuitive: The WACR should cyclically shift to the
sub-band that is adjacent to the current sub-band from the
lower frequency side. For example, if the WACR is currently
sensing sub-band 5, it should choose sub-band 4 in order to
avoid the jammer for the longest amount of time possible.
Table I shows this intuitive pattern of the optimal sub-band
selection policy that the WACR needs to learn in order to
effectively avoid the sweeping jammer (under the assumption
that there are no other interferers except the sweeping jammer).
Results from our field tests show that our WACR can indeed
learn the above optimal sub-band selection policy to avoid
deliberate jamming. Tables II and III show the Q-tables learned
by the WACR, while operating in the 3GHz-3.2GHz band and
the 2GHz-2.2GHz band, respectively. In these experiments,
user defined minimum required bandwidth in a sub-band is
30MHz. Note that, the difference between Tables II and III is
that in Table II, the WACR operated in a frequency band that
was free of unintentional interference whereas in Table III the
WACR operated in a band with unintentional interference.
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Table I
Q-TABLE WITH OPTIMAL POLICY ANTI-JAMMER AVOIDANCE PATTERN.

HH
HHs

a 1 2 3 4 5

1 0 0 0 0 max Q-
value

2 max Q-
value 0 0 0 0

3 0 max Q-
value 0 0 0

4 0 0 max Q-
value 0 0

5 0 0 0 max Q-
value 0

Table II
LEARNED Q-TABLE IN THE 3GHZ TO 3.2GHZ BAND

H
HHHs

a 1 2 3 4 5

1 0.0461 0.0956 0.2907 0.4676 4.6945
2 4.8770 0.0830 0.2008 0.2872 0.9495
3 0.8342 4.6882 0.1628 0.2097 0.2882
4 0.3272 0.7844 4.5411 0.0645 0.2087
5 0.2048 0.7756 0.7705 4.5520 0.0851

Table III
LEARNED Q-TABLE IN THE 2GHZ TO 2.2GHZ BAND

H
HHHs

a 1 2 3 4 5

1 0.0971 0.3677 0.4801 0.4254 1.0584
2 1.5785 0.2964 0.1780 0.3003 0.6007
3 0.4680 1.4561 0.0940 0.1792 0.30792
4 0.3332 0.2704 1.4148 0.1881 0.1898
5 0.3323 0.5728 0.4249 1.2130 0.1328

Clearly, these Q-tables show that our proposed reinforce-
ment learning based sub-band selection algorithm can indeed
learn the sweeping jammer’s behavior and perform as an
effective cognitive anti-jamming and interference avoidance
protocol. The Q-tables in Tables II and III show that if the
system were to exploit (choose the actions resulting in the
greatest reward), it will indeed choose the optimal sub-band
that follows our intuition as previously mentioned and as
shown in Table I. Another observation from these results is
that our proposed learning scheme is relatively robust against
unintentional interference. For example, Table III shows that
despite the presence of both unintentional interference and the
deliberate jammer, the WACR is successful at learning a good
action selection policy to avoid the jammer.

V. CONCLUSION

In this paper, we have presented an anti-jamming wideband
autonomous cognitive radio and demonstrated it is indeed
capable of evading both deliberate jammers and unintentional
interference. In addition, we have also demonstrated that
reinforcement learning can be an effective approach for a
WACR to learn the optimal communications mode to avoid a
deliberate jammer. Results obtained from an HITL simulation
showed that it was able to successfully infer the jamming
pattern and learn the optimal sub-band selection policy for
jammer avoidance.

A possible future work is to use an expanded Q-table that
can also include states in which unintentional interferers are
present alongside the jammer. Implementing a game-theory
based approach to defeating jammer interference can also be
an additional future goal.
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