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Abstract—This paper proposes a reinforcement learning based
approach to anti-jamming communications with wideband au-
tonomous cognitive radios (WACRs) in a multi-agent environ-
ment. Assumed system model allows multiple WACRs to simul-
taneously operate over the same (wide) spectrum band. Each
radio attempts to evade the transmissions of other WACRs as
well as avoiding a jammer signal that sweeps across the whole
spectrum band of interest. The WACR makes use of its spectrum
knowledge acquisition ability to detect and identify the location
(in frequency) of this sweeping jammer and the signals of other
WACRs. This information and reinforcement learning is used
to successfully learn a sub-band selection policy to avoid both
the jammer signal as well as interference from other radios. It
is shown, through simulations, that the proposed learning-based
sub-band selection policy has low computational complexity and
significantly outperforms the random sub-band selection policy.

Index terms— Anti-jamming, Markov decision process,
multi-agent reinforcement learning, Q-learning, sub-band se-
lection, wideband autonomous cognitive radios, wideband
spectrum scanning.

I. INTRODUCTION

An early application of cognitive radio (CR) technology was
to overcome the problem of inefficient spectrum utilization
via dynamic spectrum sharing (DSS) in which unlicensed
users are allowed to opportunistically access the spectrum of
a licensed user. However, when viewed as an evolution of
software-defined radios (SDRs), CRs may find much more
applications than just DSS [1]. Indeed, the ability for spectrum
and network awareness and to modify operating mode based
on autonomous decisions, make them ideal for pursuing some
of the original motivations for SDR technology including, for
example, interoperability [1], [2]. Wideband autonomous cog-
nitive radios (WACRs), equipped with real-time reconfigurable
RF front-ends spanning hundreds of megahertz (MHz) to sev-
eral gigahertz (GHz), are aimed at such broader applications
rather than simply DSS. They may find increasing relevance in
space, military and homeland security applications in addition
to consumer wireless communications.

The key to cognitive operation is the radio’s ability to sense
its surrounding RF environment. This functionality is known
as spectrum knowledge acquisition and, as shown in Fig.
1, can be divided in to three steps [1]: wideband spectrum
scanning, spectral activity detection and signal classification
and identification. Wideband spectrum scanning step involves

the real-time sensing of a wide spectrum range overcoming
the instantaneous sensing bandwidth limitations imposed by
the hardware constraints. In the second step of the spectrum
knowledge acquisition process, the WACR detects any, and
all, spectrum activities that may exist in the sensed sub-band.
Finally, a third step of signal classification is assumed in
order to identify and associate the detected active signals with
particular systems and origins.

Fig. 1. Spectrum knowledge acquisition procedure.

A common situation in which cognitive communications
can be a great asset is when malicious users launch jamming
attacks to disrupt the reliable communications [3], [4]. In prac-
tice, this will result in a complicated multi-agent environment
due to multiple WACRs simultaneously operating over the
same wide spectrum band that is challenged by a malicious
jammer. In this case, each WACR needs to avoid the jammer as
well as transmissions of other WACRs. This paper addresses
such an anti-jamming problem in a multi-agent environment
with the goal of finding optimal anti-jamming and interference
avoidance policies for the WACRs. However, direct computa-
tion of optimal decision policies can often be computationally
too demanding. The use of machine learning may instead allow
a WACR to learn an optimal, or at least an efficient, decision
policy to adopt its transmission to avoid both the jammer
attack and interference. Specifically, in this paper, we focus
on a machine learning paradigm called reinforcement learning
(RL) which could be well-suited when the underlying state
dynamics are Markov. Indeed, RL has been applied in many
CR applications involving both single-agent and multi-agent
environments [5], [6]. For example, multi-agent reinforcement
learning (MARL) based on Q-learning was proposed to let
secondary users (SUs) select operating channels in the case
of a two-user two-channel CR system in [7] and a multi-user
multi-channel CR system in [8]. The performance objective
in these earlier work, however, was to minimize the collisions
among the SUs and primary users (PUs).



There have been previous attempts at using RL specifically
to achieve anti-jamming with cognitive radios. In [9], for
example, the authors considered the jammer attacks on SUs
in a CR network. While the SU’s desire was to maximize
spectrum utilization with a designed channel selection strategy,
the jammer’s objective was to decrease the spectrum utiliza-
tion by strategic jamming. The state-action-reward-state-action
(SARSA) and QV-learning, two different reinforcement learn-
ing algorithms, were used by the SUs to adapt their strategy
on switching between control and data channels according to
their observations about jammer’s action, spectrum availability
and channel quality. In [10] and [11], MARL algorithms based
on minimax-Q and Win-or-Learn-Fast (WoLF) principles were
applied, respectively, to find anti-jamming policies for SUs in
multi-channel CR systems. The CR and the jammer, in [10]
and [11], were treated as two equally knowledgeable learning
agents. However, when the CR lacks sufficient knowledge
about the jammer, these approaches may not lead to sufficient
anti-jamming performance.

Most recently, a single-agent reinforcement learning
(SARL) based on Q-learning was proposed in [12] to en-
able a WACR evade a jammer signal that sweeps across
the whole spectrum of interest to the radio. Although the
performance of the learning-based decision policy was shown
to be excellent in [12], the scenario was too simplified to
be useful in practice. The purpose of this paper is two-fold:
Formalize the underlying Markov decision process (MDP)
framework assumed in [12] and extend the RL based sub-
band selection policy for anti-jamming to the scenarios in
which there are multiple policy-learning WACRs operating in
the same spectrum range challenged by a sweeping jammer.
Thus, our performance objective is the combined anti-jamming
defense and avoidance of interference from other WACRs. We
formalize the underlying MDP model framework assumed in
[12] by developing a new state definition for the spectrum.
Note that, if the jammer is also equipped with cognitive radio
technology, it will likely be able to adapt its jamming strategy
in response to the strategies of the WACRs. In this paper,
however, we assume a sweeping jammer that follows a fixed
strategy leaving the above case for future research.

The remainder of the paper is organized as follows: Section
II describes our assumed spectrum dynamics model and the
proposed new definition for the state of a spectrum sub-
band. The spectral activity detection framework is described
in Section III. Section IV discusses the implementation of
the proposed cognitive MARL algorithm for anti-jamming
and interference avoidance. Simulation results are presented
in Section V, followed by concluding remarks in Section VI.

II. SPECTRUM DYNAMICS MODEL

The wideband spectrum of interest can be considered as
made of Nb sub-bands [1]. Each sub-band may include a
different number of communication channels. Let Mi denote
the number of communication channels in the i-th sub-band.
In our model, we assume having equal-length time slots,
where each slot corresponds to a single sensing duration. For

simplicity, we assume the sub-band state to be constant within
a single time slot. Among the existing work defining the state
of a sub-band, [1], [13] and [14] are the most relevant to
our work. They defined the sub-band state as the number of
idle channels available in a sub-band. However, this definition
could result in a large total number of possible states leading
to unacceptably high computational complexity.

Fig. 2. Markov chain model for a single sub-band.

In this work, we get around the complexity issue by intro-
ducing a new state definition for a sub-band. This definition
depends on the availability of sufficiently large interference-
free (idle) bandwidth to satisfy a specified minimum required
bandwidth for transmission. To be specific, let β denote the
minimum required bandwidth for transmission defined by the
system (e.g. β= 20 MHz for IEEE 802.11g WiFi). Then,
according to our new definition, each sub-band can only be
in one of two possible states: state 0 and state 1 as shown
in Fig. 2: At any given time, if the available idle bandwidth
in the sub-band is greater than or equal to β then the sub-
band is considered to be in state 1 (available). Otherwise, it
is considered to be in state 0 (not-available). Let us denote
the state of the i-th sub-band at time t by Si[t] ∈ {0, 1}, for
i ∈ {1, ..., Nb}. It can reasonably be argued that this state
Si[t] is a discrete-time Markov process. Then, the transition
probability of the i-th sub-band from state s to state s′ can be
written as

pis,s′ = Pr {Si[t+ 1] = s′ | Si[t] = s} ,∀s, s′ ∈ {0, 1} .(1)

Most traditional communication systems transmit each sig-
nal only over a contiguous bandwidth. However, many emerg-
ing systems have the capability of transmission over non-
contiguous bandwidths (e.g. carrier aggregation (CA) in LTE
systems [15]). Thus, we may define two modes of operation for
our WACRs: First is non-contiguous bandwidth mode in which
the available bandwidth of a sub-band is calculated by adding
up of all the interference-free frequencies in this sub-band
regardless of whether they are contiguous or not. Second is the
contiguous bandwidth mode in which the available bandwidth
of a sub-band is defined as the maximum interference-free
contiguous bandwidth in this sub-band. In this paper, for
simplicity, the focus is on the contiguous bandwidth operation
mode although the same approach may be extended to the
non-contiguous bandwidth mode.



Fig. 3. An example of a sub-band made of 8 channels. At the present time,
last 4 channels are idle. Hence, current state of this sub-band is 1 (available)
if the minimum bandwidth parameter β ≤ 20 MHz.

In order to determine the state of a sensed sub-band, the
WACR should have the ability to detect any and all active
signals in this sub-band and determine precisely at which
frequencies these active signals exist. This will allow it to
compute the amount of idle bandwidth available in the sensed
sub-band. This process, known as spectral activity detection
[1], is described briefly below in section III.

As an example, let us consider a sub-band formed of 8
channels of equal bandwidth as shown in Fig. 3. As can be
seen from Fig. 3, only the last four channels are currently
idle. Let us assume that the minimum required bandwidth β
= 20 MHz. In this case, the sub-band shown in Fig. 3 will
considered to be in state 1 (available). If this sub-band was
selected for transmission, the cognitive engine (CE) of the
WACR will then inform the SDR platform the center frequency
of the largest available contiguous bandwidth in the sub-band.
The SDR will then be able to up-convert the baseband signal
to be transmitted to the corresponding carrier frequency as
shown in Fig. 4.

With the above sub-band state definition, the overall
spectrum state at time t can be defined as S[t] =
(S1[t], S2[t], · · · , SNb

[t]), in which Si[t] represents the (bi-
nary) state of the i-th sub-band at time t. Let us denote by S

the set of all the possible states S[t] may take. The set S can
take 2Nb possible states. Note that, if, as in [1], [13] and [14],
the number of idle channels in a sub-band was taken as the
sub-band state definition, we will end up with

∏Nb

i=1(Mi +1)
number of possible spectrum states which can be considerably
larger than 2Nb when Mi > 1, for i = 1, · · · , Nb.

III. SPECTRAL ACTIVITY DETECTION

The spectral activity detection procedure is described in Fig.
5. In order to determine the amount of available idle bandwidth
in each sub-band, a detector based on the Neyman-Pearson
(NP) criterion is used. This detector would allow the WACR
to identify the carrier frequencies of all active signals in the
sensed sub-band [1], [12].

During initialization, the noise floor of each sub-band is
estimated and is used to compute the required NP thresh-
old for detecting spectral activity subject to a given false-
alarm probability [1]. Next, the power spectral density (PSD)
corresponding to the sensed sub-band signal is estimated.

The locations of active signals in the sensed sub-band are
identified by extracting the frequencies at which the power
spectrum exceeds the NP threshold. We assume that the
spectral activity detection is based on the periodogram power
spectral density estimator, which is suitable when there is no
a priori knowledge available on possible signals in the sub-
band:

Ŝy(F ) =
1

N

∣∣∣∣∣
N∑
n=0

y[n]e−j2πFn

∣∣∣∣∣
2

=
1

N
|Y (F )|2 , (2)

where y[n] is the N length time-domain sensed signal of the
sub-band of interest and Y (F ) is the discrete-time Fourier
transform (DTFT) of y[n] with −1/2 ≤ F ≤ 1/2 denoting
the normalized frequency.

The periodogram, however, is known to suffer from high
noise fluctuations. This may result in erroneous spectral ac-
tivity detector decisions, as at some frequency locations the
PSD may exceed the NP threshold while it should not and
vice versa. To reduce the effect of such noisy fluctuations on
spectral activity detection, we may apply frequency-domain
smoothing to the periodogram estimate of the sub-band spec-
trum. Assume the DTFT of the sensed signal is computed at a
set of discrete frequency points Fk = k

N for k = 0, . . . , N−1,
so that Y [k] = Y (Fk). The decision statistic at frequency
k is then obtained by smoothing the periodogram using a
rectangular window of length L (assumed to be odd) centered
at frequency k [1]:

Tk(Y) =
1

LN

l=(L−1)/2∑
l=−(L−1)/2

|Y [k + l]|2 , (3)

where Y = (Y [0], Y [1], · · · , Y [N − 1]).
The NP threshold is applied to the smoothed periodogram in

(3) so that the WACR may detect the locations of the idle fre-
quency bands within the sensed sub-band. These are next used
to compute the maximum available contiguous bandwidth. The
state of the sub-band is determined by comparing this to the
minimum required bandwidth β for transmission.

IV. COGNITIVE MARL ANTI-JAMMING COMMUNICATIONS

The objective of the proposed cognitive MARL anti-
jamming algorithm is to avoid both deliberate jamming and
unintentional interference. Thus, at each time instant t, the
WACR should make a decision on whether to continue trans-
mission on the current sub-band or to switch to a new sub-
band. To be effective, the WACR should be able to predict
which sub-band will most likely meet the performance ob-
jectives of the user. This sub-band selection problem can be
formulated as a partially observable Markov decision process
(POMDP) since, at each time step, only the state of the
sensed sub-band is knowable by the WACR. The complete
state S[t] of the RF spectrum may not be fully observable due
to hardware and signal processing limitations.



Fig. 4. Cognitive radio operation: The SDR maps the baseband signal to the RF frequency informed by the cognitive engine.

Fig. 5. Spectral activity detection procedure.

Computing an optimal policy for a POMDP, however, may
lead to impractically high computational demand. Alterna-
tively, machine learning can be used to learn an optimal,
or at least a sub-optimal but reasonably good, sub-band
selection policy. As mentioned earlier, a particular machine
learning approach called reinforcement learning can especially
be suited when the underlying state dynamics are Markov, as
assumed in our system. Q-learning is one of the most widely
used reinforcement learning approaches. The basic idea of the
Q-learning algorithm is to maintain a table, known as the
Q-table, that contains what are called the Q-values denoted
by Q(S, a) representing a measure of goodness of taking the
action a ∈ A when in state S [1], [16]. Since the action space
A = {1, 2, · · · , Nb} in our scenario is the set of sub-band
indices, taking action a corresponds to selecting the a-th sub-
band.

After each execution of an action, the WACR updates the

Q-table, based on a certain observed reward, as shown in (4)
where α ∈ (0, 1) is the learning rate and γ ∈ [0, 1) is a
discount factor. In our approach, we define a reward function
r(S, a) that depends on the amount of time it takes for the
jammer or interference signals to interfere with a WACR
transmission once it has switched to the a-th sub-band. Future
actions (sub-band selections) are selected based on the updated
Q-values:

a∗ = argmax
a∈A

Q(S, a). (5)

The Q-learning algorithm, however, may get trapped in
a non-optimum policy unless all entries of the Q-table are
updated consistently [16]. This effect can be mitigated by
introducing an exploration rate ε ∈ (0, 1). Depending on the
exploration rate, the WACR may switch between selecting the
action characterized by (5) or just randomly selecting an action
out of all possible actions:

a∗ =

argmax
a∈A

Q(S, a) with probability 1− ε,

∼ U(A) with probability ε,
(6)

where U(A) denotes the uniform distribution over the action
set A. Choosing a high exploration rate may help in updating
the entire Q-table and avoid being trapped in a sub-optimal
policy. On the other hand, a low exploration rate will help
in exploiting an already learned policy that performs well-
enough. Thus, obtaining a policy with good performance
requires the selection of an appropriate exploration rate that
could strike a balance between the exploration and exploita-
tion.

In our scenario, the goal for each WACR is to learn the
pattern of behavior of the jammer and other WACRs in its
vicinity by using the above Q-learning algorithm. Each time,
the WACR will select a sub-band that has a contiguous idle



Q(S[t− 1], a[t− 1])← Q(S[t− 1], a[t− 1]) + α
[
r(S[t− 1], a[t− 1]) + γ max

a
Q(S[t], a)−Q(S[t− 1], a[t− 1])

]
. (4)

bandwidth of at least β. The selected new sub-band must
have low interference for the longest amount of time with
high probability. Once the desired idle bandwidth condition
is violated in the current sub-band due to an interferer or a
jammer, the WACR will select another sub-band according to
the decision policy (6).

V. SIMULATION RESULTS

In this section, we use simulations to evaluate the per-
formance of our proposed MARL based sub-band selection
framework for anti-jamming. We will compare its performance
with a random sub-band selection scheme in which all sub-
bands are selected with equal probabilities. As our perfor-
mance metric, we use the normalized accumulated reward,
defined as

RT =
1

T

T∑
t=1

rt(St, at), (7)

where rt(St, at) represents the immediate reward of taking
action at when in state St and T is the number of iterations.
Note that, the rewards in (7) are those that achieved after
the convergence of the Q-table. In all simulation cases, the
currently occupied sub-band is excluded form the decision
making choices.

Fig. 6. Test case 1: Two WACRs operate in the spectrum range 2.0 GHz to
2.2 GHz. The jammer sweeps this 200MHz wide spectrum from low to high
frequency.

In our simulations we considered 2 test cases. The first case
assumes two WACRs and a sweeping jammer as shown in
Fig. 6. The operating frequency band is taken to be from 2.0
to 2.2 GHz. This gives a total of 5 sub-bands each with a
bandwidth of 40 MHz. In the second case, we assume three
WACRs besides the sweeping jammer as shown in Fig. 7. The
spectrum of interest in this case is taken to be from 2.0 to 2.4
GHz. This gives 10 sub-bands each with a bandwidth of 40
MHz. In both cases, the WACRs and the jammer are arranged
randomly. For any 2 units, having a short distance in-between,
implies that the transmission of one will be received by the
other with a high signal strength causing high interference
impact if both are operating on the same sub-band. We have

Fig. 7. Test case 2: Three WACRs operate in the spectrum range 2.0 GHz to
2.4 GHz. The jammer sweeps this 400MHz wide spectrum from low to high
frequency.

used a continuous signal that sweeps the spectrum of interest
from the lower to the higher frequency as the jammer. For
simplicity, we have set the jammer to sweep a single sub-band
within each sensing duration of 0.25 msec.

Initially, the Q-learning parameters are set to be γ = 0.9,
α = 0.4 and ε = 0.8. Once the Q-table is considered to be
converged, we reduced the learning rate and the exploration
rate to α = 0.1 and ε = 0.01, respectively.

Figure 8 shows the normalized accumulated reward
achieved by the first and second WACR (WACR1 and
WACR2) with the proposed MARL based policy (6) and
random action policy in test case 1. Note that, since there
are 5 available sub-bands, the maximum immediate reward
possible in this case is 1 msec. For example, assume that the
transmission of a WACR in the 3rd sub-band is interrupted by
a jammer. If it is the only transmitter in the system, then the
WACR should choose sub-band 2 in order to avoid the jammer
for the longest possible amount of time [12]. In this case, the
jammer will spend 1 msec to sweep over 4 sub-bands until
it reaches the sub-band 2 again. However, if we consider the
interference caused by the transmission from other WACRs, it
could affect the above maximum possible reward. From Fig. 8,
the performance of the MARL policy lies somewhere between
75% to 90% of the above maximum possible reward of 1
msec. On the other hand, the random selection policy achieves
only about 60% of the above maximum possible performance.
Indeed, with random sub-band selection, a WACR could
receive a reward of 0.25, 0.5, 0.75, or 1 msec, resulting in an
average reward of 0.6 msec. These results show that the MARL
policy can indeed provide noticeably better performance than
simply selecting random sub-bands.

Next, we apply our proposed MARL anti-jamming algo-
rithm to the second test case in which there are 3 WACRs
operating over 10 sub-bands. In this case, the maximum



Fig. 8. Test case 1: Normalized accumulated reward of WACR1 and WACR2.

Fig. 9. Test case 2: Normalized accumulated reward of WACR1.

possible reward for a single WACR should be 2.25 msec since
there are 10 sub-bands in the system. Figure 9 compares the
performance of the first WACR (WACR1) with MARL and
random selection policies in the test case 2. From Fig. 9 we
observe that the proposed MARL policy can achieve about
73% of the above mentioned maximum possible performance
while the random selection policy can achieve only about 48%.
Clearly, these results show that the proposed MARL based
sub-band selection policy can be an effective cognitive anti-
jamming and interference avoidance protocol.

VI. CONCLUSION

In this paper we have proposed a multi-agent reinforcement
learning (MARL) algorithm, based on Q-learning, for WACRs
to avoid a sweeping jammer signal as well as unintentional
interference from other WACRs. Moreover, we have developed
a new definition for the sub-band spectrum state to reduce

the computational complexity of learning a decision policy.
When the WACR’s transmission faces interference, it switches
to a new spectrum sub-band that will lead to the longest
possible uninterrupted transmission as learned through Q-
learning. Simulation results showed that the proposed MARL
anti-jamming protocol can provide a substantial improvement
over the random sub-band selection policy.

ACKNOWLEDGMENT

This work was funded in part by the Air Force Research
Laboratory, Space Vehicles Directorate, under grants FA9453-
15-1-0314 and FA9453-16-1-0052 and in part by a subcontract
under the NASA STTR Phase I contract NNX15CC80P. The
authors would like to thank the Communications & Intelligent
Systems Division at NASA GRC for useful discussions.

REFERENCES

[1] S. K. Jayaweera,“Signal Processing for Cognitive Radio,” John Wiley &
Sons, Hoboken, NJ, USA. ISBN: 978-1-118-82493-1, 2014.

[2] J. Mitola III and G. Q. Maguire, Jr., “Cognitive radio: making software
radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp.
13-18, Aug. 1999.

[3] R. Di Pietro and G. Oligeri, “Jamming mitigation in cognitive radio
networks,” IEEE Network, vol. 27, no. 3, pp. 10-15, May/June 2013.

[4] A. Sampath, H. Dai, H. Zheng and B. Y. Zhao, “Multi-channel jamming
attacks using cognitive radios,” Proc. of 16th International Conference on
Computer Communications and Networks (ICCCN 2007), Honolulu, HI,
USA, pp. 352-357, Aug. 2007.

[5] M. Bkassiny, Y. Li and S. K. Jayaweera, “A survey on machine-learning
techniques in cognitive radios,” IEEE Communications Surveys and
Tutorials, vol. 15, no. 3, pp. 1136-1159. Third Quarter 2013

[6] K.-L. A. Yau, P. Komisarczuk, and P. D. Teal, “Applications of rein-
forcement learning to cognitive radio networks,” in IEEE International
Conference on Communications Workshops (ICC), 2010, Cape Town,
South Africa, pp. 1-6, May 2010.

[7] H. Li, “Multi-agent Q-Learning of Channel Selection in Multi-user
Cognitive Radio Systems A Two by Two Case,” in IEEE Conference on
System, Man and Cybernetics, San Antonio, Texas, USA, pp. 1893-1898,
Oct. 2009.

[8] H. Li, “Multi-agent Q-Iearning for competitive spectrum access in cogni-
tive radio systems,” in IEEE Fifth Workshop on Networking Technologies
for Software Defined Radio Networks, Boston, MA, USA, June 2010.

[9] S. Singh and A. Trivedi, “Anti-jamming in cognitive radio networks using
reinforcement learning algorithms,” in 2012 Ninth International Con-
ference on Wireless and Optical Communications Networks (WOCN),
Indore, India, pp. 1-5, Sep. 2012.

[10] B. Wang, Y. Wu, K. R. Liu, and T. C. Clancy, “An anti-jamming stochas-
tic game for cognitive radio networks,” IEEE J. Sel. Areas Commun., vol.
29, no. 4, pp. 877-889, 2011.

[11] B. F. Lo and I. F. Akyildiz,“Multiagent jamming-resilient control channel
game for cognitive radio ad hoc networks,” in Proc. IEEE ICC, London,
UK, June 2012.

[12] S. Machuzak and S. K. Jayaweera,“Reinforcement learning based anti-
jamming with wideband autonomous cognitive radios,” IEEE/CIC In-
ternational Conference on Communications in China (ICCC), Chengdu
China, July 2016.

[13] Y. Li, S. K. Jayaweera, M. Bkassiny, and C. Ghosh, “Learning-aided sub-
band selection algorithms for spectrum sensing in wide-band cognitive
radios,” IEEE Trans. on wireless communications, vol. 13, no. 4, pp.
2012-2024, April 2014.

[14] M. A. Aref, S. Machuzak, S. K. Jayaweera and S. Lane, “Replicated
Q-learning based sub-band selection for wideband spectrum sensing in
cognitive radio,” IEEE/CIC International Conference on Communications
in China (ICCC), Chengdu China, July 2016.

[15] Z. Shen, A. Papasakellariou, J. Montojo, D. Gerstenberger, and F. Xu,
“Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless
communications,” IEEE Commun. Mag., vol. 50, pp. 122-130, Feb. 2012.

[16] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduc-
tion,” MIT Press, 1998.


