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Abstract—This paper proposes a new cognitive anti-jamming
stochastic game model for multi-agent environments in which
each wideband autonomous cognitive radio (WACR) attempts to
predict and evade the transmissions of other radios as well as
a dynamic jammer signal. The cognitive framework is divided
into two operations: sensing and transmission. Each is helped
by its own learning algorithm based on Q-learning. It is shown,
through both analysis and simulations, that the proposed cogni-
tive anti-jamming technique has low computational complexity
and significantly outperforms non-cognitive sub-band selection
policy.

Index Terms—Anti-jamming, multi-agent reinforcement learn-
ing, Q-learning, stochastic game, wideband autonomous cognitive
radios.

I. INTRODUCTION

Wideband autonomous cognitive radios (WACRs) can be
useful in many applications including, for example, aerospace,
military and consumer wireless communications [1]. A com-
mon situation in which WACRs can be a great asset is when
malicious users launch jamming attacks to disrupt the reliable
communications. In practice, there could be multiple WACRs
simultaneously operating over the same spectrum band of
interest, producing a complicated multi-agent environment. In
this case, each WACR needs to avoid the jammer as well
as transmissions of other WACRs. In this context, stochastic
games can be exploited as a stochastic tool to model the
WACR decision-making problem in the presence of both
jamming and interference. A WACR may use multi-agent
reinforcement learning (MARL) to solve the stochastic game
and learn an optimal, or near-optimal, policy to keep its
communication link unjammed [1], [2].

MARL has been adopted in the literature [3], [4] for anti-
jamming communications in cognitive radio (CR) networks.
In [3], a MARL algorithm based on Minimax-Q learning was
proposed to find anti-jamming policies for secondary users
(SUs) in multi-channel CR systems. There the CR and the
jammer were treated as two equally knowledgeable learning
agents. One of the drawbacks of the proposed algorithm in
[3] is that it assumed perfect sensing. In [4], the authors
formulated the competition for open spectrum access as a
competitive mobile network game by dividing the network into
two sub-networks: the ally network and the enemy network.
The objective of each network was to achieve the maximum
spectrum utilization while jamming the opponent transmission
as much as possible. Thus, each network integrated anti
jamming and jamming games to jointly solve for an optimal

strategy. Several MARL techniques were proposed in [4],
including Minimax-Q, Nash-Q and Friend-or-Foe Q-learning.

In this paper we address the cognitive anti-jamming problem
in a multi-agent environment that is modeled as a general-
sum stochastic game. The objective of this paper is two-fold:
First, introduce new state, action and reward definitions for
the proposed stochastic game. Second, obtain optimal, or near-
optimal, anti-jamming and interference avoidance policies for
each WACR using reinforcement learning (RL). The proposed
RL algorithm is based on standard Q-learning algorithm.
Although Q-learning is a single-agent learning algorithm, it
is often applied in multi-agent problems due to simplicity [5].
One of the most interesting aspects of this work is that we
introduce novel state, action and reward definitions that enable
the WACR to switch its operating sub-band before getting
jammed, compared to previously proposed anti-jamming tech-
niques that switch the operating sub-band only after getting
jammed [1].

The paper is structured as follows: First, the system model is
described in Section II. Section III gives an overview of the Q-
learning algorithm. In Section IV, we introduce the proposed
cognitive stochastic game for anti-jamming and interference
avoidance. The simulation results are presented in Section V.
Finally, concluding remarks are given in Section VI.

II. SYSTEM MODEL

The wideband spectrum of interest is considered as made of
Nb sub-bands with equal bandwidth [6]. Assume M WACRs
operating over the Nb sub-bands and challenged by a single
jammer as shown in Fig. 1. Each WACR is considered a player
in a stochastic game. The game includes a set of states and
a collection of action sets denoted by S and A1, · · · ,AM ,
respectively. At each stage of the game, all players have to
execute an action. The game moves from its current state to
a new (random) state with transition probability determined
by the current state and one action from each player T : S×
A × · · · × AM → PD(S), where PD(S) denotes the set of
probability distributions defined over S.

The objective of this framework is to obtain optimal or sub-
optimal policy that enables each of the WACRs to switch
the operating sub-band before getting jammed while also
avoiding unnecessary transitions. Our framework consists of
two operations: sensing and transmission. Each will have its
own learning algorithm with different targets, but they both
will experience the same RF environment. The objective of

978-1-5386-3988-7/17/$31.00 c©2017 IEEE



Figure 1. M WACRs operate in the same frequency range challenged by a
dynamic jammer.

the sensing operation is to track the jammed sub-bands. On
the other hand, the transmission policy determines when and
where to switch the operating sub-band. Hence, at any time
instant there are two operating sub-bands associated with
a given WACR: one for sensing and one for transmission.
Essentially, if the sensing operation were to learn an optimal
policy, the WACR would be able to accurately predict the
jammed sub-bands. This will help the transmission operation
as follows: if the current operating sub-band is predicted to
be jammed during the next time instant by the sensing policy,
the WACR will switch to another sub-band thereby avoiding
the possibility of getting jammed.

Each sub-band can be in one of two possible states: state
“0” and state “1”. At any given time, if the sub-band is
jammed or faces interference, it is considered to be in state “0”
(not-available). Otherwise, it is considered to be in state “1”
(available). The set of sub-band states can be then given by
V = {0, 1}. For the game state, we choose a simple definition
for both sensing and transmission operations, where ss[n] ∈ S

and st[n] ∈ S represent the index of selected sub-bands for
sensing and transmission, respectively, at time n. Hence, the
number of possible states for each process is Nb, where Nb is
the total number of sub-bands.

At any time instant, the state of operating sub-bands for both
sensing and transmission (the value of v ∈ V for sub-band
index s ∈ S) has to be identified. During sensing operation,
the WARC will perform spectral activity detection to detect
any active signals in the sensed sub-band and hence identify
whether the sub-band is available or not [6], [1]. During
transmission operation, the link quality will determine if
transmission over the current operating sub-band is acceptable.
After determining the states of both operating sub-bands, the
WACR will select and execute actions for both operations.
We define actions as[n] and at[n] as the new indices of
the new operating sub-bands for sensing and transmission,
respectively, at time n. The action space can thus be defined
as A = {1, · · · , Nb}.

The objective of this stochastic game is to find the optimal
or sub-optimal policies for WACRs to predict and avoid
jamming attacks as well as interference from other radios.
The players in this game are the WACRs, in which they

are competing to maximize their rewards for 2 different
operations: sensing and transmission.

III. Q-LEARNING-AIDED COGNITIVE ANTI-JAMMING
ALGORITHM

The basic idea of the Q-learning algorithm is to maintain
a table that contains what are called Q-values denoted by
Q(s, a) representing a measure of goodness of taking the
action a when in state s [7]. Based on the game state s ∈ S and
action a ∈ A definitions in the previous section, the dimension
of the Q-tables for both sensing and transmission operations
will be Nb ×Nb.

A summary of the Q-learning-aided proposed cognitive anti-
jamming algorithm is listed in Algorithm 1. At any given time
n, the WACR has to identify the state of the current operating
sub-band (lines 2-3). If the sub-band state is “1” (available),
no further action is required. If the sub-band state is “0” (not-
available), the WACR updates the Q-table, based on a certain
observed reward (lines 4-7), where α ∈ (0, 1) is the learning
rate and γ ∈ [0, 1) is a discount factor. Note that the sub-
band state will be “0” if the sub-band is getting jammed or an
interference signal is present. Once the Q-table is updated, the
WACR selects a new action a′ representing the new operating
sub-band according to line 9. The exploration parameter ε ∈
(0, 1) allows the WACR to switch between selecting the action
characterized by argmax

a∈A

Q(s′, a) or randomly selecting an

action according to function U(A) where U(A) denotes the
uniform distribution over the action set A.

IV. PROPOSED ANTI-JAMMING STOCHASTIC GAME

As mentioned earlier, each WACR performs two operations:
sensing and transmission. Each of these operations has its
own Q-learning algorithm. Thus, there are two Q-tables to be
updated at every iteration. Figure 2 shows both sensing and
transmission operations for a given WACR. In our approach,
the goal for sensing operation is to learn the behavior of

Algorithm 1 Q-learning-aided cognitive anti-jamming com-
munications algorithm

1: Initialize:
α, γ, ε ∈ [0, 1]
Q(s, a)← 0 ∀s ∈ S, ∀a ∈ A

2: for each stage n do
3: Identify the state (v ∈ V) of operating sub-band s
4: if sub-band state v = 0 then
5: Compute reward r for current state s and action a
6: Update Q-value Q(s, a) as follow:
7: Q(s, a)← (1− α)Q(s, a) + α[r + γmax

a
Q(s′, a)]

8: Select new action a′ ∈ A for the new state s′

according to the following:

9: a′ =

argmax
a∈A

Q(s′, a) with probability 1− ε,

∼ U(A) with probability ε,



Figure 2. Proposed cognitive radio operations for sensing and transmission.

jammer and other WACRs in its vicinity by using the Q-
learning. Ideally, the WACR should predict and sense the sub-
band where the jammer or interference signals are located
with the highest probability. For every new selected action
(new sub-band), the WACR computes the time it takes until
the jammer or interference signal arrives, denoted by Ts. The
reward is defined as the negative of this value rs = −Ts.
The actions are selected such that rewards are maximized.
Hence, they are selected corresponding to the shortest time it
takes until the operating sub-band gets jammed. Note, during
sensing operation, the WACR will switch the operating sub-
band if and only if it gets jammed or faces interference.

In the transmission operation, changing the operating sub-
band maybe triggered by two possible conditions. First is if the
transmission is interrupted meaning that the current operating
sub-band is either jammed or facing an interference signal.
This is the most undesirable situation since our objective
is to switch the operating sub-band before getting jammed.
Hence, we assign a reward of rt = −1 for this scenario. The
second condition is when the sensing operation predicts that
the current operating sub-band for transmission will be most
likely getting jammed. The reward for this case is defined as
the time that WACR kept transmitting over the sub-band before
switching to a new one, denoted by rt = Tt. The action is then
selected such that the reward is maximized. Thus, the selected
new sub-band for transmission must have low interference for
the longest amount of time with high probability. In order
to further reduce the probability of getting jammed, we set
a threshold denoted by Tmax such that the transmission time
over a certain sub-band cannot exceed Tmax.

V. SIMULATION RESULTS

In this section, we will compare performance to a non-
cognitive (random) sub-band selection scheme in which all
sub-bands are selected for transmission with equal proba-

Figure 3. Normalized accumulated reward values for test case 1.

Figure 4. Normalized accumulated reward values for test case 2.

bilities. As our performance metric, we use the normalized
accumulated reward, defined as

RN =
1

N

N∑
n=1

rt(st[n], at[n]), (1)

where rt(st[n], at[n]) represents the immediate reward of tak-
ing action at[n] when in state st[n] for transmission operation
and N is the number of iterations. Note that, the rewards in
this case are those that achieved after the convergence of the
Q-table.

Three experiments are considered with different numbers
of WACRs and different numbers of sub-bands. In all ex-
periments a sweeping jammer, that sweeps the spectrum of
interest from the lower to the higher frequency is considered.
Tables I and II summarize the obtained values of normalized
accumulated reward and probability of getting jammed for all
test cases, respectively. The first experiment includes 1 WACR
that operates over 5 sub-bands. The maximum possible reward
in this case should be 4 time steps since there are 5 sub-bands
in the system. Figure 3 shows that the proposed policy achieves



Figure 5. Normalized accumulated reward values for test case 3.

about 97% of the maximum possible reward, while the random
policy achieves only about 62%.

Figure 4 shows the normalized accumulated reward for the
second experiment in which 2 WACRs and 6 sub-bands are
considered. The achieved accumulated reward of the proposed
policy for both WACRs lies somewhere between 70% to
75% of the maximum possible reward. On the other hand,
the random selection policy achieves only about 36% of
the maximum possible performance. From Table II, we may
observe that the proposed algorithm results in a very low
probability of getting jammed, while the random policy has
a 47% of probability of getting jammed. Finally, the third
experiment includes 4 WACRs operating over 16 sub-bands.
From Fig. 5 and Table I, the proposed algorithm achieves
an acceptable normalized accumulated reward value between
58% to 63% of the maximum possible reward. The random
policy on the other hand, achieves in average only 18% of
the maximum possible reward. Moreover, the proposed policy
significantly outperforms the random policy in terms of the

probability of getting jammed as shown in Table II.

VI. CONCLUSION

In this paper we have proposed a novel cognitive anti-
jamming stochastic game based on Q-learning that allows
each WACR to predict and avoid jamming attacks as well
as interference from other radios. Each WACR has to perform
two operations: sensing and transmission. The objective of the
sensing operation is to track the jammed sub-bands. On the
other hand, the transmission operation determines when and
where to switch the operating sub-band. When compared with
random sub-band selection policy, simulation results showed
that the proposed cognitive protocol has a very low probability
of getting jammed and acceptable value for accumulated
reward.
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Table I
NORMALIZED ACCUMULATED REWARD VALUES FOR DIFFERENT SIMULATION SCENARIOS

Test case Scenario Reward upper bound WACR 1 WACR 2 WACR 3 WACR 4 Average
1 1 WACR and 5 sub-bands 4 Proposed:3.8

Random: 2.5
Proposed:3.8
Random: 2.5

2 2 WACRs and 6 sub-bands 4 Proposed:2.8
Random: 1.5

Proposed:3
Random: 1.4

Proposed:2.9
Random: 1.45

3 4 WACR and 16 sub-bands 12 Proposed:7.5
Random: 2.5

Proposed:7.2
Random: 2.2

Proposed:7.5
Random: 2.2

Proposed:7
Random: 1.8

Proposed:7.3
Random: 2.17

Table II
PROBABILITIES OF GETTING JAMMED FOR DIFFERENT SIMULATION SCENARIOS

Test case Scenario WACR 1 WACR 2 WACR 3 WACR 4 Average
1 1 WACR and 5 sub-bands Proposed: 0.86%

Random: 1.8%
Proposed: 0.86%
Random: 1.8%

2 2 WACRs and 6 sub-bands Proposed: 2.6%
Random: 47.2%

Proposed: 2.1%
Random: 48%

Proposed: 2.35%
Random: 47.6%

3 4 WACR and 16 sub-bands Proposed: 6.4%
Random: 64.8%

Proposed: 7.6%
Random: 66.3%

Proposed: 12.4%
Random: 66.3%

Proposed: 12.3%
Random: 72.6%

Proposed: 9.6%
Random: 67.5%


