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Abstract—This paper presents a design of a wideband
autonomous cognitive radio (WACR) for anti-jamming and
interference-avoidance. The proposed system model allows mul-
tiple WACRs to simultaneously operate over the same spectrum
range producing a multi-agent environment. The target of each
radio is to predict and evade a dynamic jammer signal as well as
avoiding transmissions of other WACRs. The proposed cognitive
framework is made of two operations: sensing and transmission.
Each operation is helped by its own learning algorithm based on
Q-learning, but both will be experiencing the same RF environ-
ment. The simulation results indicate that the proposed cognitive
anti-jamming technique has low computational complexity and
significantly outperforms non-cognitive sub-band selection policy
while being sufficiently robust against the impact of sensing
errors.

Index Terms—Anti-jamming, multi-agent reinforcement learn-
ing, Q-learning, stochastic game, wideband autonomous cognitive
radios.

I. INTRODUCTION

Wideband autonomous cognitive radios (WACRs) are radios
that have the ability of self learning and autonomous decision
making. As a result, they can optimally self-reconfigure to
adapt to the user needs and surrounding RF environment in
real-time [1], [2]. The key to such autonomous operation
is the radio’s ability to sense and comprehend its operating
environment. In general, it is desired that the radio can
operate over a wide spectrum range that makes the problem
of sensing all frequencies of interest to the radio in real-
time a challenging problem. However, if this is achieved,
such WACRs may find increasing relevance in aerospace,
military and homeland security applications in addition to
consumer wireless communications. One of the most challeng-
ing security threats in which WACRs can be a great asset is
jamming attacks. Jamming is malicious signal transmissions
generated by an outside source that aims to disrupt the reliable
communications. In practice, however, there may be multiple
WACRs simultaneously operating over the same spectrum
range leading to a multi-agent environment in which each
WACR will need to avoid both malicious jammer as well as the
transmissions of other radios. This scenario may be modeled
as a stochastic game, an extension of Markov Decision Pro-
cesses (MDPs), in which interactions among different agents
is considered [2]. In this context, a WACR may use multi-
agent reinforcement learning (MARL) to solve the stochastic

game by learning an optimal, or near-optimal, policy to keep
its communication link unjammed [2], [3].

MARL has previously been proposed in the literature
[4]−[7] for anti-jamming transmission in cognitive radio (CR)
networks. For instance, the authors in [4] proposed a stochastic
general-sum game for modeling the jammed control chan-
nels. The objective was to obtain an optimal control channel
allocation strategy for CRs to avoid jamming attacks using
Win-or-Learn-Fast (WoLF) principle [8]. The approach in [4]
considered the effect of sensing errors, however it was limited
only to control channels. The authors in [5] used minimax
Q-learning to find anti-jamming policies for secondary users
(SUs) in multi-channel CR systems. The CR and the jammer in
[5] were treated as two equally knowledgeable learning agents.
One of the drawbacks of the proposed algorithms in [5] is that
it also assumed perfect sensing. The authors in [6] formulated
a competing stochastic game by dividing the network into
two sub-networks: the ally network and the enemy network.
The objective of each of the two sub-networks is to achieve
the maximum spectrum utilization while jamming the oppo-
nent transmission as much as possible. Several reinforcement
learning techniques were proposed: Minimax-Q, Nash-Q and
Friend-or-Foe Q-learning. This work was extended in [7] for
the case of time-varying channel rewards. A new algorithm
based on online convex programming was introduced in [7] to
obtain an optimal strategy that achieves the best steady-state
channel rewards.

Most recently, a cognitive anti-jamming stochastic game
model was proposed in [9] to enable a WACR evading a
jammer signal that sweeps across the spectrum of interest
to the radio as well as transmissions of other radios. The
advantage of the proposed model in [9] was that it enables
the WACR to switch its operating sub-band before getting
jammed, compared to previously proposed anti-jamming tech-
niques that switch the operating sub-band only after getting
jammed. Although the performance of the proposed learning
policy was shown to be excellent in [9], the scenario was
simplified. In particular, as with many other previous work,
[9] also assumed perfect sensing. The purpose of this paper
is two-fold: Extend the proposed cognitive framework of [9]
by introducing a new definition of reward functions that may
reduce the probability of getting jammed and examine the
robustness of the proposed technique against sensing errors.



Figure 1. M WACRs operate in the same frequency range challenged by a
dynamic jammer [9].

The rest of the paper is organized as follows: Section II
describes the system model. Section III gives an overview
of the reinforcement learning algorithm. Section IV discusses
the implementation of the proposed cognitive stochastic game
for anti-jamming and interference-avoidance. The simulation
results are provided in Section V. Finally, concluding remarks
are given in Section VI.

II. COGNITIVE RADIO SYSTEM MODEL

The proposed system model includes M WACRs operating
over the same spectrum range and challenged by a dynamic
jammer as shown in Fig. 1 [9]. The spectrum of interest is
divided into Nb sub-bands with equal bandwidth [1]. The
stochastic game formulation includes a set of states and a
collection of action sets denoted by S and A1, · · · ,AM ,
respectively. The players of this game are the WACRs. The
game is played in a sequence of stages. The game moves
from its current state to a new random state with transition
probability determined by the current state and one action
from each player T : S × A × · · · × AM → PD(S). For
simplicity, the state of each spectrum sub-band is assumed to
be constant within a single game stage. The objective is to
obtain optimal, or near-optimal, policy that enables each of
the WACRs to switch the operating sub-band before getting
jammed or interrupted by an interference.

The proposed cognitive framework consists of two opera-
tions: sensing and transmission [9]. Each operation will have
its own learning algorithm with different targets, but they will
be experiencing the same RF environment. The goal of sensing
is to learn the pattern of jammer’s behavior and transmissions
of other radios. On the other hand, the cognitive objective
of the transmission operation is to determine when to switch
the operating sub-band and to where. Thus, at any stage of
the game, there are two sub-bands associated with a given
WACR: one for sensing and one for transmission. Essentially,
if the sensing operation were to learn an optimal policy, the
WACR would be able to accurately predict the jammed or
interfered sub-bands. This will help the transmission operation
as follows: if the current transmission sub-band is predicted to
be jammed during the next time instant, the WACR will switch
to another sub-band and may avoid getting jammed [9].

There is a different game state associated with each opera-
tion: ss[n] ∈ S and st[n] ∈ S represent the indices of sensing
and transmission sub-bands, respectively, at time n. The space
of game states is then given by S = {1, · · · , Nb}. On the other
hand, each sub-band can be in one of two possible states: state

“0” and state “1”. At any given time, if the sub-band is getting
jammed or facing an interference, it is considered in state “0”
(not-available). Otherwise, it is considered to be in state “1”
(available). The set of sub-band states can be then given by
V = {0, 1}. Note the main difference between the two types
of states: the sub-band state v refers to the availability of the
sub-band, while the game state s refers only to the index of
the operating sub-band apart from it is available or not.

The WACR has to detect the state of operating sub-bands
for both sensing and transmission operations. In other word,
it has to detect value of v ∈ V for sub-band index s ∈ S.
For the sensing operation, the WARC can perform spectral
activity detection to detect any active signal in the sensed sub-
band and hence identify the availability of the sub-band [1],
[2]. On the other hand, during transmission operation, the link
quality will determine if transmission over the current sub-
band is acceptable or not. If it was acceptable, the sub-band
is considered available (state “1”) otherwise it is not available
(state “0”). After determining the states of both operating sub-
bands, the WACR will select and execute actions for both
operations. We denote by as[n] and at[n] the new operating
sub-bands (actions) for sensing and transmission, respectively,
at time n. The action space for both processes thus defined as
A = {1, · · · , Nb}.

III. REINFORCEMENT LEARNING APPROACH

Computing an optimal policy for the proposed stochastic
game in section II is complicated due to the computational
complexity and the real-time computation requirements. More-
over, the model parameters are time-varying due to the dy-
namic nature of the wireless environment. As an alternative,
we may use machine learning in which a WACR attempts
to learn an optimal policy instead of computing one. This
will allow the WACR to deal with any time-varying wireless
environments. A particular type of machine learning approach,
called reinforcement learning, could especially be suited when
dealing with MDP and stochastic games [3]. Q-learning is one
of the most widely used reinforcement learning approaches.

Algorithm 1 Q-learning-aided proposed cognitive anti-
jamming approach

1: Initialize:
α, γ, ε ∈ [0, 1]
Q(s, a)← 0 ∀s ∈ S, ∀a ∈ A

2: for each stage n do
3: Identify the state (v ∈ V) of operating sub-band s
4: if sub-band state v = 0 then
5: Compute reward r for current state s and action a
6: Update Q-value Q(s, a) as follow:
7: Q(s, a)← (1− α)Q(s, a) + α[r + γmax

a
Q(s′, a)]

8: Select new action a′ ∈ A for the new state s′

according to the following:

9: a′ =

argmax
a∈A

Q(s′, a) with probability 1− ε,

∼ U(A) with probability ε,
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Figure 2. Proposed cognitive radio operations for sensing and transmission.

Although, Q-learning is a single-agent learning algorithm and
our model is multi-agent, it is a common approach to apply
a single-agent learning algorithm to a multi-agent domain for
simplicity [10]. The advantage of Q-learning is that it does
not require prior knowledge of the operating environment and
is highly adaptive to the state dynamics [11].

The Q-learning algorithm uses a Q-table that contains what
are called the Q-values denoted by Q(s, a) representing a
measure of goodness of taking the action a when in state
s [11]. The number of rows and columns of the Q-table
corresponds to the number of possible states and possible
actions, respectively. Thus, based on the game state s ∈ S and
action a ∈ A definitions in the previous section, the dimension
of the Q-table will be Nb ×Nb.

Algorithm 1 summarizes the Q-learning-aided proposed
cognitive anti-jamming algorithm [9]. At any game stage n, the
WACR has to identify the state v of the current operating sub-
band s (lines 2-3). If the sub-band state is “0” (not-available),
the WACR updates the Q-value Q(s, a) of the current state s
and action a based on a certain observed reward r(s, a) (lines
4-7). On the other hand, if the sub-band state is “1” (available),
the operating sub-band will remain the same without any
changes. We denote by α ∈ (0, 1) the learning rate, while
the parameter γ ∈ [0, 1) represents the discount factor. Once
the Q-table is updated, the WACR chooses a new action a′

that represents the new operating sub-band according to line
9 of Algorithm I.

At any given state, the Q-learning algorithm reinforces
the actions that lead to better rewards. However, unless the
entire Q-table is updated, the Q-learning algorithm may get
trapped in a sub-optimal policy. In order to mitigate this
problem an exploration rate parameter ε ∈ (0, 1) is introduced.
Choosing an appropriate value for exploration rate, the WACR
may switch between selecting the action characterized by
argmax
a∈A

Q(s′, a) or randomly selecting an action according to

U(A) where U(A) denotes the uniform distribution over the
action set A. Note that, selecting a high exploration rate may
help in updating all entries of the Q-table and avoid being
trapped in a sub-optimal policy. On the other hand, a low
exploration rate may help in exploiting an already learned
policy that performs well-enough. Obtaining a policy with
good performance requires the selection of an appropriate
exploration rate that could strike a balance between the ex-
ploration and exploitation.

IV. PROPOSED ANTI-JAMMING STOCHASTIC GAME

In this section, we discuss how to obtain optimal or near-
optimal policy for each WACR in order to predict and avoid
the jammer and the transmissions of each other based on the
stochastic game formulation and the state definition presented
in section II. As mentioned earlier, the cognitive operation
for a given WACR is divided in to two processes: sensing
and transmission. Each process is aided by its own Q-learning
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Figure 3. Test case 1 (1 Jammer, 5 Sub-bands, 1 WACR) with perfect sensing:
Normalized accumulated reward values with proposed method 1 (M1) and
random policy (M4).

algorithm. Thus, there are two Q-tables that need to be updated
at every game stage.

The sensing and transmission operations of a given WACR
is described in Fig. 2. The goal of the sensing operation is to
track the jammer and interference signals. Thus, the WACR
uses the Q-learning algorithm in order to obtain an optimal
policy that always senses the sub-band where the jammer or
interference signals are present. In order to achieve this goal,
the WACR computes the elapsed time until the jammer or
interference signal arrives the newly selected sensing sub-band
(sensing action), denoted by Ts. The reward corresponding to
a sensing action is defined as the negative of this value:

rs = −Ts. (1)

Note that, the WACR will select a new sub-band for sensing
if and only if the current sensing sub-band gets jammed
or faces interference. The actions as ∈ A for the sensing
operation are selected such that rewards are maximized. Thus,
they are selected corresponding to the shortest time it takes
until the operating sub-band gets jammed.

The objective of transmission protocol is to switch the
operating sub-band before getting jammed or facing an inter-
ference. As can be seen from Fig. 2, the operating sub-band for
transmission may be changed under two scenarios [9]: First is
if the transmission is interrupted, implying that the current
operating sub-band is facing either too much interference
or a jamming attack. This is determined by monitoring the
communication link quality. The second condition is when the
sensing operation predicts that the current transmission sub-
band to be the one that will get jammed/interfered in the next
time instant. Since the objective is to switch the operating sub-
band before getting jammed, effective learning must lead to
switching always due to the second condition while avoiding
the first. In order to achieve this objective, the first case is

Figure 4. Test case 2 (1 Jammer, 6 Sub-bands, 2 WACRs) with perfect sensing:
Normalized accumulated reward values with proposed method 1 (M1) and
random policy (M4).

assigned a low reward (high penalty) while the second one is
given relatively higher reward:

rt =

{
f(Tt) if sub-band at gets jammed
Tt otherwise , (2)

where Tt is the transmission duration in sub-band at before
switching to a new one and function f(Tt) represents the
penalty function for the undesirable case. In [9], this penalty
function is given by f(Tt) = −1. In this paper, we define the
penalty function as

f(Tt) = −Nbe−λTt (3)

where λ > 0 is a design parameter that may be optimized
to obtain efficient learning. The action at for transmission
operation is selected such that the reward is maximized.
Thus, the selected new sub-band for transmission must remain
available for the longest amount of time with high probability.

The framework in [9] is further extended by introducing
a feedback branch from transmission operation to sensing as
shown in Fig. 2. As mentioned earlier, the transmission oper-
ation may switch the operating sub-band if the transmission
is interrupted. In such a case the sensing operation would
have a false prediction about the location of the jammer or
interference signal. Thus, the learning process for the sensing
operation may be improved by using a feedback to notify the
sensing operation with the current location of the jammer or
interference signal as determined by the transmission link. A
threshold Tmax is defined, such that the transmission time over
a certain sub-band cannot exceed it. This is an additional safe
guard to improve the probability of getting jammed, especially
in the presence of sensing errors.

V. SIMULATION RESULTS

In this section, we use simulations to evaluate the
performance of our proposed cognitive anti-jamming and
interference-avoidance stochastic game. In the following, we
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Figure 5. Test case 3 (1 Jammer, 12 Sub-bands, 3 WACRs) with perfect
sensing: Normalized accumulated reward values with proposed method 1 (M1)
and random policy (M4).

consider the proposed penalty function f(Tt) with two differ-
ent λ values: λ = 0.2 and λ = 1, defined as proposed method
1 (M1) and proposed method 2 (M2), respectively. In addition,
the proposed algorithm in [9], labeled as method 3 (M3), is
also evaluated for comparison. Finally, a random sub-band
selection policy, defined as method 4 (M4), in which all sub-
bands are selected for transmission with equal probabilities
is considered. We use the normalized accumulated reward

Figure 6. Test case 1 (1 Jammer, 5 Sub-bands, 1 WACR) with perfect sensing:
Normalized accumulated reward values with proposed method 2 (M2) and
random policy (M4).

corresponding to the transmission operation, defined as

RN =
1

N

N∑
n=1

rt(st[n], at[n]), (4)

as our performance metric where rt(st[n], at[n]) represents
the immediate reward of taking action at[n] when in state
st[n] during the transmission operation and N denotes the
number of iterations. Note that, the rewards in this case are

Table I
NORMALIZED ACCUMULATED REWARD VALUES FOR DIFFERENT SIMULATION SCENARIOS WITH PERFECT SENSING

Test case Scenario Reward upper bound WACR 1 WACR 2 WACR 3 Average
1 1 WACR and 5 sub-bands 4 M1: 3.9

M2: 3.9
M3: 3.8
M4: 2.5

M1: 3.9
M2: 3.9
M3: 3.8
M4: 2.5

2 2 WACRs and 6 sub-bands 4 M1: 3.4
M2: 2.9
M3: 2.85
M4: 1.5

M1: 3.8
M2: 3.9
M3: 2.9
M4: 1.5

M1: 3.6
M2: 3.4
M3: 2.87
M4: 1.5

3 3 WACR and 12 sub-bands 9 M1: 7.4
M2: 5.5
M3: 5.3
M4: 2.8

M1: 5.6
M2: 8.7
M3: 5.5
M4: 2.3

M1: 5.2
M2: 5.5
M3: 6.1
M4: 2.8

M1: 6.06
M2: 6.56
M3: 5.63
M4: 2.63

Table II
PROBABILITIES OF GETTING JAMMED FOR DIFFERENT SIMULATION SCENARIOS WITH PERFECT SENSING

Test case Scenario WACR 1 WACR 2 WACR 3 Average
1 1 WACR and 5 sub-bands M1: 0.45%

M2: 0.75%
M3: 0.86%
M4: 1.8%

M1: 0.45%
M2: 0.75%
M3: 0.86%
M4: 1.8%

2 2 WACRs and 6 sub-bands M1: 2.18%
M2: 2.2%
M3: 2.6%
M4: 46%

M1: 1.9%
M2: 2.7%
M3: 2.1%
M4: 42%

M1: 2.04%
M2: 2.45%
M3: 2.35%
M4: 44%

3 3 WACR and 12 sub-bands M1: 6.7%
M2: 9.1%
M3: 8.2%
M4: 51%

M1: 5.9%
M2: 4.4%
M3: 12.9%
M4: 56%

M1: 3.8%
M2: 4.8%
M3: 6.24%
M4: 51%

M1: 5.46%
M2: 6.1%
M3: 9.1%
M4: 52.6%
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Figure 7. Test case 2 (1 Jammer, 6 Sub-bands, 2 WACRs) with perfect sensing:
Normalized accumulated reward values with proposed method 2 (M2) and
random policy (M4).

Figure 8. Test case 3 (1 Jammer, 12 Sub-bands, 3 WACRs) with perfect
sensing: Normalized accumulated reward values with proposed method 2 (M2)
and random policy (M4).

those that achieved after the convergence of the Q-table. In all
simulations, the current operating sub-band is excluded from
the decision making choices for both transmission and sensing
operations.

Three test cases are considered with different numbers of
WACRs and different numbers of sub-bands. Test case 1,
includes 1 WACR and 5 possible operating sub-bands. In test
case 2, there are 2 WACRs and 6 sub-bands. Finally, test case
3, includes 3 WACRs and 12 possible operating sub-bands.

A. Perfect sensing

Tables I and II summarize the obtained values of normalized
accumulated reward and probability of getting jammed for all
test cases with perfect sensing, respectively. Figures 3-5 show
the performance of proposed method 1 for the three different
test cases, respectively. The performance analysis of proposed

Figure 9. Test case 1 (1 Jammer, 5 Sub-bands, 1 WACR) with sensing errors:
Normalized accumulated reward values with proposed method 1 (M1) and
random policy (M4).

Figure 10. Test case 2 (1 Jammer, 6 Sub-bands, 2 WACRs) with sensing
errors: Normalized accumulated reward values with proposed method 1 (M1)
and random policy (M4).

method 2 is shown in Figures 6-8 for the three different test
cases. For test case 1, the maximum possible reward for a
single WACR should be 4 time steps since there are 5 sub-
bands in the system. Figures 3 and 6 show that proposed
methods 1 and 2 achieve about 97% of this maximum possible
reward. As can be seen from Table I, method 3 [9] also
achieves the same reward as that of proposed methods 1 and 2,
while the random policy can achieve only about 62% of the
maximum reward. Figures 4 and 7 show that the achieved
accumulated reward of proposed methods 1 and 2 for test
case 2 lies somewhere between 72% to 97% of the maximum
possible reward. Method 3 [9], on the other hand, achieves
only about 72% of the maximum possible reward as shown
in Table I, while the random policy can achieves only about
37%. From Table II, proposed methods 1 and 2 and method
3 [9] have very low probabilities of getting jammed, while
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Figure 11. Test case 3 (1 Jammer, 12 Sub-bands, 3 WACRs) with sensing
errors: Normalized accumulated reward values with proposed method 1 (M1)
and random policy (M4).

Figure 12. Test case 1 (1 Jammer, 5 Sub-bands, 1 WACR) with sensing errors:
Normalized accumulated reward values with proposed method 2 (M2) and
random policy (M4).

the random policy has a 44% probability of getting jammed.
Similarity, the results of test case 3 show that the proposed
methods and method 3 [9] significantly outperform the random
policy in terms of both jamming probability and accumulated
reward. Moreover, there is a slight improvement in the results
with proposed methods 1 and 2 compared to those with method
3 [9].

B. Effect of sensing errors

Sensing errors such as false-alarm and miss detection can
have a major impact on the performance of the proposed
algorithm. Note that, a false-alarm here corresponds to when
a WACR mistakenly declares the availability of the operating
sub-band. On the other hand, in miss detection case, WACR
incorrectly detects the presence of spectral activity in the
operating sub-band thereby missing the availability of the sub-
band. Figures 9-14 show the normalized accumulated rewards

Figure 13. Test case 2 (1 Jammer, 6 Sub-bands, 2 WACRs) with sensing
errors: Normalized accumulated reward values with proposed method 2 (M2)
and random policy (M4).

Figure 14. Test case 3 (1 Jammer, 12 Sub-bands, 3 WACRs) with sensing
errors: Normalized accumulated reward values with proposed method 2 (M2)
and random policy (M4).

for three different test cases for proposed methods 1 and 2,
respectively, in the presence of sensing errors. In all test cases,
we assumed false-alarm and miss detection probabilities of
0.02. Tables III and IV, respectively, summarize the obtained
normalized accumulated reward and probability of getting
jammed with these sensing errors. These simulation results
show that the proposed methods have significantly improved
the jammed probability in the presence of sensing errors
compared to those with M3 and random policy.

VI. CONCLUSION

In this paper, we addressed the cognitive anti-jamming and
interference-avoidance problem in a multi-agent environment.
The cognitive framework was divided into two operations:
sensing and transmission. Both used reinforcement learning
approach based on Q-learning to obtain an optimal or sub-
optimal policy. The objective of the sensing operation was to
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Table III
NORMALIZED ACCUMULATED REWARD VALUES FOR DIFFERENT SIMULATION SCENARIOS WITH SENSING ERRORS

Test case Scenario Reward upper bound WACR 1 WACR 2 WACR 3 Average
1 1 WACR and 5 sub-bands 4 M1: 3.8

M2: 3.8
M3: 3.5
M4: 1.9

M1: 3.8
M2: 3.8
M3: 3.5
M4: 1.9

2 2 WACRs and 6 sub-bands 4 M1: 3.5
M2: 3.6
M3: 2.7
M4: 1.2

M1: 3.5
M2: 2.6
M3: 2.6
M4: 1.4

M1: 3.5
M2: 3.1
M3: 2.65
M4: 1.3

3 3 WACR and 12 sub-bands 9 M1: 6.3
M2: 4.9
M3: 4.9
M4: 1.9

M1: 5.2
M2: 7.8
M3: 5.2
M4: 1.4

M1: 6.3
M2: 5.5
M3: 4.3
M4: 1.9

M1: 5.93
M2: 6.06
M3: 4.8
M4: 1.73

Table IV
PROBABILITIES OF GETTING JAMMED FOR DIFFERENT SIMULATION SCENARIOS WITH SENSING ERRORS

Test case Scenario WACR 1 WACR 2 WACR 3 Average
1 1 WACR and 5 sub-bands M1: 2.8%

M2: 2.9%
M3: 3.8%
M4: 8.1%

M1: 2.8%
M2: 2.9%
M3: 3.8%
M4: 8.1%

2 2 WACRs and 6 sub-bands M1: 10%
M2: 8.7%
M3: 8.1%
M4: 51%

M1: 10.5%
M2: 9.9%
M3: 13.1%
M4: 47%

M1: 10.25%
M2: 9.3%
M3: 10.6%
M4: 49%

3 3 WACR and 12 sub-bands M1: 19.7%
M2: 19.9%
M3: 21.6%
M4: 60%

M1: 15.9%
M2: 21.3%
M3: 28.9%
M4: 68%

M1: 18.2%
M2: 26.5%
M3: 26.5%
M4: 63%

M1: 17.93%
M2: 22.56%
M3: 25.6%
M4: 63.3%

track the jammed sub-bands while the goal of the transmission
operation was to switch the operating sub-band just before it
is jammed. The simulation results showed that the proposed
cognitive algorithm has a considerably low probability of
getting jammed while maintaining reasonable accumulated
reward values even under the impact of sensing errors.
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