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Abstract—Signal detection in low-SNR environments is par-
ticularly important to the rapidly growing cognitive radio tech-
nology. Previous authors have developed detection methods by
examining the ratio of the maximum and minimum eigenvalues of
the sample covariance matrix. The distribution of this eigenvalue
ratio under the null hypothesis is estimated using results from
random matrix theory (RMT) to obtain a detection threshold for
a Neyman-Pearson test. However, in order to apply asymptotic
laws from RMT, the data matrix used to construct the sample
covariance matrix must have statistically independent columns,
which was not satisfied by test statistics proposed earlier in the
literature. This paper considers the case of a data matrix with
independent columns to form the test statistic for maximum-
minimum eigenvalue (MME) detection, then compares the results
with the test statistic as currently defined in literature. The
comparison is made with both the semi-asymptotic threshold,
which uses the limiting distribution of the maximum eigenvalue
and the asymptotic constant to which the minimum eigenvalue
converges, as well as the limiting distribution-based threshold,
which uses the limiting distribution of the ratio of the maximum
and minimum eigenvalues. Simulations compare the expected
false alarm rate versus actual false alarm rate, as well as
the receiver operating characteristic (ROC) for the following
three cases: comparing the two test statistics with the semi-
asymptotic threshold, comparing the two test statistics with the
limiting distribution threshold, and comparing the two thresholds
in conjunction with the newly proposed test statistic. Results
demonstrate that the newly proposed test statistic with the
limiting distribution threshold is the only case where the actual
false alarm rate remains consistently below the false alarm
constraint set in the Neyman-Pearson test.

I. INTRODUCTION

A critical issue in modern communications is efficient
spectrum utilization. Under the standard licensing paradigm,
only licensed users may access allotted spectrum bands; any
duration of time where the licensed user is not using the band
is wasted bandwidth. Spectrum sharing is vital in avoiding
spectrum waste when spectrum demand grows exponentially.
Under spectrum sharing, secondary users are granted access
to spectrum bands unused by the primary user and must cede
usage of a band when it recognizes that a primary user has
started transmission. As such, the spectrum becomes much
more dynamic. Cognitive radio technology is used to learn
and adapt to the dynamics of a desired section of spectrum [1].

A cognitive radio senses and updates its knowledge about the
spectrum based on whether or not it can detect a signal present
in the sensed channel or sub-band [2]. Thus, a secondary user
utilizing cognitive radio techniques must be able to properly
detect signals in order to create an accurate model of the
spectrum dynamics and operate effectively.

Detection theory has produced a host of methods to detect
a noisy signal. However, in many spectrum sensing situations,
there is little to no a priori information about the signal or the
noise power. In a low-SNR environment, the signal becomes
even more difficult to detect. Often, detection algorithms for
low-SNR environments tend to leverage the characteristic dif-
ferences between noise and signals. In particular, maximum-
minimum eigenvalue (MME) detection as proposed in [3]
utilizes recent findings in random matrix theory (RMT) to
characterize the limiting behavior of the eigenvalues of a
random matrix to generate a detection threshold.

The detection threshold in [3] is derived with the assumption
that the test statistic is formed from a data matrix whose
columns are independent and identically distributed (i.i.d.), but
such is not the case for the data matrix as currently defined.
In this paper, a new test statistic is defined which satisfies
this assumption, and it is tested (via simulation) against the
previously defined test statistic using the same threshold.
While cognitive radio can greatly benefit from improvements
to MME detection, these results are also applicable to other
fields that draw from detection and estimation theory.

The structure of the paper is as follows: in Section II, the
MME test statistic and threshold from [3] are summarized and
explained. In Section III, the new test statistic is defined and
tested using expected results from RMT. In Section IV, the
impact of asymptotic estimation of the minimum eigenvalue
is considered for both test statistics, and an additional MME
threshold from [4] is defined. The simulations are described
in Section V, with accompanying plots of the results. Section
VI contains the concluding remarks.

II. PROBLEM FORMULATION AND DEFINITIONS

For a system with a single transmitter and a single receiver,
the MME detection scheme proposed in [3] produces an



L×L sample covariance matrix R̂ from N received samples
x(1) . . . x(N) as follows:

R̂ ,
1

N

N+L−1∑
n=L

xnx
†
n (1)

where xn ,
[
x(n) x(n− 1) . . . x(n− L+ 1)

]>
,

x(i) = 0 when i > N , and (·)† denotes the transpose or
Hermitian transpose, depending on whether the elements of
the matrix in question are real or complex, respectively.

The formulation of R̂ in (1) can also be written in terms of
an L×N data matrix X:

R̂ =
1

N
XX† (2)

where we let

X ,
[
xL xL+1 . . . xN+L−1

]
. (3)

The MME detection algorithm leverages the distribution of R̂
under the null hypothesis H0, corresponding to the received
samples consisting of only noise. It is well-known that, if the
noise is white and Gaussian, then under H0, R̂, as defined
in (2) will have a Wishart distribution [5], whose spectral
characteristics can be used to derive a detection threshold. In
particular, the approach of [3] uses the following theorems
regarding the limiting distribution and asymptotic values for
the maximum and minimum eigenvalues:

Theorem 1a. Assume the following:
• The L × L sample covariance matrix R̂ has a Wishart

distribution with N degrees of freedom (i.e., the data
matrix X is L × N ) and scale matrix σ2IL, where IL
is the L× L identity matrix.

• L and N increase such that

lim
N→∞

L

N
= y

where y is a constant that satisfies 0 < y < 1.
Let λmax be the maximum eigenvalue of R̂. Then

lim
N→∞

λmax = σ2

N

(√
L+
√
N
)2

[6].

Theorem 1b. Given the same criteria as Theorem 1a, let

µ =
(√

L+
√
N
)2

, and ν =
(√

L+
√
N
)(

1√
L

+ 1√
N

) 1
3

.

Then the probability distribution of 1
ν

(
N
σ2λmax − µ

)
converges

to the Tracy-Widom distribution [7] (of order 1, if the elements
of X are real, or of order 2, if the elements of X are complex),
with probability one [8].

Theorem 2a. Given the same criteria as Theorem
1a, let λmin be the minimum eigenvalue of R̂. Then

lim
N→∞

λmax = σ2

N

(√
L−
√
N
)2

[6].

Theorem 2b. Given the same criteria as Theorem 1a, let

µ′ =
(√

L−
√
N
)2

, and ν′ =
(√

L−
√
N
)(

1√
L
− 1√

N

) 1
3

.

Then the distribution of 1
ν′

(
N
σ2λmin − µ′

)
converges to the

Tracy-Widom distribution (of order 1, if the elements of X
are real, or of order 2, if the elements of X are complex),
with probability one [9].

Based on Theorems 1b and 2a, the following Neyman-
Pearson detection threshold was derived [3]:

γsa =

(√
N +

√
L√

N −
√
L

)2

×1 +

(√
N +

√
L
)− 2

3

(NL)
1
6

F−1β (1− Pfa)


(4)

where F−1β (·) is the inverse cumulative density function
(CDF) of the Tracy-Widom distribution of order β, and
Pfa is the probability of false alarm constraint on the
Neyman-Pearson detector. This threshold will be referred
to as the semi-asymptotic MME threshold since it replaces
the minimum eigenvalue with its asymptotic value given
by Theorem 2a while using the limiting distribution of the
maximum eigenvalue from Theorem 1b.

III. PROPOSED NEW TEST STATISTIC

It is known that for R̂ to follow a Wishart distribution, the
columns of X must be i.i.d. [5]. According to the definition
of the columns in (1), however, any two adjacent columns
overlap by L − 1 entries. Hence, the columns of X are not
independent, and therefore, as currently defined, R̂ does not
have a Wishart distribution. The incorrect assumption that R̂
has a Wishart distribution may have a negative impact on the
expected performance of the MME detector.

We then define a new data matrix X′ and sample covariance
matrix R̂′ as follows:

X′ ,
[
xL x2L . . . xPL

]
,

(5)

and
R̂′ ,

1

P
X′(X′)†

=
1

P

P∑
n=1

xnLx
†
nL

(6)

where P = N
L is assumed to be an integer. Any two columns

of X are statistically independent when the number of columns
between them is at least L (i.e. E

{
xmx†n

}
= 0L when

|m−n| ≥ L, where 0L is the L×L zero matrix). Effectively,
X′ is formed from every L-th column of X to ensure that
all columns are independent. Note that for MME detection
to function as expected, N and L must be chosen such that
P ≥ L. This ensures that R̂′ is full-rank with probability one
[10], which implies that λmin > 0 with probability one, and
the test statistic is well-defined. Thus, N and L should be
selected such that N ≥ L2. Furthermore, when applying the
results of RMT to R̂′ (i.e. the theorems in this paper and the



derived threshold in (4)), substitute all references to N with
P .

Figure 1 illustrates the results of a simulation under two
scenarios: when the columns of the data matrix overlap as
in (1), and when the columns are independent as in (6). For
each case, real samples were used. The empirical distribution
of the maximum eigenvalue of the sample covariance matrix
was computed, then scaled using the parameters µ and ν in
Theorem 1b. As a reference, the Tracy-Widom distribution of
order 1 is also plotted. The results show that when using in-
dependent columns as proposed above, the scaled distribution
of the maximum eigenvalue indeed converges to the Tracy-
Widom distribution of order 1, as predicted by Theorem 1b.
However, from Fig. 1, it is also clear that when using the
overlapping columns as in [3], the scaled distribution does not
converge to the Tracy-Widom distribution of order 1.

Fig. 1. Empirical distributions of the maximum eigenvalue for N
L

= 10
and varying values of L, scaled using µ and ν from Theorem 1b, for 25,000
runs. The cases of independent columns (R̂′) and overlapping columns (R̂)
are presented, along with the Tracy-Widom distribution of order 1. The
scaled distribution in the case of independent columns seems to converge
to the Tracy-Widom distribution. The scaled distribution in the case of the
overlapping columns has a similar shape, but does not converge in mean
or variance to the Tracy-Widom distribution using the scaling factors from
Theorem 1b.

IV. THRESHOLD ANALYSIS

Observe that the threshold used in (4) depends on the
estimate of the minimum eigenvalue as its asymptotic value,
as defined in Theorem 2a. Consider the mean-squared error of
this estimate:

MSE = E
{(

λmin − λ̂min

)2}
(7)

where λmin is the empirical minimum eigenvalue and λ̂min is
the asymptotic value of the minimum eigenvalue as given in
Theorem 2a. The MSE is estimated by using Monte Carlo
simulation and calculating the sample mean of the squared
error between the minimum eigenvalue and the estimate. The
ratio N

L = 100 is kept constant for each simulation. The cases

of the minimum eigenvalue of R̂ and R̂′ are simulated, and the
results are illustrated in Fig. 2. As expected, in the independent
columns case, the mean-squared error of the estimate goes
to zero as L increases, but the error is not negligible for
smaller values of L. Meanwhile, in the case of the overlapping
columns, the MSE does not converge to zero.

Fig. 2. Mean-squared error of using the asymptotic value for the minimum
eigenvalue in Theorem 2a as an estimate for the minimum eigenvalue, for a
constant N

L
= 100. The estimate was made using a Monte Carlo simulation

for 10,000 runs. As Theorem 2a suggests, the error goes to 0 as L increases
in the case where X has independent columns. However, the complexity of
computing the eigenvalues of R̂ increases on the order of approximately
O(L3), so there is a notable trade-off between complexity and estimation
error.

An alternative detection threshold has been derived in [4]
using the limiting distribution of λmin from Theorem 2b:

γld = F−1T (1− Pfa) (8)

where F−1T (·) is the inverse CDF corresponding to the limiting
distribution of the eigenvalue ratio. This is defined as

fT (t) = I{t>1}

∫ ∞
0

xfλmax(tx)fλmin(x) dx (9)

where I{·} is the indicator function, and fλmax(·) and fλmin(·)
are the Tracy-Widom distribution appropriately scaled using
the factors from Theorem 1b and 2b to represent the limit-
ing distributions of the maximum and minimum eigenvalues,
respectively. These scaled distributions are defined as

fλmax(z) =
1

ν
fβ

(
z − µ
ν

)
(10)

and
fλmin(z) = − 1

ν′
fβ

(
z − µ′

ν′

)
(11)

where fβ(·) is the PDF of the Tracy-Widom distribution whose
order corresponds to whether the received samples are real



(order 1) or complex (order 2). The threshold in (8) will hereon
be referred to as the limiting distribution threshold.

V. SIMULATIONS

The detector performance was measured using two metrics:
actual false alarm rate versus expected false alarm rate (i.e.,
the parameter Pfa used in threshold calculation), and the com-
plement of the receiver operating characteristic (ROC) curve.
Performance was estimated using Monte Carlo simulation,
for 25,000 runs. For all simulations, real samples were used,
L = 20, and N = 4000 (therefore, P = 200). Consider the
following cases:

Case Test Statistic Threshold

1 λmax
λmin

of R̂ Semi-asymptotic

2 λmax
λmin

of R̂′ Semi-asymptotic

3 λmax
λmin

of R̂ Limiting distribution

4 λmax
λmin

of R̂′ Limiting distribution

Fig. 3. The expected false alarm rate (Pfa) versus the actual false alarm rate
(P̄fa) for Cases 1 and 2. In both cases, there are values of P̄fa which exceed the
constraint, but in Case 1, it may exceed the constraint by orders of magnitude.
Thus, the Neyman-Pearson test in Case 1 may be highly inaccurate.

For each simulation, three results are compared for the two
cases under test. First, the expected false alarm rate (Pfa,
or the parameter used to define the Neyman-Pearson test) is
compared to the empirical false alarm rate, denoted as P̄fa. If
P̄fa > Pfa, then the detection probability as a function of false
alarm rate (i.e., the ROC) does not provide an accurate as-
sessment of the detection scheme. Second, the complementary
ROC curves are plotted, comparing the missed detection rate
(1 − P̄D) to Pfa. Such curves are often used to characterize
a detection scheme, but if P̄fa exceeds the constraint, then

these curves again may be deceiving. Therefore, the third
result plots 1 − P̄D against P̄fa to give a better idea of how
the complementary ROC curves would look if the detection
scheme used a theoretical threshold in conjunction with the test
statistic such that P̄fa = Pfa. Thus, this result offers insight as
to the best-case detection performance for a given test statistic
or threshold, as well as a desired Pfa.

The first simulation compares Cases 1 and 2 in order to
test the newly proposed test statistic against the previously
defined test statistic of [3], while using the semi-asymptotic
threshold. The results of this simulation are shown in Figs.
3 and 5. Note that in Case 1, for Pfa < 0.2, P̄fa > Pfa,
sometimes by multiple orders of magnitude (Fig. 3). Thus,
upon examining Figs. 5a-b, although P̄D of Case 1 is higher
than that of Case 2 for a given Pfa, this comes at the cost
of a much higher P̄fa than that with Case 2. Figures 5c-d
demonstrate that, if an ideal threshold is applied with each test
statistic, then the overlapping columns case would still have a
higher P̄D for a given Pfa than the independent columns case.
It is known that detection probability increases for a given
Pfa as the number of columns of the data matrix increases
[3]. As there are N = 4000 columns in Case 1, while there
are only P = 200 columns in Case 2, these results are
consistent with the literature. However, since the columns are
not independent in Case 1, the derivation of an ideal threshold
for the overlapping columns case will be more complex than
the thresholds derived for the independent columns case.

Fig. 4. Pfa versus P̄fa for Cases 3 and 4. Much like the first simulation, P̄fa
may greatly exceed the constraint, meaning the test may not be accurate in
Case 3. For Case 4, P̄fa remains within the constraint for all Pfa.

Cases 3 and 4 were tested in the second simulation. The
purpose was to verify that the same conclusions can also be
drawn when the limiting distribution threshold is used. Figures
4 and 6 display the results. Indeed, the results appear to be
similar to those of the first simulation. Namely, Case 3 has
a P̄fa higher than Pfa for low values of Pfa (Fig. 4), and this



(a) (b)

(c) (d)

Fig. 5. a) Complementary ROC curves for Case 1. b) Complementary ROC curves for Case 2. c) 1 − P̄D as a function of P̄fa for Case 1. d) 1 − P̄D as a
function of P̄fa for Case 2. Comparing Figs. 5a and 5b, Case 1 exhibits a higher detection rate than Case 2 because the false alarm rate is also much higher.
In the second pair of plots, Case 1 still exhibits a higher detection probability than Case 2, likely because the test statistic in Case 1 is formed from a sample
covariance matrix averaged over more data columns than Case 2.

results in a higher detection rate for Case 3 than for Case 4
(Figs. 6a-b). Furthermore, when comparing 1 − PD and P̄fa
for both cases, Case 3 also has a higher detection rate than
Case 4 (Figs. 6c-d). Therefore, the results observed from these
simulations are not conditional on which MME threshold is
used.

The third simulation compares Cases 2 and 4, in order to test
the semi-asymptotic threshold versus the limiting distribution
threshold when using the independent columns. Figures 7 and
8 record the results of this simulation. From Fig. 7, it is seen
that for Case 2, P̄fa > Pfa for Pfa < 0.015, while for Case
4, P̄fa remains reliably within the constraint. Therefore, for
Neyman-Pearson tests that require the false alarm rate to be

bound below a given value, the limiting distribution threshold
is desirable over the semi-asymptotic threshold. The comple-
mentary ROC curves in Fig. 8 demonstrate that for a given Pfa,
there is a trade-off between the semi-asymptotic threshold and
the limiting distribution threshold at Pfa ≈ 0.05. Thus, when
Pfa lies between 0.015 and 0.05, the semi-asymptotic threshold
exhibits higher detection rates than the limiting distribution
threshold, but when Pfa > 0.05, then the limiting distribution
threshold has a higher P̄D.

VI. CONCLUSION

MME detection, as initally conceived, defines its test statis-
tic in a way that does not exactly agree with the derived



(a) (b)

(c) (d)

Fig. 6. a) Complementary ROC curves for Case 3. b) Complementary ROC curves for Case 4. c) 1 − P̄D as a function of P̄fa for Case 3. d) 1 − P̄D as
a function of P̄fa for Case 4. The same conclusions from the first simulation also apply here; therefore, the impact of using independent columns instead of
overlapping columns is independent of which threshold is used.

threshold: the constructed sample covariance matrix R̂ will
not have a Wishart distribution under the null hypothesis,
as was assumed. As a result, the true false alarm rate may
greatly exceed the desired false alarm rate, as seen in Figs. 3
and 4. A remedy is to redefine the sample covariance matrix
so that no samples are repeated across columns of the data
matrix. The trade-off is that for a fixed number of collected
samples and a fixed smoothing rate L, the data matrix will
have fewer columns, leading to a lower detection rate. Figs.
5c-d and 6c-d demonstrate this trade-off. It should be noted
that in recent contributions to MME detection, the L×N data
matrix used for the test statistic is constructed by concatenating
N samples collected from L individual receivers [11]. In this
case, the test statistic is distributed as originally derived, but

the general derivation in [3] must be modified to guarantee
that the columns of the data matrix are independent.

The methods of using independent columns versus overlap-
ping columns are somewhat analogous to Bartlett’s method
versus Welch’s method of calculating the periodogram [12],
respectively. Each column of the data matrix is similar to the
periodogram window. Bartlett’s method uses non-overlapping
windows to calculate the periodogram, while Welch’s method
uses a sliding-window approach, allowing for window-to-
window overlap of the data. One of the benefits of using
Welch’s method is that it averages over more windows given
the same amount of data, which is analogous to having more
columns in the data matrix used for MME detection. There-
fore, there may be merit to using overlapping columns when



Fig. 7. Pfa versus P̄fa for Cases 2 and 4. When Pfa is less than approximately
0.015, then P̄fa exceeds the constraint for Case 4. Meanwhile, Case 4 remains
within the constraint for all Pfa.

using MME detection. However, the spectral characteristics
of the Wishart distribution are no longer valid in deriving a
threshold. Indeed, the correlation across columns may lead
to a rather complicated derivation for the distribution of the
eigenvalues in the overlapping columns case, although it may
be possible to simplify the derivation by using an a shifted
gamma distribution as an approximation [13].

Furthermore, it has been shown in Figs. 7-8 that when
using the newly proposed test statistic, the limiting distribution
threshold results in an empirical false alarm rate within the
constraint set by the test, while the semi-asymptotic distribu-
tion exceeds this constraint for Pfa < 0.015. For Pfa < 0.05,
the semi-asymptotic threshold has a higher detection rate
than the limiting distribution threshold, while the opposite is
true for Pfa > 0.05. Therefore, when using the test statistic
proposed in this paper, the preferred choice of threshold
depends on the values of the test parameters.
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Fig. 8. a) Complementary ROC curves for Case 2. b) Complementary ROC
curves for Case 4. There is a trade-off in performance between the two
thresholds, dependent on the selected value of Pfa. Case 2 has a higher
detection probability than Case 4 for Pfa < 0.05, while Case 4 has the
higher detection probability for Pfa > 0.05.


