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Abstract—Cyclostationary detection was shown to be a promis-
ing technique for signal detection and identification in cognitive
radios (CRs). In the presence of multiple transmitted signals,
however, the corresponding cyclic frequencies become superposed
in the cyclic profile, making it impractical to identify the cyclic
features of each signal. To address this issue, we propose a spec-
trum sensing technique based on blind source separation (BSS)
which separates the active sources using independent component
analysis (ICA) before estimating the cyclic frequencies. The
source separation performance is enhanced by applying an adap-
tive noise cancelling (ANC) filter to the received signals. Cyclic
profiles with improved estimation accuracy are then obtained
by computing cyclic profiles of each source signal separately.
We evaluate the source separation performance of the combined
ANC-ICA technique and show its superior performance, com-
pared to other alternative source separation techniques.

Index Terms—Adaptive noise cancelling, blind source sepa-
ration, cognitive radio, cyclostationary detection, independent
component analysis, spectrum sensing.

I. INTRODUCTION

Cyclostationary detection has been used as a signal identi-
fication method in spectrum sensing and cognitive radio (CR)
applications [1]–[3]. This technique can extract the underlying
cyclic frequencies of the received signals, allowing to identify
the radio frequency (RF) signature of the detected signals
based on their symbol rates, coding rates and carrier frequen-
cies [1]. By exploiting such cyclic frequency information, a
CR can classify the received signals into different categories
and obtain an RF mapping of the surrounding electromagnetic
environment [4].

In recent literature, most of the cyclostationary detection
methods assume a single received signal having certain un-
derlying cyclic features [2]. In spectrum sensing applications,
however, a CR may be sensing multiple signals within the
frequency band of interest. In this case, the received signal
will consist of a superposition of multiple signals transmitted
from different sources. It can be easily shown that the cyclic
frequencies of the detected signals will be superposed in the
cyclic profile, making it impractical to accurately identify the
cyclic features of each signal [3]. To address this issue, the
authors in [5] proposed a spatial filtering method to separate

the sources prior to computing the spectral correlation function
(SCF) of the cyclostationary detector. This source separation
method uses a sensing antenna array to separate multiple
signals based on their angle of arrival [5]. However, this
spatial filtering approach may not be practical, in general.
First, the spatial filtering method can only separate sources
having different angles of arrivals, which may not be a real-
istic assumption in wireless propagation environments where
multiple signals could be reflected from the same surface. In
addition, this method may not be applicable to CR networks
in which distributed sensing nodes may be cooperating to
sense the primary signals at multiple locations, which makes it
harder to have a common reference angle for the direction of
arrivals. Hence, in this paper, we present a source separation
approach that depends only on the signal characteristics, but
not on their propagation media.

Several source separation techniques have been recently pro-
posed for blind spectrum sensing. For example, principal com-
ponent analysis (PCA) was used for spectrum sensing based
on eigenvalue decomposition [6]. However, the PCA method
assumes that the sensed signals have a Gaussian distribution,
which is an unrealistic assumption for communications signals.
On the other hand, a cyclostationary detection algorithm was
proposed in [3] to separate the cyclic frequencies of multiple
signals using filtering. This method, however, does not allow
separating multiple signals that are transmitted simultaneously
at the same frequency.

In order to address these issues, we propose a spectrum
sensing architecture that separates the superposed sources
using independent component analysis (ICA) by exploiting in-
formation about statistical independence, rather than spatial or
frequency characteristics of the source signals [7]. Unlike the
Gaussian assumption in PCA [6], the statistical independence
among information sources is a more realistic assumption.
Using this statistical separation criterion, it becomes possible
to separate multiple sources having the same angle of arrival
or the same carrier frequency, which may not be possible in
[3], [5].

We note that, most ICA algorithms assume a noise-free



model [7], [8]. In our case, hence, in order to account for the
presence of noise at the CR receivers, we apply an adaptive
noise cancelling (ANC) filter to minimize the noise power
in the received signals, prior to applying the ICA algorithm
[9], [10]. The ANC filter parameters can be computed using
the least mean squares (LMS) algorithm to obtain a minimum
mean-square-error (MMSE) estimate of the signals of interest.
This algorithm is suitable for non-stationary signals since it
allows to continuously update the filter parameters over time
[11]. We evaluate the separation performance of the ICA
algorithm in combination with the ANC method, and show that
the ICA can achieve a better separation performance for wire-
less signals, compared to the U-WEDGE source separation
algorithm which is based on approximate joint diagonalization
(AJD) methods [12].

The remainder of this paper is organized as follows: In
Sections II and III, we present an overview of cyclostationary
processes and ICA, respectively. We present the system model
in Section IV. The ANC and ICA algorithms are presented
in Sections V and VI, respectively. Simulation results are
presented in Section VII and we conclude the paper in Section
VIII.

II. OVERVIEW OF CYCLOSTATIONARY PROCESSES

A process x(t) is said to be second-order cyclostationary
in the wide sense if its mean E{x(t)} and autocorrelation
function (ACF) Rx(t, τ) , E{x∗(t)x(t+τ)} are periodic with
a certain period T0 [1]. In this case, the ACF can be expressed
as a Fourier Series expansion with Fourier Series coefficients
Rα

x(τ) such that:

Rα
x(τ) =

1

T0

∫ T0/2

−T0/2

Rx(t, τ)e
−j2παtdt, (1)

where {α = n
T0

: n ∈ Z} are the cyclic frequencies and Rα
x(τ)

is the CAF [1].
A cyclostationary process can be characterized in the spec-

tral domain by its SCF Sα
x (f) which is defined as the Fourier

Transform of Rα
x(τ) with respect to τ such that:

Sα
x (f) =

∫ ∞

−∞
Rα

x(τ)e
−j2πfτdτ . (2)

A normalized version of the SCF is obtained using the
autocoherence function magnitude which is defined as [1]:

|Cα
x (f)| =

|Sα
x (f)|√

S0
x(f + α/2)S0

x(f − α/2)
. (3)

The cyclic profile Ix(α) is thus defined for each cyclic
frequency α by maximizing the autocoherence function over
the spectral frequencies such that:

Ix(α) = max
f
|Cα

x (f)| . (4)

The cyclic profile is commonly used to estimate the cyclic
frequencies of the detected signals. However, in the case of
multiple superposed signals, the cyclic frequency components
become superposed in the cyclic profile, which makes it

impractical to determine the cyclic features of each transmitted
signal. Therefore, it becomes necessary to separate the source
signals before computing their corresponding cyclic profiles.
For this, [5] has proposed to separate the signals using spatial
filtering. As we mentioned earlier, this method does not
allow the separation of signals having the same direction of
arrival and is not suitable for distributed spectrum sensing
in which multiple nodes may be sensing the primary signals
cooperatively. Therefore, we propose a more realistic approach
to separate the sensed signals based only on their statistical
characteristics. The proposed blind separation approach is
based on the ICA, as we discuss in the following section.

III. BLIND SOURCE SEPARATION USING ICA

The problem of source separation arises in several signal
processing, acoustic and biomedical applications in which
an array of signal detectors is used to separate multiple
superposed signals [7], [13]. If the received signals are formed
as a linear combination of the transmitted signals using an
unknown mixing matrix, the sources can be estimated by using
certain properties about their statistical characteristics, as in
PCA and ICA [6], [7]. The PCA assumes that the sources are
Gaussian and separates the sources using eigenvalue decom-
position [6]. This method, however, is not suitable for source
separation in communications systems where the sources
cannot be simply modeled as Gaussian random processes.
Another approach was proposed for blind source separation
(BSS) using ICA by assuming mutual independence among
the sources [7]. This method, however, can be considered a
more realistic assumption for communications signals since it
does not impose any further assumption beyond independence
on the source statistics. The only assumption in ICA, however,
is that the sources should not be Gaussian (except for at most
one source signal), which is a valid assumption in our case.

The source separation approach based on ICA relies on the
fact that any linear combination of multiple independent non-
Gaussian sources tends to be closer to a Gaussian distribu-
tion, compared to the original source signals [7]. Using this
property, the ICA algorithm then allows to decompose the
observed data into multiple components such that to minimize
Gaussianity of each component, thus making each component
similar to one of the independent source signals [7].

IV. SYSTEM MODEL

In this paper, we assume a set of M transmitting sources
{s1[k], · · · , sM [k]}, where si[k] ∈ C is the complex baseband-
equivalent signal of the i-th source at the k-th time sample. In
vector form, we let s[k] , [s1[k], · · · , sM [k]]

T to denote the
combination of the M sources. Our signal detector consists of
an array of N ≥M receiving antennas such that:

x̃[k] = As[k] + n[k], for k = 0, · · · ,K − 1 (5)

where A is an N × M complex Gaussian matrix repre-
senting the channel coefficients (Rayleigh fading), x̃[k] ,
[x̃1[k], · · · , x̃N [k]]

T denotes the received vector at the N
receiving antennas, n[k] is a wide sense stationary (WSS)
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Fig. 1. System Model.

complex Gaussian noise vector and K > 0 is the number
of samples. Note that, the model in (5) represents a slow-
fading channel model in which the matrix A is assumed to be
constant during each sensing duration KTs, where Ts denotes
the sampling period.

Our objective is to separate the source signals {s1, · · · , sM}
and estimate their corresponding cyclic frequencies. In BSS
framework, however, the noise term n[k] is usually omitted
[7], [14], which may cause performance degradation if the
actual system deviates from the noise-free model. A more
general model for ICA was formulated in [15] to include the
additive noise case. However, this generalized model requires
higher computational complexity and prior knowledge on
distributions of the signals, which may not be available in
blind spectrum sensing applications. Therefore, we resort to
a more practical approach to reduce the impact of additive
noise on the ICA algorithm by using adaptive filtering. The
adaptive filtering approach is based on the ANC method
that was formulated in [9] to minimize the noise power in
the received signal. This approach has several advantages in
blind spectrum sensing since it does not require any prior
knowledge about the sources or noise characteristics and can
automatically adapt to the time-varying conditions of the
wireless medium [9]. This makes it suitable for autonomous
CR systems operating in noisy dynamic wireless environments
[3]. A block diagram of the proposed sensing architecture
is shown in Fig. 1, representing the different stages of this
multiple-signal cyclostationary detection approach.

V. ADAPTIVE NOISE CANCELLING

The ANC method will be applied, in parallel, to the in-
phase and quadrature components of the N complex baseband
signals at each receiving antenna, as shown in Fig. 1. For
simplicity of notation, in this section we let x̃[k] ∈ R, k =
0, · · · ,K − 1, to be the in-phase (or quadrature) component
of the received signal at a given antenna. This signal can
be represented in general form as a combination of a signal
component s0[k] and a noise component n0[k] such that1:

x̃[k] = s0[k] + n0[k]. (6)

In this case, s0[k] is equivalent to a linear combination of the
transmitted sources weighted by the corresponding channel

1Note that, s0[k] and n0[k] are uncorrelated.

coefficients, as in (5). A second sensor provides a noise signal
n1[k] uncorrelated with the source signal s0[k], but correlated
in some unknown way with the noise n0[k] [9]. In practice, the
reference noise signal n1[k] can be obtained from one or more
sensors located in the noise field where the signal is weak or
undetectable [9]. In our case, n1[k] may be obtained using
directed antennas that are not facing the transmitting sources.
This noise signal n1[k] is then filtered to provide an output r[k]
that is as close as possible to the noise term n0[k]. This output
r[k] is then subtracted from the noisy signal x̃[k] to provide
an estimate for s0[k], as described in the section below [9],
[11].

A. Least Mean Squares (LMS) algorithm for ANC

In this section, we present an LMS algorithm to obtain an
MMSE estimate of the signal s0[k]. This approach is based
on an adaptive filtering method where we define wi[k] (i =
0, · · · , L− 1) to be the weights of the discrete adaptive filter
impulse response at time k, where L > 0 is the filter length
[9]. The filter wi[k] is applied to the reference noise signal
n1[k] in order to generate an output r[k] that is as close as
possible to the noise signal n0[k]. The output r[k] is defined
as:

r[k] =

L−1∑
i=0

wi[k]n1[k − i]. (7)

We define the signal e[k] to be the difference between the
received signal x̃[k] and the filtered noise signal r[k] such
that:

e[k] , x̃[k]− r[k]. (8)

The signal e[k] is then considered as an estimate of the
noise-free component s0[k]. By using the LMS algorithm, the
adaptive filter weights wi[k] can be estimated recursively as:

wi[k + 1] = wi[k]− µ
∂e2[k]

∂wi
, for i = 0, · · · , L− 1 (9)

wi[k + 1] = wi[k] + ηe[k]n1[k − i] (10)

where η = 2µ and µ > 0 is a positive parameter that controls
the stability and convergence rate [9]. Upon convergence, the
signal e[k] will provide an MMSE estimate for s0[k], which
will be used in the subsequent source separation stage2.

2Note that, similar to x̃[k], e[k] represents the in-phase (or quadrature)
component of a given signal xi[k] in the block diagram in Fig. 1.



VI. THE ICA ALGORITHM

Once the received signal x̃[k] is filtered using ANC, the
filtered signal, denoted as x[k] , [x1[k], · · · , xN [k]]

T , can be
approximated as a linear combination of the sources such that:

x = As, (11)

where we drop the time index k from both x and s vectors for
simplicity of notation. The components of the source vector s
can be estimated by projecting the received signal x into a set
of vectors {v1, · · · ,vN} such that the projections yi = vH

i x,
for i = 1, · · · , N , are as independent as possible [7], [16].
The independence is measured using such measures as mutual
information, which is usually approximated using cumulants
[16]. However, since this approach usually results in non-
robust contrast functions, the author in [16] proposed a family
of robust contrast functions of the form:

JG(v) = E{G(|vHx|2)}, (12)

where G is a smooth even function and E{|vHx|2} = 1.
Note that, if G(y) = y2, then JG(v) = E{|vHx|4} becomes
equivalent to the kurtosis of vHx, which reflects its Gaussian-
ity measure. Note that, the elements of x are more Gaussian,
compared to the elements of s since they are formed by a linear
combination of independent non-Gaussian random variables.
By maximizing JG(vi), we reduce the Gaussianity of the
projection elements yi = vH

i x, thus obtaining an estimate
of the original independent components si.

The independent components can then be obtained by
maximizing the N one-unit contrast functions, which can be
formulated as follows [16]:

(v1, · · · ,vN ) = arg max
v1,··· ,vN

N∑
j=1

JG(vj) (13)

such that E
{
(vH

k x)(vH
j x)∗

}
= δjk (14)

where δjk is the Kronecker delta function. The independent
components are then obtained as yi = vH

i x.
A fixed-point algorithm based on the Newton’s method was

proposed in [16] to obtain the optimal solution of (13). This
algorithm is summarized in Algorithm 1.

VII. SIMULATION RESULTS

In this section, we analyze the effect of noise cancelling
on the ICA-based source separation performance. We assume
a set of M transmitting BPSK sources and N = M re-
ceivers. The signals are transmitted over a Rayleigh fading
channel with additive white Gaussian noise. The ANC filter
is assumed to have a length L = 3. After applying the
LMS-based ANC algorithm (with η = 0.01) to each source,
we apply the ICA algorithm to separate the signals at the
receiver side. For performance evaluation, we compute the
correlation coefficients between each separated signal yi[k]
(i = 1, · · · , N ) and a reference signal corresponding to one of
the sources. These correlation coefficients are defined as cij =
1
K

∑K−1
k=0 yi[k]s

∗
j [k] for i = 1, · · · , N and j = 1, · · · , N . If

Algorithm 1 Fixed-point Iteration Algorithm for ICA
Apply data whitening to the complex signal x[k] (as in [8]).
Initialize a set of arbitrary vectors {v1, · · · ,vN}.
while v1 has not converged do

v1 ← E
{
x(vH

1 x)∗g(|vH
1 x|2)

}
−

E
{
g(|vH

1 x|2) + |vH
1 x|2g′(|vH

1 x|2)
}
v1

Normalization: v1 ← v1

∥v1∥ .
end while
for i = 2, · · · , N do

while vi has not converged do
vi ← E

{
x(vH

i x)∗g(|vH
i x|2)

}
−

E
{
g(|vH

i x|2) + |vH
i x|2g′(|vH

i x|2)
}
vi

Normalization: vi ← vi

∥vi∥ .
Gram-Schmidt decorrelation to avoid identical max-
ima: vi ← vi −

∑i−1
j=1 vjv

H
j vi

Re-normalization: vi ← vi

∥vi∥ .
end while

end for
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Fig. 2. Comparison between the probability of correct signal separation using
ICA and U-WEDGE algorithms [12].

cij > λ (where λ is the decision threshold), then the j-th
source is detected at the output yi[k] of the source separation
module. A correct separation is declared if all the sources
are detected such that at most one distinct source is detected
at each output yi[k]. Using this performance measure, we
evaluate the probability of correct source separation with or
without ANC. As shown in Fig. 2, ANC can greatly improve
the BSS performance especially at low SNR. In addition,
by comparing the ICA algorithm to the U-WEDGE source
separation algorithm that was proposed by [12], we show that
ICA achieves a better separation performance (with or without
ANC).

In the next part, we verify the overall accuracy of this
joint ICA-BSS-based cyclostationary detection method. We
assume three independent BPSK source signals transmitted
simultaneously at respective frequencies 10MHz, 10MHz
and 30MHz with respective data rates 2Mbps, 5Mbps and
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rates of the three sources.

10Mbps. Note that, we let two signals to be transmitted
simultaneously at the same frequency to verify the source
separation ability in the presence of frequency overlap. The
signals are transmitted over a Rayleigh channel with AWGN
noise with an SNR of 5dB. After applying noise cancelling
and BSS, we plot the magnitude spectra of the three separated
signals y1[k], y2[k] and y3[k] in Fig. 3. This plot shows clearly
the correct separation of these digital signals at the output
of the ICA-BSS module. Once the signals are separated, we
evaluate the cyclic profiles Iyn

(α), n = 1, · · · , 3 of the three
signals. The cyclic profiles are shown in Fig. 4, where the
cyclic peaks are observed at integer multiples of the symbol
rate of each signal, as expected in cyclostationary detection
[1].

VIII. CONCLUSION

In this paper, we have proposed a system architecture for
multiple-signal cyclostationary detection using a joint ANC-
BSS method. We have presented an LMS algorithm for ANC
in order to reduce the noise in the received signals. We have
shown that the combined ANC-BSS method outperforms the
commonly used ICA-based BSS in the presence of noise.
We have also shown, through simulations, the accuracy of
the overall cyclostationary detection method in estimating
the cyclic frequency components of each source signal. The
proposed ANC-BSS approach may be extended in the future
to consider more challenging detection environments, such as
multipath fading channels.
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