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Abstract—Cognitive radio technology is proposed as a means
to achieve real-time spectrum situational awareness (SSA) and
signals intelligence (SIGNIT) over a wide spectrum range by
designing a cognitive engine that performs machine-learning
based hierarchical RF signal identification. This allows the radio
to classify and associate a signal using as fewer a number of
features as possible. The classification algorithms can be based on
any suitably chosen machine-learning algorithm such as artificial
neural networks (ANNs) or deep learning. The proposed design
allows the user to define, and modify, the SSA parameters during
field operations. The specific example design proposed in this
paper allows these definitions to be based on two levels of signal
classification: a broad type of signals such as communications
or radar and specific signals within each of these classes. It is
shown that not only the proposed cognitive engine design allows
realizing a large number of SSA definitions using permutations of
the same two stage classifiers, but also the hierarchical approach
may outperform dedicated classifiers with similar computational
complexity. The design can easily be generalized to handle more
than two levels of signal classification.

Index Terms—Cognitive radios, machine learning, signal clas-
sification, signal identification, signal intelligence, spectrum situ-
ational awareness, wideband autonomous cognitive radios.

I. INTRODUCTION

The proliferation of wireless telecommunications that pro-
vide seamless anywhere, anytime and anyhow connectivity has
made spectrum awareness and agility essential radio capabil-
ities, as more and more radios are expected to co-exist in
heterogeneous spectrum environments (consisting of radios be-
longing to multiple distinct systems/networks). There is also an
increasing demand for signals intelligence (SIGINT) that goes
beyond traditional requirements that can be termed collectively
as spectrum situational awareness (SSA). For example, the
Advanced RF Mapping (RadioMap) project launched by the
US Defense Advanced Research Projects Agency (DARPA)
seeks real-time SSA in complex environments to provide a
spectrum usage map to war-fighters enabling better planning
and allocation of the spectrum [1], [2]. Indeed, successful
communications in congested and contested spectrum environ-
ments requires the ability to infer the status of the RF spectrum
in real-time and reconfigure the communications mode in
response. A prime candidate to enable such spectrum-aware
and agile communications is the cognitive radio technology
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In our earlier work [3], [6], [7], we proposed wideband
autonomous cognitive radios (WACRs) that can self-configure
the mode of operation in response to the given state of the
overall system made of the radio, spectrum and the end-
user. The unique feature of all cognitive radios is their ability
to observe and infer the state of RF spectrum. In the case
of WACRs, this includes not only detecting signals but the
ability to fully characterize the spectrum of interest to the
radio in real-time [3]. As a result, our previously proposed
WACRSs is an ideal technology to achieve advanced SIGINT
and SSA. The key is the proper design of a cognitive engine to
infer desired spectrum events/conditions, reconfigure in real-
time both the RF and baseband hardware used for spectrum
sensing, allow real-time modifications to parameters defining
SSA and have the cognitive decision-making ability to provide
situational awareness.

The literature on SSA is scattered over various aspects
of the problem. A probabilistic reasoning model for SSA is
introduced in [8]. For example, the SSA objective of [9] is
to classify primary user (PU) behavioral patterns in a dy-
namic spectrum sharing (DSS) environment so that cognitive a
secondary user (SU) can achieve achieve high throughput by
efficiently avoiding PU interference. On the other hand, [§]
introduces a probabilistic reasoning model for SSA by using
Bayesian networks to represent the propagation environment
and enables parameter estimation in uncertain environments
such as path loss, transmitted power, and path distance. The
authors in [10] address yet another aspect of SSA by propos-
ing a 3D immersion based helical visualization for SIGINT
analysis that can manage complex data.

In this paper we consider a problem that is of interest in
many applications of SIGINT and SSA: the ability to discrim-
inate and identify signals. In many wireless communications
scenarios, there is a need to classify signals encountered in
the RF environment. However, simple classification of signals
may not be adequate for providing situational awareness. It is
important that the radio can identify the origin of the signals
and determine whether a particular signal is of inferest to it at
any given time. This requires the ability to not only classify
signals, but also to identify and make real-time decisions
based on this knowledge. What signals are of interest at any
given time is determined by the parameters defining the SSA
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Figure 1. The basic architecture of a wide-band autonomous cognitive radio.

problem. It is desirable that these are modifiable in real-time.

We propose a cognitive engine design to provide SSA
specifically addressing the above problem. The proposed cog-
nitive engine design is based on a hierarchical architecture that
uses machine-learning algorithms to classify signals followed
by decision-making algorithms to provide situational aware-
ness. It is a scalable architecture that lends itself to handle
complex signal environments spanning a wide spectrum range.
Although this paper does not delve in to details of how to
achieve real-time spectrum awareness over a wide spectrum
range, in the next section we will briefly outline how the
proposed cognitive engine design can support such wideband
operation [3].

The rest of the paper is organized as follows: In Section II
we give a concise introduction to WACRs. Next, in Section
IIT we detail the proposed cognitive engine design to achieve
SSA through machine learning based hierarchical RF signal
identification. In Section IV we briefly discuss a hierarchical
signal classification framework to serve as the classification
engine in the proposed RF signal identification system. Section
V provides examples to highlight the value and flexibility of
the proposed CE design in achieving RF SSA. In Section VI
we will conclude the paper by discussing main challenges that
needs to be addressed in future research to fully develop the
proposed cognitive engine.

II. WIDEBAND AUTONOMOUS COGNITIVE RADIO SYSTEM
MODEL

Figure 1 shows the concept of WACRs, as envisioned in [3],
[6]. It is made of a reconfigurable RF front-end, a software-
defined radio baseband module and a cognitive engine. The
cognitive engine acts as the brain of the WACR by managing
the overall cognitive and intelligent operation of the radio.

The cognitive processing of the radio, performed within
the cognitive engine, is divided in to two parts, as shown in
Fig. 1: spectrum knowledge acquisition and cognitive com-
munications protocols. Spectrum knowledge acquisition deals
with gaining knowledge and comprehension about the states
of the RF environment, network, radio and the user [3]. This
knowledge allows the radio to make decisions on how best to

achieve its communications and SSA objectives. The cognitive
communications protocols take this knowledge as an input
to decide and act in order to achieve user communications
objectives. This module is responsible for issuing instructions
to both the SDR and the RF front-end on how to reconfigure
their modes of operations and parameters in response to
the interpreted states of the RF environment, radio network,
WACR itself and user. Both communications and sensing RF
front-ends shown in Fig. 1 can, in general, be controlled this
way to achieve real-time reconfigurability.

III. PROPOSED COGNITIVE ENGINE FOR SSA THROUGH
MACHINE-LEARNING BASED HIERARCHICAL RF SIGNAL
IDENTIFICATION

Following [3], let us assume that spectrum of interest to the
WACR is segmented in to a set of [V, sub-bands. Spectrum
sensing to detect signal activities is a staple in cognitive radio
applications [5]. Broader interpretations of cognitive radio
technology have also considered classifying those detected
signals. The SSA and SIGINT problems, however, require
even more cognitive processing. For concreteness, let us
assume a general class of SSA problems in which decisions
are to be made to determine whether a detected signal is
what the radio will consider to be of interest. This can be
thought of as simply a two-class classifier: important vs.
unimportant. However, what signals are deemed important
can vary depending on the context: In one situation, radar
signals may considered to be the signals of interest while in
another situation it may be communications signals. In yet
another situation, it may be that specifically pulsed radars
are of interest. For instance, we may desire to determine
whether an adversary is attempting to detect our presence
and we may have advance knowledge that the type of radar
the adversary may be using is a pulsed radar. Things may
get even more complicated if any modulated continuous-wave
signals are to be considered important since this can include
some communications as well as some radar and/or GPS
signals. This last situation highlights the inadequacy of simply
designing a set of dedicated RF signal classifiers for each one
of these possibilities, if we are to support SSA: At best, it is
inefficient to design a cognitive engine that has been trained
to classify for all possible combinations of signal classes.

Our proposed solution to the SSA problem, as shown in
Fig. 2, is to decouple the signal classification from signal
identification and, in general, from SSA decision-making.
Several basic classification engines are provided, organized
in a hierarchial architecture, whose outputs can be combined
in various ways to achieve complex decision-making logic
functions. In addition, the outputs of these basic classifiers
can be either soft or hard outputs. In the following, we also
propose a simple approach to compute the soft outputs.

The basic classification engines can be selected based on the
application context. For example, in Fig. 2 we have shown a
cognitive engine architecture for SSA made of two levels of
basic classification engines: Stage I and Stage II classifiers.
According to the assumed decision-making logic, the Stage |
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Figure 2. Proposed hierarchical RF signal classification and identification
system for spectrum situational awareness.

classification is used to make the signal identification decisions
if current SSA decisions can indeed be based on this level of
classification output. If not, the WACR will proceed to Stage
II classification. However, rather than just a hard classification
label, Stage I of our proposed hierarchical classifier will pro-
duce a soft output that will indicate the confidence level (CL)
associated with this decision. As an example, this confidence
level can be a measure related to posterior probability.

The proposed hierarchical architecture in Fig. 2 can indeed
be used to provide a more efficient and effective solution to
the above example SSA problem of determining whether a
detected signal is of interest according to the current SSA
objectives that may be modified in real-time. We design the
Stage I classifier in Fig. 2 to separate signals in to broader
types whereas the Stage II classifiers are to determine exact
signal origin through detailed classification within each of the
broader classes assumed in Stage 1. Specifically, we use the
first level of classification (stage I classification) to determine
whether a particular signal is a radar or a communications
signal. The Stage II classification determines exactly which
type of communications (e.g. LTE/A, WiFi or a satellite
communications signal) or radar (e.g. pulsed, continuous-
wave, moving-target indicator, pulse-Doppler) signal it is.

Of course, the objective of the proposed system is not
merely to classify signals: Decisions are also to be made on
whether a particular signal, or signals, is of interest. As already
pointed out, the criteria for determining what is of interest
will depend on the application scenario. The proposed design
allows the radio to define this based on the context: operating
spectrum band, user needs/inputs and application scenario.
Once the signals of interest are defined, the radio will use
its database and learned-knowledge to select and configure
the classification engines as well as the final decision-logic
functions as described below.

As shown in Fig. 2, the confidence-level associated with the
first stage decisions, along with the decision-making logic, will
trigger which type of classification is to be performed during

Stage II: A global classification or local classification. For
example, suppose that the signals of interest for current SSA
are the continuous radar signals. If the Stage I classification is
provided with a confidence-level exceeding a certain threshold,
then the Stage II classification can be a local classification:
i.e. if Stage I determined with high confidence that the signal
is a radar signal, then the Stage II will only attempt to
classify the signal in to one of many possible radar signal
types (e.g. pulsed, continuous-wave, moving-target indicator,
pulse-Doppler). It will not re-consider the signal as a possible
communications signal in Stage II classification process. On
the other hand, when confidence-level associated with Stage
I decisions are relatively low, Stage II classification can be
a global classification that will attempt to classify the signal
among a large set of possible classes representing signals of
various different types such as communications and radar.
Essentially, global classification may ignore Stage I outputs.

On the other hand, if the signals of interest according to the
current SSA objective are radar signals, then the goal of the
classification is to be able to classify in to two classes: radar
or communications. In this case, if Stage I confidence level
of signal being a radar is above a certain threshold, then the
stage I output can directly be the final output. If it is below the
threshold, then Stage II global classification will be invoked
and if the signal is classified in to any of the radar types then
the final output will be to declare a radar signal.

The proposed cognitive engine operates in two possible
modes: training and real-time. As shown in Fig. 2, during the
training mode, cognitive engine is provided with sets of data
with associated labels so that basic classification engines can
learn to classify as described above. It is important to note
that, by only training a set of local classifiers and a single
global classifier, the proposed design drastically reduces the
need for training a large number of different classifiers. Even
in the relatively simpler example of SSA decisions based on
two levels of classification, the number of all combinatorial
possibilities lead to an exponential number of classifiers which
is clearly not desirable. The proposed design, on the other
hand, allows any of these exponential number of combinations
to be computed in real-time using the decision-making module
that is based on the individual classifier outputs.

The final SSA output is provided by the SSA decision-
making module shown on Fig. 2. Decision-making algorithms
can be implemented to derive the required SSA based on the
Stage I and II classifier outputs. As a simple example, suppose
that the final classifier outputs are hard outputs and the SSA
definition of an important signal is any modulated continuous-
wave signal. In this case, a decision logic module will infer
this based on either the local or global classifier output in Stage
II. In general, however, it is possible to use soft outputs from
the classifiers to obtain posterior densities that may support
more refined SSA definitions.

In Section V below, we will specifically focus on two SSA
decision-making objectives (Of course, the decision-making
logic module considered in this paper can be replaced with
a suitable design to handle more complex SIGINT and SSA
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Figure 3. Multi-stage hierarchical signal classification.

definitions):

1) SSA decision problem #1: The signals of interest are
the radar signals, so that the goal of the classification
is to be able to classify in to two classes: radar or
communications.

2) SSA decision problem #2: The signals of interest are the
pulsed radar signals.

IV. MACHINE-LEARNING BASED HIERARCHICAL RF
SIGNAL CLASSIFICATION

Signal classification within each stage of the proposed
cognitive engine can itself be composed of several stages
as originally proposed in [3]. The basic idea in multi-stage
classification, as shown in Fig. 3, is to classify signals with a
minimum number of features. For example, consider the local
classification module of Stage II. This involves classification
of a signal in to a specific class within the type of signals it was
classified during the Stage I. Suppose that Stage I classification
result was that the signal is a communications signal. Then,
the goal of local classification module of Stage II is to identify
which type of a communications signal it is.

As shown in Fig. 3, our multi-stage hierarchical signal
classification framework will first attempt to associate the
signal with a particular communications signal class using a
simple set of features (as determined by the context). If this
cannot be achieved with a required level of confidence, the
WACR will try signal classification by including additional set
of features. This process will continue until either the signal
is associated with a particular communications signal class
with the required minimum level of confidence or all available
features are exhausted, in which case an identification failure
can be reported to the signal identification module. Due to
space, in this paper we do not delve in to details of how to
handle such situations but refer the interested reader to [3] for
a more comprehensive discussion.

There is a large body of literature on the problem of signal
classification. As we have discussed in our previous work [3],
the success of classification will critically depend on the ex-
tracted features. In the case of RF signals, there are numerous
useful signal features that can be used as the features. Some of
the common examples that have been investigated in literature
include bandwidth, cyclo-stationary features and higher-order
statistics [3], [11]-[15]. While specific choices will depend
on the particular application context, it is conceivable that
future systems may also include features related to location,
direction-of-arrival(DOA) information as well as RF finger-
prints associated with signal sources and origins.
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Figure 4. Confidence level computation.

Each stage of the proposed architecture may consist of
several classifiers, as can be seen from Fig. 3. Hence, the
proposed cognitive engine does not have to be based on a
single particular machine learning paradigm or an algorithm.
Indeed, it is logical to expect that different machine learning
algorithms may provide the best fit for different classification
problems. Although both Stage I and Stage II classifications
are to be performed using artificial neural network (ANN)
structures in the specific example of the cognitive engine
design in this paper, some of these may be replaced by
other classification algorithms such as support vector machines
(SVM). Given the promising performance observed in other
similar problems, deep learning techniques are also worth
exploring for RF signal classification modules in both Stages
I and II.

V. SIMULATION RESULTS

Let us consider an RF environment with 4 possible signals:
continuous radar, pulsed radar, WiFi and LTE signals. The
continuous radar signal uses frequency modulation with sweep
bandwidth = 0.5 M Hz. The pulsed radar signal, on the other
hand, uses biphase pulsed wave with the following parameters:
chip width = 1 psec, number of chips = 50 chips/pulse and
pulse repetition frequency (PRF) = 0.4 Kcycles.

The Stage I classifier is to identify whether the signal is a
radar or a communications signal based on the cyclic profile.
It is well-known that the cyclic profile of a signal exhibits
multiple cyclic frequencies that may be related to features such
as duty cycle, coding rate and modulation scheme which can
discriminate between radar and communications signals [16].
Stage II is made of two types of classifiers: global and local.
Local classifiers depend on the Stage I classification results
whereas the global classifier ignores these. Stage II local
classification provides the choice of two possible classifiers.
One of them classifies a signal identified as a radar in stage I
between continuous and pulsed radar classes. The input feature
for this classifier is the duty cycle of a signal. The other local
classifier classifies a signal identified as a communications
signal in the Stage I in to either WiFi or LTE classes. Signal
bandwidth is used as the feature input for this classifier. Stage
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Figure 5. SSA decision problem #1: The overall classification accuracy
between two classes.

II global classifier attempts to directly identify the exact signal
origin based on a feature vector input made of bandwidth, duty
cycle and cyclic profile.

In this paper, both Stage I and Stage II classifiers are
designed to be ANN classifiers based on back-propagation.
For simplicity and fairness in comparisons, all ANNs were
constrained to have a single hidden layer. Stage I ANN
classifier had 4 neurons in its hidden layer whereas Stage
IT global classifiers’s hidden layer had 8 neurons. Both local
classifiers in Stage II had hidden layers with 2 neurons.

In order to train the ANNs, multiple signals are generated
with a signal-to-noise-ratio (SNR) of 6 dB and their corre-
sponding features are extracted for each classification stage.
Once the training phase is completed, the learned weights of
the ANNs are recorded in the database to use in real-time
signal classification, as shown in Fig. 2.

1) SSA decision problem #1: Identify whether a given signal
is a radar or a communications signals: Let class 01 repre-
sents radar signals and class 02 represents communications
signals. If we were to use a dedicated signal classifier for this
problem, we may use the complete feature vector of (cyclic
profile, duty cycle, bandwidth) as an input to a two-class ANN
classifier. On the other hand, if we were to use the proposed
hierarchical design, it will proceed as follows: First, Stage I
classifier will classify signals in to either class 01 (radar) or
02 (comm). If the CL of the output is above the required
threshold, this output will be taken as the final output. If not,
the Stage II global classifier will classify in to one of 4 possible
classes. The decision logic module will map these outputs in
to either class 01 or 02.

We propose a confidence level (C'L) definition based on the
soft output of the sigmoid function of the output neuron:

ly — 0.5] .
CL=——— with y=
05 Y
where = and y are the input and the output of the sigmoid
function, respectively, as shown in Fig. 4.
Figure 5 shows the overall classification accuracy (CA)
of a dedicated ANN and the proposed cognitive engine for
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classifying between the two classes. Note that, for the pro-
posed technique, we have assumed a Stage I CL threshold of
85%. The superiority of the proposed cognitive engine over a
dedicated two-class ANN can clearly be seen from Fig. 5. The
performance improvement is especially visible in low SNR
region. For example, at SNR= —2 dB, the overall CA of the
proposed technique and the dedicated ANN are 93.75% and
86.5%, respectively. At SNR= —4 dB, the proposed technique
has CA of about 90%, while the dedicated ANN achieves only
a CA of 80.2%.

It is interesting to note that the classification accuracy of
the Stage I classifier seems to be, on average, closely related
to the confidence level, as can be seen from Table 1. Note that
the average confidence level (ACL) in Table I is computed by
averaging the output confidence levels over the whole test set.
Moreover, Table I indicates that as the SNR decreases, the CL
also decreases.

In this SSA decision problem, the proposed cognitive engine
provides two advantages. One, of course, is the superior overall
CA performance seen in Fig. fig:ssadpO1l. The second aspect
is the reduced complexity both in terms of not having to have
a dedicated ANN for this particular classification problem as
well as the ability to get away using only the relatively simpler
Stage I classifier at least in majority of test cases. Table II
shows the percentage of Stage I classified signals with C'L >
85%. Indeed, we may see that even when SNR is really low,
majority of signals will only need to be processed by the Stage
I classifier.

2) SSA decision problem #2: Identify whether a given signal
is a pulsed radar signal: In this problem, the proposed
hierarchical design is used to identify one signal of interest.
The signal of interest, the pulsed radar, is represented by class
1, while class 2 represents the remaining 3 types of signals
(continuous radar, WiFi and LTE). As before, a dedicated two-
class ANN classifier can be used with the complete feature
vector of (cyclic profile, duty cycle, bandwidth). In this case,
the proposed hierarchical design will proceed as follows: the
signals first pass through Stage I classification in which they
will be classified into radar or communications signals with a
certain CL. If the CL of a classified signal is above 85% it is
passed to a Stage II local classifier. Otherwise it is passed to
the Stage II global classifier. In local classification, the radar
signals are classified into 2 classes: class 1 (pulsed radar) and
class 2 (continuous radar). On the other hand, if the signal
was a communications signal from Stage I, the local classifier
classify it directly as class 2. As before, the Stage II global
classifier classifies the signal into one of 4 possible classes. In
this case, the decision logic module will map a pulsed radar
signal into class 1, while the other 3 types of signals will be
mapped to class 2.

Figure 6 shows the overall CA of a dedicated two-class
classifier ANN and the proposed hierarchical signal identifica-
tion approach. For SNR values above 0 dB, both approaches
show excellent performance with CA ranging from 98% to
100%. However, for SNR ranging from —6 dB and —2
dB, the proposed hierarchal design outperforms the dedicated



Table 1
CLASSIFICATION ACCURACY (CA) AND AVERAGE CONFIDENCE LEVEL (ACL) OF STAGE I.

SNR 8 dB 6 dB 4 dB 2 dB 0 dB -2 dB -4 dB -6 dB
ACL CA ACL CA ACL CA ACL CA ACL CA ACL CA ACL CA ACL CA
Class 01 99.59%| 100%| 99.57%| 100%| 99.3% | 100%| 93.93% 97.25%| 86.08%| 89.5% | 85.02% 83.75%| 83.82%| 77.5% | 84.22%| 77.75%
Class 02 99.38%| 100%| 99.37%| 100%| 99.34%| 100%| 99.23%| 100% | 98.1% | 97.75%| 94.81% 97.5% | 83.76%| 86% 76.41% 73.75%
Total 99.48%| 100%| 99.47%| 100%| 99.32%| 100%| 96.58% 98.63%| 92.09%| 94.62%| 89.91% 90.63%| 83.79%| 81.75%| 80.32% 75.75%)
Table 11
THE PERCENTAGE OF SIGNALS THAT PASSES SATGE I CLASSIFICATION WITH C'L > 85%
SNR 8 dB 6 dB 4 dB 2 dB 0 dB -2 dB -4 dB -6 dB
All signals 100% 100% 99.88% | 94.5% 87% 82.25% | 69.75% | 63.63%
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Figure 6. SSA decision problem #2: The overall classification accuracy for
identifying one signal of interest.

ANN classifier. For example, at SNR= —4 dB, the proposed
technique achieves a CA of 87.4% CA, while the dedicated
ANN has a CA of 76.3%.

VI. CONCLUSION

In this paper, we have proposed a cognitive engine design
for machine-learning based hierarchical RF signal identifi-
cation. The objective of this design is to provide real-time
SIGINT and SSA over a wide spectrum range of interest. The
proposed cognitive engine design allows the user to define
and/or modify the parameters of situational awareness in real-
time. The specific design we outlined in this paper allows these
definitions to be based on two levels of signal classification: a
broad types of signals such as communications, radar or GPS
and specific signals within each of these classes. It is a rela-
tively straightforward step to generalize the proposed design to
handle more than two levels of signal classification. Drawing
from our previous work, we also showed a hierarchical signal
classification framework that can be used within each stage
of our signal identification approach. This allows the radio to
classify and associate a signal using a minimum number of
features.

Further research is needed to develop feature extraction
modules and evaluate the performance of individual classi-
fication stages with candidate machine learning algorithms. A
particularly important approach is to explore the suitability of

various deep learning structures that have shown promising
performance in other similar problem contexts.
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