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Abstract. This work introduces a spectrum-agile wideband autonomous
cognitive radio (WACR) that is capable of avoiding interference and
jamming signals. Proposed cognitive technique is based on deep rein-
forcement learning (DRL) that uses a double deep Q-network (DDQN).
Moreover, it introduces new definitions for the state and the operation
parameters that enable the WACR to collect information about the RF
spectrum of interest in both time and frequency domains. The simulation
results show that the proposed technique can efficiently learn an effec-
tive strategy to avoid harmful signals in a wideband partially observable
environment. Furthermore, the experiments on an over-the-air channel
inside a laboratory show that the proposed algorithm can rapidly adapt
to sudden changes in the surrounding RF environment making it suitable
for real-time applications.

Keywords: Deep Q-network, deep reinforcement learning, interference avoid-
ance, wideband autonomous cognitive radios.

1 Introduction

With its ability to automatically extract important features from data, deep
learning (DL) has made major breakthroughs in many applications such as com-
puter vision, natural language processing, medical diagnosis, image and speech
recognition [1–3]. In recent years, this has prompted researchers to investigate
application of DL techniques in the wireless communications domain. The RF
spectrum domain, however, has different characteristics compared with other
domains including high data rates, representation of RF waveforms as complex
numbers and time-varying multipath wireless channels. These all make the task
of applying DL in the RF spectrum domain challenging because it requires mod-
ifications to existing DL algorithms or develop new ones. In the coming years,
the DL is expected to play an important role in future wireless communications
networks design including Internet of things (IoT), Unmanned Aerial Vehicles
(UAVs) and the 6th generation (6G) cellular communication systems.

Recently, the wideband autonomous cognitive radios (WACRs) have been
proposed as an emerging technology to achieve spectrum situational awareness
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and signal intelligence [4–6]. With its ability to sense, learn and take decisions,
a WACR may be a good candidate to apply DL techniques and especially deep
reinforcement learning (DRL) to effectively address challenges that may be dif-
ficult to solve with the traditional machine learning techniques. The DRL is
one of the widely used DL techniques in applications that require autonomous
decision-making [7–9]. The DRL explores the advantage of deep neural networks
to improve the training and the learning process of the traditional reinforcement
learning making it suitable for systems with a large state-action space [7, 9, 10].
Most existing DRL techniques are based on deep Q-network (DQN) algorithm
that extends the Q-leaning by using a convolutional neural network (CNN) in-
stead of the Q-table to learn an approximate Q-function [7, 10].

The DRL has previously been proposed for several applications in cognitive
radio networks (CRNs) including power control, network access and connectivity
preservation [9,11–16]. Another important application is the network security in
which the CR adopts DRL to avoid jamming and other malicious attacks. One
of the first works that uses DQN for the anti-jamming in CRN can be found
in [14]. The system model in [14] assumes one secondary user (SU), one primary
user (PU) and two jammers. The SU adopts a DQN with CNN to learn an
efficient frequency hopping policy and decide whether to leave the area of heavy
jamming and connect to another base station. One of the drawbacks of the
proposed approach in [14] is that the state definition is based on the signal-to-
interference-plus-noise ratio (SINR) estimates of the signals. In practice, SINR
may take arbitrary value and the SINR estimates may not be perfect.

The authors in [15] extend the model in [14] by adding mobility features to
the receiver allowing it to change its location. Using the same state and utility
definitions in [14], the receiver is considered an agent that needs to learn an
optimal policy using the DQN. However, the mobility capabilities may not be
available for the SU and its corresponding receiver in many real-time applica-
tions. In [16], the authors considered the same problem formulation as in [14]
in which the SU attempts to learn an optimal frequency hopping strategy. The
authors in [16] used the spectrum vector as their system state that contains the
received power spectral density (PSD) function at different time instants. This
framework, however, is not applicable for wideband applications where the agent
cannot sense all frequency channels simultaneously.

The goal of this paper is to design a spectrum-agile WACR that is capable of
finding spectrum opportunities in a heterogeneous RF environment contested by
jamming and crowded with interference signals. We propose a cognitive interfer-
ence and jamming resilience technique that is suitable for real-time applications
and mitigates limitations in the above mentioned previous work. Our proposed
technique is based on double deep Q-network (DDQN) algorithm [17]. The ad-
vantages of the proposed approach can be summarized as follows:

– Ability to work in a partially observable wideband spectrum environment
making it suitable for existing hardware, including the ones with limited
instantaneous bandwidth.
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Fig. 1. System model.

– New simple definitions for the state and operation parameters that can rep-
resent more information about the surrounding RF environment in both time
and frequency domains.

– A fast learning algorithm that can rapidly reconfigure to tackle sudden
changes in the RF environment making it suitable for real-time applications
in heterogeneous environments.

The rest of this paper is organized as follows: the system model is introduced
in Section 2. Next, the proposed DDQN algorithm is discussed in details in
Section 3. The performance evaluation is shown in Section 4 including both sim-
ulation and experimental results in an over-the-air channel inside a laboratory.
Finally, Section 5 contains the concluding remarks.

2 System Model

Let us consider a WACR that is operating in a heterogeneous RF environment
that includes multiple interference and jamming signals as shown in Fig. 1. The
WACR is considered as the receiver in the communications link of interest, while
the transmitter device may or may not have cognitive capabilities. The objective
of the WACR is to choose a frequency channel with highest SINR for communi-
cations at every time instant. It is assumed that the frequency synchronization
between the receiver and the transmitter is done through a secured common
control channel as shown in Fig. 1. A centralized controller (e.g. a base station)
or frequency rendezvous algorithms could be used as alternatives for the com-
mon control channel to maintain the frequency synchronization between the two
nodes [18,19].

The RF spectrum of interest is assumed to have N possible channels. At time
t, the WACR chooses an action, denoted by at ∈ {1, · · · , N}, that represents the
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index of the channel for communications at time t + 1. The transmitter sends
the signal of interest with a given power Ps. The channel power gain from the
transmitter to the WACR is given by hs. The interference source i and the
jammer j send their signals with given powers PI,i and PJ,j , while their channel
power gains to the WACR are hI,i and hJ,j , respectively. The received SINR of
the WACR at channel n and time t can be expressed as

µtn =
hsPs

σ2 +
∑
i hI,iPI,i +

∑
j hJ,jPJ,j

, (1)

where σ2 is the receiver noise power, assuming additive white Gaussian noise.
Due to hardware constraints, the WACR may not be able to sense all the

N channels simultaneously. Assume that at any time instant the WACR can
sense only Ns channels, with Ns ≤ N . At time t, the WACR can estimate the
power spectral density ctn for the sensed channel n. The WACR can then identify
the availability of channel by comparing ctn with an appropriate threshold cth
that is designed based on noise floor estimation [4]. Let f(ctn) = 1 denotes
the unavailability of the channel for ctn > cth, otherwise f(ctn) = 0. At any
given time, sensing is assumed to be performed on a different channel than the
one used for communications. Thus, the WACR can sense the surrounding RF
spectrum while maintaining the communications link. The sensing process can
adopt any strategy (e.g. sweeping or random selections) based on the application
of interest. In the following, we will assume that the WACR adheres to sweeping
sensing strategy that sweeps sequentially over the spectrum of interest. Then,
at time t, a sensing matrix W t that stores the sensing results of all channels for
T successive time instants up to time t is defined as follows:

The columns of W t represent the different channels, while the rows represent
the temporal memory depth. For each row, there are Ns values that indicate the
availability of the sensed channels at the corresponding time instant. If Ns 6= N ,
remaining entries in each row are filled with zeros. Since the sensing matrix
contains rich information about the RF environment in both frequency and time
domains, it is used as a part of the state. In addition, the state definition also
includes the index of the current channel used for communications in addition
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to an indication whether the communications over this channel is successful or
not.

Let µth denote the required SINR threshold for successful communications.
Then, an indicator function for the communications over channel n at time t can
be defined as follows:

g(µtn) =

{
1 if µtn > µth (success)

0 if µtn ≤ µth (failure)
(2)

The state at time t is then represented by a (T + 1)×N matrix as shown below:

where λ > 1 is a weighting factor that may be optimized to achieve efficient
learning. For sufficiently large T , the state may include information about all the
channels of interest, ordered in time. Since there is only two possible values: 0 and
1 (denoting availability and unavailability, respectively), for each channel, the
proposed state definition is less complicated compared with previous definitions
that include SINR estimates as in [14] or received PSD as in [16].

The interference avoidance problem can be modeled as a Markov decision
process (MDP) [20]. By choosing action at at time t, the WACR moves from
its current state St to a new state St+1 and receives a reward. The reward of
choosing channel at for transmission while in state St is defined as the received
SINR value r(St, at) = µt+1

at . Note that, the reward value of state St and action
at is obtained in the next time instant t+ 1.

3 Proposed Double Deep Q-network (DDQN) Algorithm

Reinforcement learning (RL) has shown to be a good candidate for learning
in MDP environments [10]. It is based on delayed-reward principle in which the
agent receives a reward from the environment after executing each action [4]. The
value of the reward indicates how good or bad the action is. The objective of the
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Fig. 2. CNN network structure of the proposed DDQN-based interference avoidance
technique.

agent is then to choose actions that maximize the rewards. In our scenario, the
WACR attempts to learn a channel selection policy that maximizes the received
SINR at each time instant.

The traditional RL approaches such as Q-learning, however, may not be the
best technique in our scenario for several reasons. First, we are dealing with a
two-dimensional state. Second, the number of possible states can become ex-
tremely large even with few channels and a short memory depth. Furthermore,
the rate of convergence of Q-learning may not be sufficient for real-time appli-
cations because it needs long time to explore and gain knowledge of the entire
system. Hence, in this paper we propose using DDQN algorithm, an extension
of the DQN that is developed by Google DeepMind team [17].

The basic idea of the DQN is to combine reinforcement learning with deep
neural networks, more specifically, a CNN [7]. For each time t, the previously de-
fined state St is used as an input to the proposed CNN. Then, the CNN attempts
to estimate the Q-value Q(St, at) for each possible action at ∈ {1, · · · , N}. Sev-
eral tests were performed to determine the best CNN design and the configu-
ration of each layer to achieve consistently high performance while keeping the
structure as simple as possible. Figure 2 shows the network structure of the pro-
posed CNN which consists of 2 convolutional layers and 1 fully connected layer.
The first convolutional layer (conv1) includes 10 filters with size 1×1 and stride
1. The second convolutional layer (conv2) has 20 filters of size 2 × 2 and stride
1. Both convolutional layers use rectified linear unit (ReLU) as the activation
function. The fully connected layer (fc), on the other hand, has N rectified linear
units that are used to output the Q-value estimates for each possible action. Fi-
nally, the WACR decides the action at corresponding to the maximum Q-value
estimate.

For training, the DQN uses experience replay in which we store WACR’s ex-
periences xt = (St, at, µt+1

at , St+1) at each time t in a data set Dt = {x1, · · · , xt}.
Let θt represents the weights of the proposed Q-network (CNN) at time t. Dur-
ing learning at time t, we draw an experience xk ∼ U(Dt), where U denotes the
uniform distribution on Dt with 1 ≤ k ≤ t, from the set of the stored experi-
ences. The network parameters θt are then updated according to a stochastic
gradient descent algorithm using the following loss function [7]:

L(θt) = E(St,at,µt+1

at ,St+1)∼U(D)[(η −Q(St, at; θt)2] (3)
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Algorithm 1 DDQN-aided proposed interference avoidance algorithm with ex-
perience replay

1: Initialize:
Parameters λ, γ, ε, K
The weights θ of the Q-network
The weights θ̂ of the target Q-network

2: for each time t do
3: Observe µt

at−1 , cti, ∀i ∈ Ct
4: Obtain W t and St

5: With probability ε:
Choose at ∈ {1, · · · , N} at random

6: Otherwise:
Obtain Q(St, a′) from the proposed CNN ∀a′
Select at = arg max

a′
Q(St, a′; θt)

7: Use channel at for communications at time t+ 1
8: Store new experience xt−1 = (St−1, at−1, µt

at−1 , S
t) in data set D

9: for k=1,· · · ,K do
10: Select xk = (Sk, ak, µk+1

ak , Sk+1) ∼ U(D)
11: Compute η from (5)
12: Compute the gradient of the loss function (3)
13: Update θt

14: end for
15: Reset θ̂t = θt for every fixed number of iterations.
16: end for

where η is the target optimal Q-value given by

η = µt+1
at + γ max

a′
Q(St+1, a′; θ̂t) (4)

with θ̂t representing the weights of the target Q-network. This process can be
repeated for K times at each time t in which θt is updated according to K
randomly selected experiences.

The max operator in (4) uses the same value Q(St+1, a′; θ̂t) to decide which
action is the best and to evaluate the optimal Q-value which might produce
overestimated values degrading the learning process and the convergence rate [17,
21]. In order to overcome this problem, we use DDQN to decouple the selection
and the evaluation operations. In this case, the original Q-network (with weights

θt) is used for action selection and the target Q-network (with weights θ̂t) is used
to estimate the Q-value associated with the selected action. Thus, the target
value η of (4) can be rewritten as follows:

η = µt+1
at + γ Q(St+1, arg max

a′
Q(St+1, a′; θt); θ̂t) (5)

Algorithm 1 summarizes the proposed DDQN-based interference avoidance
approach. For each time t, the WACR computes the received SINR µtat−1 on the
current channel at−1. Let Ct represent the set of Ns channel indices that the
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WACR is sensing at time t. The WACR identifies the power spectral density cti
at each channel i ∈ Ct and updates the sensing matrix W t. With the knowledge
of at−1, µtat−1 and W t, the WACR can obtain the current state St. The DDQN
algorithm takes the state St as an input and estimates the Q-values for all
possible actions. The optimal action at = arg max

a′
Q(St, a′; θt) is chosen with a

high probability 1−ε, and a random action at ∈ {1, · · · , N} is selected uniformly
with low probability ε to avoid staying in a local optima.

4 Performance Evaluation and Experimental Results

4.1 Simulation Results

Simulations have been performed to evaluate the performance of our proposed
interference avoidance technique. The following parameters are used: N = 6,
T = 5, Ns = 2, K = 5, ε = 0.1, γ = 0.4, λ = 10, σ2 = 1, cth = 2, µth = 2
and learning rate of 0.1. With these parameter values, state St at any time t is
a 6× 6 matrix which is the input to the CNN. Jamming signal j is transmitted
with power PJ,j = 8 mW with a channel power gain to the WACR hJ,j = 0.7.
On the other hand, any interference signal i has a transmit power of PI,i that
can take any value between 3 mW and 6 mW , while the channel power gain to
the WACR hI,i is ranging from 0.4 to 0.9. For each interference source i, the
values of PI,i and hI,i are chosen randomly from the predefined sets. Our signal
of interest is transmitted with power Ps = 5 mW and the channel power gain to
the WACR is hs = 0.8. Hence, the optimal SINR value at any channel is 4 which
corresponds to WACR selecting a channel free of interference and jamming.

As a benchmark, we used DQN, Q-learning and random channel selection
techniques to evaluate our proposed DDQN technique [5]. Similar to the DDQN,
the action and the reward of the DQN and Q-learning at time t are the index
of the channel at ∈ {1, · · · , N} and the received SINR value µt, respectively.
The DQN uses the same state definition St as in the proposed algorithm. The
Q-learning, however, uses a simplified version of the original proposed state that
does not include the sensing matrix W t. Instead, the state of the Q-learning
algorithm at time t is represented by StQ = [at−1Q , λg(µt

at−1
Q

)] so that the number

of possible states is 2N . On the other hand, in the random technique, the WACR
randomly chooses a channel for communications.

Table 1. Performance comparison: normalized accumulated reward values after 10,000
iterations.

Test
case

Scenario Proposed DQN Q-learning Random Optimal

1 2 interference signals 3.73 3.68 3.62 3.02 4

2 3 interference signals 3.65 3.56 3.52 2.57 4

3 3 interference signals
and Markov jammer

3.12 3.07 2.84 2.14 4
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Fig. 3. T = 5: Normalized accumulated
reward (SINR) for test case 1.

Fig. 4. T = 5: Normalized accumulated
reward (SINR) for test case 2.

Three test cases are considered with different interference and jamming signal
scenarios. Table I shows the performance comparison with a scenario description
for each test case. Test case 1 represents a simplified scenario in which there are
only two interference sources that transmit continuously their signals over two
dedicated channels. Figure 3 shows the normalized accumulated reward for this
scenario. Two main observations can be obtained from Fig. 3: (1) The proposed
DDQN technique achieves a higher SINR than DQN, Q-learning and random
techniques. (2) The proposed DDQN technique has a faster convergence than
both the DQN and Q-learning.

In test case 2, an extra interference source is added on a third dedicated
channel besides the two interference sources described above. This source, how-
ever, does not operate continuously. Instead, it switches between ON and OFF
in a random manner. From Fig. 4, we may observe that the proposed DDQN
technique outperforms both Q-learning and random techniques while having a
similar performance to the DQN.

In test case 3, there is a Markov jammer operating besides the 3 interference
signals described in test case 2. The Markov jammer selects a channel to jam
based on a Markov chain as shown in Fig. 5 where ph = 0.8 and pl = 0.2. Figure
6 shows the normalized accumulated reward for this scenario: (a) for 10,000
iterations (b) for 2,000 iterations to have a closer look on the convergence rate.
Again, from Fig. 6, the proposed DDQN technique shows better performance in
terms of SINR and convergence rate compared to those achieved with the DQN
and Q-learning.

Figure 7 shows the normalized accumulated reward for test case 3 for T = 1,
T = 5 and T = 10. Part (a) of the figure shows the full iterations while part
(b) only focuses on the beginning of the iterations to analysis the convergence
rate. Note that, the state matrix dimensions at any time t in the case of T = 1
and T = 10 are 2× 6 and 11× 6, respectively. Figure 7 shows that reducing the
temporal memory depth to T = 1 has a negative impact on the performance
especially if the number of sensing channels is less than the total number of
channels (Ns = 2 and N = 6).
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Fig. 5. Markov jammer selection strategy for test case 3 with 6 channels.

On the other hand, both cases of T = 10 and T = 5 converge to the same
accumulated reward value after 10,000 iterations as shown in Fig. 7 (a). This
is because when T = 5, the state includes information about all the channels
arranged in time from the newest to the oldest. Increasing the memory depth
to T = 10, will only add outdated information about the same channels. It does
not seem to provide any significant new information since the most updated in-
formation about all the channels are already included with T = 5. However, this
outdated information increases the state size that makes the computations more
complex. These results show that choosing a suitable T value can be essential
depending on the values of N and Ns.

4.2 Experimental Results

The experiments are performed inside the Communications and Information
Sciences Laboratory (CISL) in the ECE Department at the University of New
Mexico. The experiment setup consists of a USRP 2943R from National Instru-
ments that is used as the WACR. The proposed cognitive interference-avoidance
technique is implemented in LabVIEW on a DELL PRECISION TOWER 5810
PC with a built-in MATLAB interface to run the deep learning algorithm. The
USRP interacts with the LabVIEW through a high speed PCIe connection.

The spectrum of interest is 240MHz from 1.92GHz to 2.16GHz which is
divided into 10 channels with 24MHz each. The parameters used in the proposed
DDQN are as follows: N = 10, Ns = 1, T = 7, K = 5, ε = 0.1, γ = 0.4
and λ = 10. From spectrum observation, the noise floor threshold is set to
−95dBm. Any channel other than the one used by the WACR with received
power above this threshold is considered unavailable. The USRP uses an IQ rate
of 24Msamples/sec, acquisition time of 0.16msec and RX gain= 20dB. Figure
8 shows the whole spectrum of interest as observed on the KEYSIGHT N9952A
spectrum analyzer. It is clear from Fig. 8 that all but channel 5, 6 and 7 are
occupied with different signals. Hence, if the proposed cognitive interference-
avoidance algorithm works properly, the WACR has to choose a channel from
these three channels.
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Fig. 6. T = 5: Normalized accumulated
reward (SINR) for test case 3.

Fig. 7. Normalized accumulated reward
(SINR) for test case 3 for different tem-
poral memory depth values using the pro-
posed algorithm.

The experiment consists of two stages. In the first stage we evaluate our
proposed algorithm in the spectrum described above. We ran this stage for 300
iterations, in which each iteration represents a single sensing duration. The total
time for this stage is about 489 seconds. The WACR adopts a random sensing
strategy in which it randomly selects a channel to sense for each iteration. Figure
9 shows the number of times that the WACR was able to avoid channels with
interference as a percentage of the total number of iterations. Figure 10 shows
whether the actions selected by the WACR correspond to a channel free of
interference or not. From the figures, we can notice that the proposed DDQN
algorithm was able to learn an optimal policy after a few number of iterations
(approx. 40 iterations). In this experiment the WACR learned to operate in
channel 6 which is free of interference.

An interesting question is how the WACR will react to sudden changes in
the RF environment. A good learning algorithm should make the WACR adjust
to this new condition rapidly. Thus, in the second stage of our experiment we
generated an interference signal in channel 6 starting at the 301st iteration. It
can be observed from Fig. 10 that proposed DDQN algorithm reacts very fast
and switch to a new interference-free location (channel 5).
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Fig. 8. Power spectrum and its corresponding spectrogram for start freq.= 1.92GHz
and stop freq.= 2.16GHz.

Fig. 9. The percentage of selecting interference-free channels.

5 Conclusion

In this paper, we have studied cognitive interference avoidance through spectrum
agility. The proposed technique is based on DDQN algorithm with CNN. The
WACR uses two separate channels for sensing and communications. The sensing
operation is used to create the sensing matrix that includes information about
the availability of different channels of interest. The sensing matrix along with
the chosen communications channel and an indication of the success/failure of
the communications over this channel form the state of the DDQN. The proposed
technique was evaluated through various test cases that include multiple inter-
ference and jamming signals. Both simulation and experimental results showed
that the proposed algorithm is suitable for real-time applications and can oper-
ate over wideband spectrum. Furthermore, the proposed technique was shown
to rapidly adapt to sudden changes in the surrounding RF environment.
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