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Abstract—This paper presents a design of a cognitive engine for
interference and jamming resilience based on deep reinforcement
learning (DRL). The proposed scheme is aimed at finding the
spectrum opportunities in a heterogeneous wideband spectrum.
In this paper we discuss a specific DRL mechanism based on
double deep Q-learning (DDQN) with a convolutional neural
network (CNN) to successfully learn such interference avoidance
operation over a wideband partially observable environment. It
is shown, through simulations, that the proposed technique has
a low computational complexity and significantly outperforms
other techniques in the literature, including other DRL-based
approaches.

Index Terms—Convolutional neural network, deep reinforce-
ment learning, double deep Q-network, interference avoidance,
wideband autonomous cognitive radio.

I. INTRODUCTION

Deep learning (DL) is expected to play an important role
in future wireless communications networks design in many
fields including space, military and consumer wireless com-
munications [1]–[3]. Recently, Deep reinforcement learning
(DRL), a branch of DL, has been proposed for several appli-
cations in wireless communications that require autonomous
decision-making, including power control and network access
[3]. Another important application is network reliability and
security in which the radio adapts to avoid jamming and other
malicious attacks [4]–[7].

The authors in [4] proposed a two dimensional anti-jamming
technique using a standard deep Q-network (DQN) with
convolutional neural network (CNN). At any time instant, the
radio performs two actions: (1) Stay in or leave the current
cell (2) Select a frequency channel for communications. In [5],
the problem of anti-jamming transmission in unmanned aerial
vehicle (UAV) systems is discussed. More specifically, the
authors discussed an optimal power allocation strategy using
DQN to resist smart attacks. In [6], the authors considered the
same problem formulation as in [4] in which the radio attempts
to learn an efficient frequency hopping policy. The proposed
anti-jamming technique is based on DQN with a recursive
convolutional neural network (RCNN). Spectrum waterfall that
includes both temporal and spectral information was used as
the state of the DQN in [6]. Most of the above referenced
contributions, however, either do not have the ability to work

Figure 1. System model including heterogeneous RF environment.

in a wideband partially-observable spectrum or suffer from
high computational complexity.

Most recently, a promising cognitive interference avoidance
technique is proposed in [7] that is suitable for real-time
applications in partially-observable spectrum. The proposed
scheme is based on DRL, more specifically, double deep Q-
network (DDQN) with CNN [8], [9]. It is assumed that the
radio can sense the surrounding RF spectrum while main-
taining the communications link of interest. The information
collected from both sensing and communications is used to
create the state of the DDQN algorithm. The radio attempts
to learn an effective policy to choose a frequency channel
with the highest SINR for communications at every time
instant. Although, the proposed technique outperforms many
of the traditional techniques including Q-learning and DQN,
the simulation results showed that there is still a room for
improvement.

The purpose of this paper is to extend the framework of
[7] to improve the performance and reduce the computational
complexity. First, we developed new definitions for state
and operation parameters. Second, we simplified the CNN
architecture used in the DDQN. Finally, we povided a detailed
description of the proposed DDQN including the interactions
between the sensing and communications operations. One of
the advantages of the proposed cognitive engine is compatibil-
ity with both high and low performance computing platforms
due to the simplicity of the state definition and the CNN
architecture.

The remainder of this paper is organized as follows: Section
II introduces the system model. The details of the proposed
cognitive engine design based on DDQN are explained in Sec-
tion III. Section IV presents the simulation results. Discussion



and conclusions are described in section V.

II. SYSTEM MODEL

We assume that a wideband autonomous cognitive radio
(WACR) represents the receiver of our link of interest [7],
[10]. The objective of the WACR is to preserve the connec-
tivity by choosing a frequency channel with highest SINR
for communications at every time instant. The surrounding
RF environment includes multiple interference and jamming
signals as shown in Fig. 1. The frequency synchronization
between the receiver and the transmitter is done through a
common control channel [7]. The RF spectrum of interest is
assumed to have N non-overlapping channels.

The WACR performs two operations simultaneously: com-
munications and sensing. For communications, the WACR
chooses an action at each time instant t, denoted by ac(t) ∈
Ac, that represents the index of the channel for communica-
tions at time instant t+1. The action set of the communications
operation is denoted by Ac = {1, · · · , N}. The transmitter
sends the signal of interest with a given power Ps. The channel
power gain from the transmitter to the WACR is given by hs.
On the same channel, the interference source i and the jammer
j transmit their signals with given powers PI,i and PJ,j . On
the other hand, channel power gains to the WACR are hI,i and
hJ,j , from sources i and j, respectively. The received SINR
of the WACR in channel ac(t) at time t can be expressed as

µac(t) =
hsPs

σ2 +
∑

i hI,iPI,i +
∑

j hJ,jPJ,j
, (1)

where σ2 is the receiver noise power. Let µth denotes the re-
quired SINR threshold for successful communications. Then, a
function g(.) that indicates the success of the communications
over channel ac(t) at time t can be defined as follows:

g(µac(t)) =

{
λ if µac(t) > µth (success)
−λ if µac(t) ≤ µth (failure),

(2)

where λ > 0 is a design parameter selected to provide
sufficient contrast between the two cases for efficient learning.

For sensing, the WACR senses Ns channels at a time, where
Ns ≤ N due to hardware constraints. Assume that at time t,
the action for sensing operation is as(t) = [as1(t), · · · , asNs

(t)]
that represents the set of sensing channel indices. At time t, the
WACR can estimate the power spectral density (PSD) νas

i (t)

for the sensed channel asi (t) ∈ as(t). Using spectral activity
detection, the WACR can then identify the availability of
channel by comparing νas

i (t) with an appropriate threshold νth
that is designed based on noise floor estimation [10]. Similar
to (2), let function f(νas

i (t)) = −λ denotes the unavailability
of the channel for νas

i (t) > νth, otherwise f(νas
i (t)) = λ.

Using the information from both communications and sens-
ing, we can create a matrix I(t) at time t as follows:

I(t) =


ac(t− 1) g(µac(t−1))
as1(t− 1) f(νas

1(t−1))
...

...
asNs

(t− 1) f(νas
Ns

(t−1))

 . (3)

Figure 2. Proposed three dimensional state.

The matrix I(t) indicates the the communications suc-
cess/failure as well as the availability of the sensed channels
and we call it indication matrix. At any time t, the state S(t)
is made of T successive indication matrices up to time t as
shown in Fig. 2, where T is the temporal memory depth.

III. PROPOSED COGNITIVE ENGINE FOR INTERFERENCE
AVOIDANCE USING DDQN

The interference avoidance problem can be modeled as a
Markov decision process (MDP) in which the WACR selects
actions ac(t) and as(t) at time t. The WACR then moves
from current state S(t) to a new one S(t + 1) and receives a
reward r(S(t), ac(t)). Since the objective of the WACR is to
choose the communications channel with the highest SINR,
the reward function is set equal to the received SINR µac(t).
The multi-dimensional state and large state-action space make
DRL a suitable learning candidate for this problem.

In this work, we proposed using DDQN with a CNN that is
used to estimate the Q-values from the state S(t). This helps
to improve the training and learning process especially when
dealing with three dimensional state as in our case. Fig. 3
shows the proposed cognitive engine design using DDQN.

A. Description of the Proposed DDQN Algorithm

The WACR starts with selecting Ns channels for sensing at
time t− 1: as1(t− 1), · · · , asNs

(t− 1). This selection process
is based on the sensing strategy that the WACR adopts (e.g.
random or sweeping) [7]. At time t, the WACR can estimate
the PSD in each sensing channel and by comparing with the
threshold νth it can detect the availability/unavailability of the
channels using the functions f(νas

1(t−1)), · · · , f(νas
Ns

(t−1)).
On the other hand, the WACR detects the success/failure of
the communications over the channel of interest by estimating
the function g(µac(t−1)).

Information from both sensing and communications are
used to create the indication matrix I(t) at time t as shown
in Fig. 3. The current matrix I(t) along with those from time
t−1 to t−T+1 are used to create the state S(t) of the DDQN.
A Q-network (CNN) with weights θ(t) uses S(t) as an input
to estimate the Q-values for all possible actions in set Ac. The
WACR selects an action ac(t) that represents the index of the
communications channel at time t+ 1 based on the maximum



Figure 3. Proposed cognitive engine for interference avoidance and anti-jamming using DDQN.

Q-value with probability 1− ε, otherwise it randomly selects
an action out of all possible actions:

ac(t) =

arg max
á∈Ac

Q(S(t), á; θ(t)) with probability 1− ε

∼ U(Ac) with probability ε,
(4)

where U(Ac) denotes the uniform distribution over the action
set Ac and ε is an exploration rate that allows the learning
algorithm to explore the space of states and actions to avoid
being trapped in a sub-optimal policy.

B. Training DDQN

For DDQN training, experience replay is used in which we
store WACR’s experiences x(t) = (S(t), ac(t), µac(t),S(t+1))
at each time instant t in a data set D(t) = {x(1), · · · , x(t)}.
During learning at time t, we draw uniformly at random an
experience x(k) ∼ U(D(t)), with 1 ≤ k ≤ t, from the set of
the stored experiences. The weights θ(t) of the Q-network at
time t are then updated according to the stochastic gradient
descent (SGD) using the loss function below:

L(θ(t)) = Ex(k)∼U(D(t))[(η −Q(S(t), ac(t); θ(t))2], (5)

where η is the target Q-value. This process can be repeated
for K times at each time instant t in which θ(t) is updated
according to K randomly selected experiences.

It is known that using the same weights θ(t) to estimate both
the Q-value Q(S(t), ac(t)) and the target η may lead to large
oscillations in the training process because at every training
step when the Q-value shifts, the target value also shifts [8].
In other words, the network is trying to chase a moving target.
To avoid this problem a separate Q-network, named target Q-
network with weights θ̂(t), is used to estimate the target value
η as follows:

η = µac(t) + γ Q(S(t+ 1), a∗; θ̂(t)). (6)

In contrast to the original Q-network, the target Q-network
does not update its weights θ̂(t) at every training step. Instead,
the weights θ̂(t) are set equal to θ(t) for every fixed number
of iterations L. Thus, the target value will be constant for L
successive iterations.

In DDQN, estimating the Q-value Q(S(t+ 1), a∗; θ̂(t)) and
selecting the best action a∗ are separated as shown in (6)
to avoid producing overestimated values that may degrade
the learning performance and the convergence rate [9]. Thus,
instead of using the target Q-network (with weights θ̂(t)), the
Q-network (with weights θ(t)) is used to estimate a∗ at time
t in (6) such that a∗ = arg max

a′∈Ac

Q(S(t+ 1), a′; θ(t)).

C. Computational Complexity

As shown in Fig. 3, the proposed CNN architecture for
the DDQN consists of one convolutional layer followed by
average pooling layer, rectified linear units (ReLUs) and one
fully connected layer. The convolutional layer includes M1

filters with size Fw
1 ×F l

1, zero padding and stride 1. The fully
connected layer has N rectified linear units to output the Q-
value estimates for each possible action.

According to [11] the pooling and the fully connected layers
often take only 5–10% of the computational time. The com-
putational complexity of the CNN can be then approximated
as the number of multiplications in the convolutional layers as
follows [11]:

#multip. =

D∑
d=1

Md−1F
w
d F

l
dMdZ

w
d Z

l
d, (7)

where d is the index of the convolutional layer and D is
the number of convolutional layers. Md−1 and Md are the
number of input channels and the number of filters for dth
layer, respectively. Fw

d and F l
d denote the width and length of

each filter in the dth layer, respectively. Zw
d and Zl

d are the



Figure 4. Normalized accumulated reward (SINR)
for test case 1.

Figure 5. Normalized accumulated reward (SINR)
for test case 2.

Figure 6. Normalized accumulated reward (SINR)
for test case 3.

width and length of the output feature map. Zl
d (the same for

Zw
d ) is computed as [12]:

Zl
d =

Zl
d−1 − F l

d + 2Pd

Sd
+ 1, (8)

where Pd and Sd denote the padding and the stride at the dth
layer. By applying the proposed CNN configurations in (7) and
(8), the computational complexity of the proposed DDQN is
given by

#multip. = TFw
1 F

l
1M1(3− Fw

1 )(Ns + 2− F l
1), (9)

where Zw
0 × Zl

0 ×M0 = 2 × (Ns + 1) × T denotes the size
of the input state as shown in Fig. 2.

IV. SIMULATION RESULTS

Let us assume the signal of interest is transmitted with
power Ps = 5 mW , while the channel power gain to the
WACR is hs = 0.8. Hence, the optimal SINR value at any
channel is 4 which corresponds to WACR selecting a channel
free of interference and jamming. On the other hand, jamming
signal j is transmitted with power PJ,j = 8 mW with a
channel power gain to the WACR hJ,j = 0.7. Interference
signal i has a transmit power of PI,i and channel power gain
hI,i that take random values from the sets [3, 6] and [0.4, 0.9],
respectively.

In all the following simulations our proposed technique is
named “Proposed 1”. The operation parameters are set as
follows: N = 6, T = 3, Ns = 2, K = 5, L = 10, ε = 0.1,
γ = 0.4, λ = 10, σ2 = 1mW , νth = 2, µth = 2 and
learning rate of 0.1. With these parameter values, the state
S(t) at any time t is a three-dimensional array with size
3× 2× 3 that represents the input to the CNN. The proposed
CNN architecture for the DDQN algorithm consists of one
convolutional layer includes 10 filters with size 2×2 and stride
1. This is followed by average pooling layer of size 2× 1 and
ReLUs. Finally, a fully connected layer with 6 rectified linear
units is used.

Three different techniques are used for comparison purpose
to evaluate our proposed technique:

1) Proposed 2: This is the proposed technique in [7]. The
state consists of sensing matrix, index of communica-
tions channel and an indicator for success/failure of the
communications over this channel as described in [7].

Table I
PERFORMANCE COMPARISON: NORMALIZED ACCUMULATED REWARD

VALUES AFTER 10,000 ITERATIONS.

Test
case

Scenario Proposed
1

Proposed
2 [7]

Q-
learning

Random Optimal

1 2 inter. signals 3.9 3.7 3.5 3.1 4
2 3 inter. signals 3.8 3.6 3.4 2.5 4
3 3 inter. signals

and Markov
jammer

3.3 3 2.7 2.1 4

Using the same operation parameters described above
the state is then 4× 6 matrix.

2) Q-learning: The Q-learning uses a simplified version of
the original proposed state that includes only the index
of the communications channel and the indicator for
successful communications.

3) Random: The WACR randomly chooses a channel.
Three test cases are considered with different interference

and jamming signal scenarios. Table I shows the performance
comparison in terms of normalized accumulated reward after
10,000 iterations with a scenario description for each test case.
Test case 1 represents a simplified scenario in which there are
only two interference sources that transmit continuously their
signals over two dedicated channels. Fig. 4 shows the nor-
malized accumulated reward for this scenario. The proposed
technique achieves about 97.5% of the maximum possible
reward, while Proposed 2 and Q-learning achieve 92.5% and
87.5%, respectively.

In test case 2, besides the two interference sources in test
case 1, an extra interference source is added that switches
between ON and OFF in a random manner. From Table I
and Fig. 5, the proposed technique (Proposed 1) significantly
outperforms Proposed 2, Q-learning and random in terms of
the accumulated reward. In test case 3, there is a Markov
jammer operating besides the 3 interference signals described
in test case 2 [7]. Fig. 6 shows the normalized accumulated
reward for this scenario. Similar to the previous two test
cases, the proposed technique shows an improvement in the
performance when compared with other techniques.

Table II summarizes the configurations of the CNN models
in Proposed 1 and Proposed 2 algorithms. The “Comp.” is
the theoretical computational complexity relative to Proposed



Table II
CNN PARAMETERS OF THE PROPOSED ALGORITHMS.

Input Conv. 1 Conv. 2 Pool FC Comp.
Proposed 1 3× 2× 3 2×2×10 / 2× 1 6 0.0196
Proposed 2 [7] 4× 6× 1 1×1×10 2×2×20 / 6 1

2 using (7). It is clear from Table II that using the Proposed
1 algorithm can significantly reduce the computational com-
plexity by 98% compared with Proposed 2.

V. CONCLUSION

In this paper we have presented a cognitive interference
avoidance and anti-jamming scheme based on DRL. In par-
ticular a DDQN with a simplified CNN is used to learn
an efficient policy to a void harmful signals and maintain a
communications link of interest in a heterogeneous partially-
observable spectrum. The state of the DDQN is a three
dimensional array that indicates the availability of the sensed
channels as well as the success/failure of communications
over the link of interest. Results obtained from simulation
showed that the proposed technique can learn an effective
policy to avoid interference and jamming signals. Furthermore,
it significantly outperforms similar techniques from literature
while reducing the computational complexity.
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