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Abstract—This paper introduces a cognitive engine design to
achieve spectrum-agile communications over a heterogeneous
wideband spectrum. The proposed cognitive approach has the
ability to learn and avoid interference signals and other harmful
signals. The targeted spectrum in this work is much wider
than the ones proposed in the literature, most likely covering
several hundreds of MHz. The proposed approach is based
on deep reinforcement learning (DRL), more specifically on
a double deep Q-network (DDQN) made of a convolutional
neural network (CNN). The wideband spectrum is divided
into a number of sub-bands and each sub-band consists of a
number of channels. The problem is modeled as a multi-task
DRL, where each sub-band represents a single task. Transfer
learning is used between tasks to speed up the learning process.
It is shown, through simulations, that the proposed technique
can efficiently learn an effective strategy to avoid harmful
signals in a noncontiguous wideband spectrum. Furthermore,
it outperforms other DRL-based approaches in the literature
while operating in a much wider spectrum and maintaining low
computational complexity.

Index Terms—Double deep Q-network, multi-task deep re-
inforcement learning, spectrum agility, transfer learning, wide-
band autonomous cognitive radios.

I. INTRODUCTION

The rapid growth of mobile broadband traffic, driven by
smart phones and new wireless communications networks
that support high data rates such as 5th generation (5G)
cellular communication systems, has lead to an increase
in the demand for the RF spectrum. On the other hand,
many studies have reported that the localized temporal and
geographic spectrum utilization is extremely low [1], [2].
This has motivated the spectrum regulatory organizations to
develop new spectrum policies that will allow secondary users
(SUs) to opportunistically access a licensed band when the
primary user (PU) is absent. The cognitive radio (CR) was
introduced as a solution to improve the spectrum utilization
in these scenarios [3], [4].

Since cognitive radios are considered secondary users
in accessing the licensed spectrum, they should be able
to independently detect spectrum opportunities without any
assistance from the PUs. This process is called spectrum
sensing, which is considered one of the most critical compo-
nents in cognitive radio networks (CRNs) that distinguishes a
cognitive radio from a legacy radio. Several spectrum sensing
techniques have been studied in literature including matched
filtering, energy detection, cyclostationary feature detection
and compressive sensing [5]–[7]. Most of these techniques,
however, limited to a few tens, or a few hundreds at most,
of MHz wide spectrum. Furthermore, the proposed cognitive
radios are assumed to be operating in a single mode of

operation in which the spectrum sensing is limited to the
spectrum occupied by a specific primary system.

In this paper we discuss the design of future cognitive
radios that is capable of operating over several noncon-
tiguous bands spread over a wide range of frequencies.
The spectrum of interest in this work is much wider than
the ones proposed in the literature, most likely covering
several hundreds of MHz or few GHz. The spectrum of
interest can be accessed by several systems that can introduce
different types of signals at different frequencies creating a
heterogeneous environment. In order for the CR to operate in
the best mode, it should have intelligence capabilities to find
the spectrum opportunities in such heterogeneous widenand
spectrum. Furthermore, it should be spectrum-agile to avoid
interference and other harmful signals, such as jamming.
Therefore, the problem can be considered as an interference
avoidance problem or as an anti-jamming problem in the
presence of jamming attacks.

The literature is rich with several work that have studied the
interference avoidance and anti-jamming problems for cog-
nitive radios [8]–[10]. Most of these consider either Markov
decision processes (MDPs) or stochastic games for system
modeling. Moreover, they explore different reinforcement
learning (RL) techniques to achieve their ultimate goal in-
cluding, Q-learning, minimax Q-learning, or win-or-learn-fast
(WoLF) policy hill climbing (PHC). In a simple RL scenario,
an agent would first observe the surrounding environment to
identify its current state. Then, it executes an action that move
it to a new state. The RL is based on delayed-reward principle
in which the agent receives a reward from the environment
after executing each action [11]. The value of the reward
indicates how good or bad the action is. The objective of the
agent is then to choose actions that maximize the rewards.

In this paper we consider a heterogeneous wideband spec-
trum that might experience different scenarios at each time
instant. Thus, the possible number of states and actions
could be large. RL, however, has limitations when dealing
with systems with a large state-action space. To tackle this,
several work has recently proposed using deep reinforcement
learning (DRL) [12]. The DRL relies on the power of deep
neural networks to improve training and learning processes
of traditional RL making it suitable for systems with a large
state-action space [12]. Most existing DRL techniques are
based on deep Q-network (DQN) algorithm that extends the
Q-leaning by using a convolutional neural network (CNN) to
learn an approximate Q-function [11], [12].

The authors in [13] proposed a two dimensional anti-
jamming technique to enable a SU in a CRN to avoid the PU’s
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Figure 1. System model including heterogeneous RF environment.

transmission as well as jamming attacks using DQN with
a CNN. At any time instant, the SU performs two actions:
(1) Stay in or leave the current cell (2) Select a frequency
channel for communications. The authors in [14] extended the
model in [13] for an underwater acoustic network (UAN). In
[15], the authors adopted DQN with a recursive convolutional
neural network (RCNN) to enable the SU to learn an optimal
frequency hopping strategy to avoid jamming. A cognitive
approach for interference avoidance and anti-jamming was
proposed in [16] that is suitable for real-time applications
in partially-observable spectrum. Although these show good
performance compared to traditional RL techniques such
as Q-learning, most of the proposed approaches in the
above mentioned references can not be applied easily in
a noncontiguous wideband spectrum and suffer from high
computational complexity.

The purpose of this paper is to enable the radio to find
spectrum opportunities over noncontiguous wideband spec-
trum and allow spectrum agility to avoid interference and
other harmful signals in real-time. The wideband spectrum
is divided into a number of sub-bands where each sub-band
consists of a number of channels. The radio’s objective is
to select the best sub-band for communications and then
select the best channel inside the sub-band that maximizes the
signal-to-interference-plus-noise ratio (SINR). The problem
is formulated as a multi-task DRL problem where each sub-
band represents a single task. The radio uses a double deep
Q-network (DDQN) with CNN to learn an efficient policy for
each task. Transfer learning is used between tasks to reduce
the training time for any new task.

The rest of this paper is organized as follows: Section
II presents the system model. The details of the proposed
spectrum-agile approach for interference avoidance using
DDQN is discussed in Section III. We provide simulation
results in Section IV and conclude this work in Section V.

II. SYSTEM MODEL

Let us consider two radios that form a communications
link and try to preserve the connectivity between each other.
The wideband spectrum consists of N non-overlapping non-
contiguous channels with equal bandwidth. The bandwidth of
each channel can be set equal to the bandwidth of the signals
of interest. The receiver of the link of interest is assumed to be
a wideband autonomous cognitive radio (WACR) having the
ability to sense spectrum, learn and take decisions [4], [16].
The spectrum might be accessed by other systems that may
cause interference making the task of finding the spectrum
opportunities challenging. Since these systems access the

spectrum of interest at particular frequencies and at different
times, the interference signals can be distributed widely in
both frequency and time domains.

Fig. 1 shows a typical heterogeneous wideband spectrum
where the solid lines represent the signals of our link of
interest and the dashed ones represent signals from other
sources that might cause interference. The objective of the
WACR is to choose a frequency channel with highest SINR
for communications at every time instant. The frequency
synchronization between the receiver and the transmitter is
done through a secured common control channel. Let us
assume that the transmitter sends the signal of interest with a
given power Ps. The channel power gain from the transmitter
to the WACR is given by hs. The interference source i sends
its signals with a given power PI,i, while the channel power
gains to the WACR is hI,i. The received SINR (in dB) of the
WACR at channel n and time t can be expressed as

µn(t) = 10 log10
hsPs

σ2 +
∑
i hI,iPI,i

, (1)

where σ2 is the receiver noise power, assuming additive white
noise.

In this work, we assume a wideband system that may cover
several hundred MHz that is much wider than other wideband
systems in the literature [6], [7], [16]. Thus, based on the
channel bandwidth, the number of channels could be several
tens or hundreds. At the same time, due to hardware and
signal processing limitations, the WACR might not be able to
sense all frequency bands of interest simultaneously. One of
the solutions is to do spectrum segmentation by dividing the
wideband spectrum into a number of sub-bands [4], [17]. The
sub-band width should not exceed the maximum spectrum
width that the WACR can sense and process in real time.
To the best of our knowledge, the maximum instantaneous
bandwidth available in the market is about 200 MHz (e.g.
supported by the USRP-N320 from Ettus Research [18]).

Thus, we divide the spectrum into K non-overlapping sub-
bands. These sub-bands might not have the same bandwidth,
i.e, each may contain a different number of channels. The
kth sub-band is assumed to contain Nk channels, ∀k ∈
{1, · · · ,K}, such that the total number of channels

∑K
k=1Nk

is N . To keep the notation simpler, however, we may assume
equal bandwidth sub-bands each with N/K channels. Sub-
banding the spectrum of interest would divide the problem
into two parts: First, the WACR needs to decide whether
to continue on the same sub-band or to leave. Moreover,
in case of leaving the current sub-band, which sub-band
to choose that would have the best spectrum opportunities.



Second, once the sub-band is decided, the WACR needs to
select a communications channel that would enable it to avoid
interference and maximize SINR.

Let b(t) denotes the sub-band index chosen by the WACR
at time t for transmission. The WACR stays on the same
sub-band at time t if b(t) = b(t− 1) and it moves to a new
one otherwise. Let cb(t)(t) represents the index of the chosen
channel for communications inside the sub-band b(t). Then,
at each time t, the WACR chooses an action, denoted by
a(t) = cb(t)(t) ∈ A, where A is the action set whose size is
|A| = N/K. On other hand, let µth denote the required SINR
threshold for successful communications over any channel (it
is straightforward to generalize to different thresholds). Then,
an indication function for communications over channel n at
time t can be defined as follows:

f(µn(t)) =

{
λµn(t), if µn(t) > µth (success)
−λ, if µn(t) ≤ µth (failure)

(2)

where λ > 0 is a design parameter selected to provide suffi-
cient contrast between the two cases for efficient learning.

Most commercial software defined radio (SDR) platforms
include two or more different RF ports where each one
has a separate RX chain [18]. This might allow the radio
to do two parallel communications operations at different
frequencies. In our proposed WACR, one RF port is used
to receive the signal of interest. An additional RF port is
used to perform dedicated sensing so that the WACR can
explore the surrounding RF spectrum and collect information
without interrupting the ongoing communications on the other
port. This information can be used afterwards to select the
best communications channel and its corresponding sub-band
for avoiding interference and achieving high SINR. At any
time t, the WACR can estimate the power spectral density
(PSD) in a sensed sub-band. Then, using spectral activity
detection, the WACR can identify the availability of channels
in the corresponding sub-band by comparing the PSD with
an appropriate threshold that is designed based on noise floor
estimation [4].

Let the vector ϕk(t) = [φk1(t), φ
k
2(t), · · · , φkN/K(t)] indi-

cate the availability of channels inside the sensed sub-band k,
where the function φkn(t) = η for channel n being available
and equal to −η otherwise, where η > 0 is weighting
factor. In this work, the sensing is assumed to follow a
predefined strategy in which it alternates between sensing the
current operational sub-band and sensing other sub-bands. By
sensing the current sub-band, the WACR can keep track of
the availability of the channels inside this sub-band. When
the current channel cannot meet the Quality-of-Service (QoS)
requirement due to interference, the WACR switches the
communications to another channel on the same sub-band. On
the other hand, sensing other sub-bands will help the WACR
to select the best sub-band for communications if sub-band
switching is required.

In order to select other sub-bands for sensing, a learning-
aided sub-band selection algorithm could be applied [17],
[19]. However, for simplicity, in this work sub-bands are
chosen either sequentially or randomly. Using ϕk(t), the
WACR can identify the percentage of available channels in
the kth sub-band, denoted by 0 ≤ g(ϕk(t)) ≤ 1, where
g(ϕk(t)) = 1 if the whole sub-band is available. A list B
can be created that includes the percentage of the available

channels and the best communication channel in each sub-
band as shown in (3). Every time the kth sub-band is sensed,
it’s corresponding g(ϕk) and c∗k in B are updated. Hence,
the list B will always keep the most updated values for each
sub-band as follows:

B =


g(ϕ1) c∗1
g(ϕ2) c∗2

...
g(ϕK) c∗K

 , (3)

where c∗k denotes the index of the best channel that can be
used for communications in the kth sub-band.

III. PROPOSED SPECTRUM-AGILE COGNITIVE
COMMUNICATIONS PROTOCOL USING A MULTI-TASK

DOUBLE DEEP Q-NETWORK (DDQN)

As mentioned earlier, there are two levels of actions that
WACR needs to take at each time slot. First, stay on the
current sub-band or choose a new one. Second, choose the
best channel for communications in the corresponding sub-
band. The first action is triggered by the indication function
(2). In particular, if f(µn(t)) is evaluated to be −λ for J
successive time slots in the current sub-band k, for any n ∈
{1, · · · , Nk}, then the WACR switches to a new sub-band.
This means that if the WACR failed to receive the signal
of interest with acceptable SINR on the chosen channel/s
in the current sub-band for J successive time slots it will
move to a new sub-band. For sub-band switching, the WACR
chooses the sub-band with the largest g(ϕk) from the list B,
∀k ∈ {1, · · · ,K}. Once the sub-band is decided, the problem
becomes which channel to choose for communications inside
this sub-band.

The interference avoidance problem inside each sub-band
can be modeled as a Markov decision process (MDP) in
which the WACR selects action a(t) at time t. Therefore,
the overall problem inside the wideband spectrum of interest
can be considered as a multi-task DRL, where each sub-
band represents a single task. In this work we propose using
DDQN with CNN for a WACR to select an interference-
free channel in each sub-band. The state at time t, denoted
by S(t), consists of the indicies of the current sub-band
and the channel, the corresponding indication function and
the most updated sensing results of that sub-band, i.e.,
S(t) = [b(t), a(t), f(µa(t)), ϕb(t)(t)]. On the other hand, the
reward function of choosing channel a(t) for communications
while in state S(t) is defined as follows:

r(S(t), a(t)) =
βµa(t), if communications over channel

a(t) was successful

−βe−
µa(t)
β , otherwise

(4)

where β > 0 is a weighting factor. The function r(S(t), a(t))
is designed to obtain a certain reward value proportional
to the received SINR if the communications over channel
a(t) was successful while a penalty is received in case of
communications failure.

Algorithm 1 summarizes the proposed DDQN-based in-
terference avoidance approach inside a single sub-band. The
WACR is currently assumed to operate over the kth sub-
band, i.e, b(i) = k, ∀i ∈ Z. Furthermore, it selected the



Algorithm 1 DDQN-aided proposed spectrum-agile algo-
rithm for a single sub-band

1: Initialize:
Parameters λ, µ, γ
The weights θ of the Q-network
The weights θ− of the target Q-network

2: for each time slot t do
3: Determine µn(t)
4: Estimate f(µn(t))
5: Obtain ϕk(t) from sensing operation
6: Create state S(t)
7: With probability ε(k):

Choose a(t) = ck(t) ∈ A at random
8: Otherwise:

Obtain Q(S(t), a′) from the proposed CNN ∀a′ ∈ A
Select a(t) = argmax

a′
Q(S(t), a′; θ(t))

9: Use channel a(t) inside sub-band k to transmit signal
10: Store new experience e(t − 1) = {S(t − 1), a(t −

1), r(S(t− 1), a(t− 1)),S(t))} in data set D
11: for i=1,· · · ,I do
12: Select e(i) = {S(i), a(i), r(S(i), a(i)),S(i +

1)} ∼ U(D)
13: Compute target Y via (7)
14: Compute the gradient of the loss function (6)
15: Update θ(t)
16: end for
17: Reset θ−(t) = θ(t) for every L iterations.
18: end for

nth channel to transmit at time slot t − 1 (a(t − 1) = n).
For each time slot t, the WACR estimates the SINR of the
received signal µn(t) to determine whether the transmission
was succssful or not using f(µn(t)) given in (2). On the
other hand, through sensing, the WACR obtains vector ϕk(t)
to determine the availability of other channels inside the
kth sub-band. Both information from communications and
sensing are used to create current state S(t). The state is
reshaped into a (dNk/3e + 1) × 3 matrix and taken as the
input to the CNN.

The CNN estimates the Q-values for all possible actions.
The optimal action a(t) is chosen with probability ε(k) −
1, and a random action a(t) ∼ U(A) is selected uniformly
with probability ε(k) to avoid staying in a local optima. The
exploration rate ε(k) is defined by using ν(k) which is the
number of visits to sub-band k, as follows:

ε(k) =
1

log2(
ν(k)
Nk

+ 2)
. (5)

For DDQN training, experience replay is used in which
WACR’s experiences e(t) = {S(i), a(i), r(S(i), a(i)),S(i +
1)} at each time instant t are stored in an experience replay
buffer D(t) = [e(1), · · · , e(t)]. During learning at time t, we
draw uniformly at random an experience e(i) ∼ U(D(t)),
for 1 ≤ i ≤ t, from the set of the stored experiences. The
weights θ(t) of the Q-network (CNN) at time t are then
updated according to the stochastic gradient descent (SGD)
using the loss function below:

L(θ(t)) = Ee(i)∼U(D(t))[(Y −Q(S(t), a(t); θ(t))2], (6)

Table I
SIMULATION PARAMETERS

Spectrum 400 to 600 MHz, 800 to 1200 MHz, 1860 to
2060 MHz, 2300 to 2700 MHz

N 60 channels
K 6 sub-bands
µth 10 dB
γ 0.8
J 10
I , L 5
λ, η, β 10

where Y is the target Q-value. This process is repeated for
I times at each time instant t in which θ(t) is updated
according to I randomly selected experiences. The DDQN
maintains two Q-networks: the Q-network (with weights θ)
and the target Q-network (with weights θ−). The learning
network Q(S, a; θ) keeps the current parameters which may
get updated several times at each time-step, while target Y
is computed by the target network with old parameters i.e.,
Q(S, a; θ−) as follows:

Y = r(S(t), a(t)) + γ Q(S(t+ 1), a∗; θ(t)−), (7)
where

a∗ = argmax
a′

Q(S(t+ 1), a′; θ(t)).

The parameter 0 < γ < 1 denotes the discount factor. The
old parameters θ− are set equal to parameters θ every L
iterations.

As mentioned earlier, the problem is modeled as a multi-
task DDQN where each sub-band represents a single task.
One solution is to use different Q-networks for each task (i.e.
each sub-band), at the expense of increased computational
complexity and memory requirements especially when there
is a large number of sub-bands. In this work we propose
using transfer learning (TL) between tasks [20]. TL allows a
network that is proven to do well on some task to be adapted
to a separate but potentially related task by reusing what is
learned. In our case, we use a network that has performed
very well at estimating Q-values for one sub-band and adapt
it, with a little more training, to estimate Q-values for another
sub-band.

Hence, since the objective of each task is identical and the
number of channels in each sub-band is the same, a single
Q-network can be used for all tasks instead of using separate
networks for each task. If the channel-availability dynamics
of the new sub-band is close to that of the previous sub-band,
TL may speed up learning of the new task. However, if they
were to be significantly different (which is to be expected),
this may not be the case. To address this problem, we propose
using a single Q-network, but with different output layers
and separate replay memory buffers dedicated for each task.
Note that, having separate replay memory buffers assigned for
each task is essential so that each task is trained according
to it’s own experience. The sub-band index is used to switch
between the different output layers and the replay memory
buffers.

IV. SIMULATION RESULTS

In the following we used the data collected from 30 MHz
to 3 GHz at a single location in Vienna, VA for 87 hours
[21]. Table I shows the simulation parameters. We considered



Figure 2. Comparison of the average SINR values.

noncontiguous wideband spectrum that is divided into 6
sub-bands each with 200 MHz bandwidth. Each sub-band
consist of 10 channels with 20 MHz each. Thus, the total
number of channels is 60. Based on the observations of the
spectral activities in [21], the noise floor in each channel
is set equal to -100 dBm. To incorporate fading effects, we
consider different received signal strength for each channel.
In particular, the received signal strength at any channel can
take any value between -30 dBm to -60 dBm.

From the description above, the state S(t) at any time t is
reshaped into a 5× 3 matrix, where any empty locations are
filled with zeros. Then, it is used as the input for the CNN.
The proposed CNN architecture for the DDQN algorithm
consists of one convolutional layer that includes 10 filters
with size 2× 2 and stride 1. This is followed by an average
pooling layer of size 2×1 and a rectified linear unit (ReLU).
Finally, a fully connected layer with 10 rectified linear units
is used.

In the following, the proposed algorithm is used with two
configurations: with and without transfer learning, named
multi-task DDQN w/ TL learning and multi-task DDQN w/o
TL, respectively. In the first configuration, only one CNN
is used for all tasks, albeit with different output layers and
experience replay buffers for each task. In the second config-
uration, six different CNNs are used, one per each task. For
comparison, we also implemented two other techniques: First
is the single-task DDQN based on the technique introduced
in [16]. Using the same parameters described above with a
memory depth equal to 10, the state of [16] is represented by
a 11× 60 matrix. Second is the Q-learning algorithm, where
the state only consists of 2 values: state that includes only
the index of the communications channel and the indicator
for successful communications. Note that, in both single-task
DDQN and Q-learning there is only one level of action, where
the WACR directly selects one channel for communications
among N channels without any spectrum sub-banding.

Fig. 2 shows the average estimated SINR values for the
four techniques. From Fig. 2, we observe that both con-
figurations of the proposed multi-task DDQN achieves the
highest SINR compared to the single-task DDQN and the Q-
learning. It is noticed also that the Q-learning outperforms
the single-task DDQN. This is due to the state definition in
[16] in which the majority of the values are zeros as the
number of channels becomes large. This could negatively
affect the feature extraction process in the CNN. On the
other hand, Fig. 3 shows the percentage of time of achieving

Figure 3. The percentage of successful communications.

successful communications, i.e. SINR>10 dB. It can be seen
from the figure that the proposed technique outperforms both
the single-task DDQN and the Q-learning.

After 3000 iterations, the proposed multi-task DDQN ap-
proaches w/ and w/o TL were able to preserve the con-
nectivity over the link of interest and perform successful
communications for 95% and 94.5% of the time, respectively.
Although both configurations achieve similar performance,
using TL is clearly preferable from the computational com-
plexity perspective. This is because TL allows using a single
Q-network for all tasks, approximately reducing the computa-
tional complexity by a factor of 6 (in this example) compared
to that w/o TL. In general, when there are Nb sub-bands, if
the computational complexity of the multi-task DDQN w/o
TL is O(M), then by using multi-task DDQN w/ TL it will
approximately be reduced to O(M/Nb), ignoring the costs
associated with implementing separate output layers.

V. CONCLUSION

In this paper we have proposed a multi-task DRL, based
on DDQN, for WACR to achieve spectrum agility over non-
contiguous wideband heterogeneous spectrum. The proposed
approach divided the wideband spectrum of interest into a
number of non-overlapping sub-bands and the problem is
solved at the sub-band level where each sub-band represents
a single task. In particular, the WACR uses DDQN to learn a
policy to select the best communications channel inside each
sub-band that will maximize SINR. In order to reduce the
computational complexity and speed-up the learning process,
transfer learning is allowed among tasks. A single deep Q-
network is considered for all tasks with different output
layers and experience replay buffers for each task. With
simulation results, it is shown that the proposed approach
is able to achieve better reliability performance compared to
the single-task DDQN and Q-learning. After 3000 iterations,
the proposed multi-task DDQN was able to avoid interference
signals for 95% of the time.
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