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ABSTRACT assuming orthogonal signalling [5] showed that the Bayesian fusion
probability of error is minimized by a finite number of nodesfor

Recently there has been a significant interest in distributed detecti%y given total power constraint. Beyond the optimal vatggany

and data fusion with analog-relay amplifier local processing undefempt to include more nodes to the system will degrade the perfor-
a global power constraint [1-3]. In particular, it was shown in [3] nance.

that the optimal fusion performance for a distributed stochastic sig- |, this paper we extend previous work mentioned above, and in
nal detection is achieved by a finite number of sensors. In this Pap&articular the results of [5]. First, we propose a system optimiza-
we propose a sensor system optimization method based on the Bhgh, method to obtain the optimal number of sensor nodes that re-
tachrya error exponent. In addition to the globe}l power cons_traint W&uits in the best Bayesian fusion performance. Second, we gener-
also consider the case in which the total available bandwidth mayjize the situation considered in [5] by also taking into bandwidth
also be limited. Assuming an equi-correlated signalling model We;onsiraints. Assuming that sensor-to-fusion center communication
derive the error exponents to the Bayesian fusion performance fg non-orthogonal we derive the fusion performance under a global
asymptotically large systems. Again we optimize the Sensor sySsysiem power constraint. We show that the performance is still op-
tem size based on the Bhattacharya error exponent and provide sSifizeq by a finite number of sensors and obtain simple expressions
ple rules that are valid for either the low or high observation SNRor the optimal number of sensors that are valid for either the low or

regimes. high observation SNR regimes.
The remainder of the paper is organized as follows: In Section
1. INTRODUCTION 2 we present our sensor system model and derive the optimal fusion

detector for a stochastic Gaussian signal. In Section 3 we investigate

Fuelled by various applications of low-power wireless sensor netthe fusion performance via error exponents, derive expressans f
works, recently there has been a growing interest in design and andhe qptlmal sensor system sizg and provide numerical examples.
ysis of distributed detection systems under sensor-to-fusion cent&ection 4 concludes the paper.
communication constraints. In this paper, we consider a sensor sys-
tem subjected to both finite global bandwidth as well as power con- 2. SYSTEM MODEL AND OPTIMAL FUSION
straints such that as the number of nodes in the system increases the
available power per node linearly decreases. Distributed detectiof binary hypothesis testing problem in arnode sensor system is
of a deterministic and a stochastic Gaussian signal in such a netwodssumed. The null and alternative hypotheses are denotéd apd
was previously considered in [1-4] and [5], respectively. Though n H;, respectively, having corresponding prior probabilitidi,) =
the optimal, all of them confined the local processing to the speciato and P(H1) = 7. Under the alternative hypothesis the observed
case of analog relay amplifier processing. This greatly facilitates thetochastic process consists of a Gaussian signal, denot&d Ifiyr
analysis and can also give useful insight into the performance wittk = 1, - - - n, corrupted by additive Gaussian noise. Thth node
more general quantized local decision schemes. Analog relay pr@bservatior;, can be written as
cessing has also shown to perform very well in the presence of ad-
ditive noise and is well-suited for low-power sensor networks.Thus, Ho: z =
in this paper we also consider the case of analog processing at the Hy: zr = Xi+ vk, Q)
sensor nodes.

It was shown in [2] and [3], respectively, that the fusion perfor-

mance of distributed detection ofdeterministicsignal in a global 05 ivel ® denotes th tor of all |
power-constrained sensor system monotonically improves with inN.( , Xa), respectively, and denotes @-vector of & zeros.’ n
rtlh's paper, we concentrate on the case in which bgthand X;'s

creasing system size under both orthogonal and non-orthogorsairse ! . . oo ",
to-fusion center communications. In other words, it is always bette re independent and |dent|cally d|str|buted. (||d).sequer.1ces so that
' = o2l andY, = o2I wherel is then x n identity matrix.

to divide the available total power among as many sensor nodes Each local its ob ationnd dentl
possible. In contrast, [5] showed that this is no longer true if the ach local Sensor processes 1is observatpnndependently

signal to be detected is a stochastic (Gaussian) signal. In particuIeIP generate a Iogal deC'S'%(ZU Wh'Ch are sent to the fusion
cénter over a noisy, bandlimited wireless channel. Let us denote
This research was supported in part by Kansas National SciPY T(u1(z1),u2(22), -, un(zn)) the received signal at the fusion
ence Foundation (NSF) EPSCOR program under the grants KUCR #enter. The fusion center makes a final decision based on the deci-
NSF32223/KAN32224 and KUCR # NSF32241. sion ruleuo(r). In general, the distributed detection and fusion prob-

where the collection of observation noise samples and the collection
of desired signal samples are distributedras A (0, 32,) andX ~




lem involves simultaneous optimization for both local and global 3. FUSION PERFORMANCE AND OPTIMAL SENSOR
(i.e. fusion) decision rules; (z1), uz2(z2), - - - , un(2n), uo(r). How- SYSTEM DESIGN

ever, a class of important local processers are the amplify-ang-rela

schemes in which each node amplifies and retransmits its observd-l. Orthogonal Signalling

tion to the fusion center such that In this case we have th& = I such that the fusion error probability

ur, = gz fork=1,---n can be determined exactly as was given in [5]. The resulting expres-
sion is, however, difficult to optimize over the sensor system size to
obtain a useful design rule. As a solution, in this paper we resort to
the error exponents. In particular, we have the following:

whereg;, > 0 is the analog relay amplifier gain at theth node that
depends on the total average power constrBindn the whole sen-
sor system. For simplicity, throughout this paper we assgime g

for all k. (The issue of (distributed) power allocation will be consid- Proposition 1 The Chernoff and Bhattacharya error exponents with

ered in a future wo}gk). With this assumption, the amplifier gaia orthogonal signalling.2: and.%; respectively, corresponding to the

given byg? = —QE? Note that, the available power per node Bayesian fusion performance are given by
n|loy+—o-
linearly decreases as more nodes are introduced into the system. We n 1+ 02 9
define the observation quality and channel quality signal-to-noisera- #c = 5 {bg W — S0 log (1 + 01)} , (M)
2 1
tios (SNR) asyo £ Z andy. £ £, respectively.
A sufficient statistic at the fusion center is given byﬂqdimensionaq‘,nd
matched filter output that can be written as 0 nl1 | . 02 g
= —|zlog(l+o07)—log(l4+—=|],

r — gRziw @ 1B 2{2 g (1 +07) g( 2)} (8)
wherew ~ N(0,02R) is the receiver noise anR. is then x whereg? = —20 50 =1+ 4 — — L __in(7) and we have
n, symmetric and normalized received signal correlation matrix in t35e o1 log(l+o?)

which the(k, k')-th element represents the correlation between th&l€finedye = @
signalling waveforms of noddsandk’. It can be shown that in most cases the upper bound to the per-
Using spectral decomposition B it can be shown (we omitthe formance in terms of the Bhattacharya error exponent is close to that
details due to space limitations) that the optimal fusion rule is giverwith the Chernoff exponent. Due to its particularly simple struc-
by ture, thus we propose to optimize the sensor systems based on the
Bhattacharya error exponent. Note that, numerical examples show
that for the range of SNR’s that we consider the optimak ng
with Bhattacharya error exponent exactly matches that for the ex-
act fusion performance. This is due to the fact that even when the
/ n g2 (02402 Ap+o2 bound is some what loose the behavior of the exact performance
wherer’ = 2log7 + 3.5, log ( 92T AR+, and the Bhattachraya bound are almost the same. In pr))articular, we
variableT’(.) is the quadratic forr” (r) = "1, |yx|*, Aw’sarethe  can show thatim, ... us = 0. This indicates that the Bhat-

Oopt(r) = if T(r) T 3)

), the decision

eigenvalues of matri®®, andY,--- , Y, are a set of independent, tacharya upper bound to the error probability agrees with the con-
zero-mean, Gaussian random variables. The variaﬁga)f the k- clusionlim, .., P. = 0.5 shown in [5]. Following proposition
th sampleY), underH; can shown to be summarizes the solution to the sensor system optimization problem
0202, "y in the case of orthogonal signalling under a global power constraint.
o2 = p] e ) pourwe SR 0 4) " _ .
Jk o= 9202 T Proposition 2 The optimal number of nodes, that results in the
920% N +o2, J= tightest Bhattacharya upper bound to the fusion error probability in

In this paper we consider Bayesian optimal fusion detectors. Thug distributed sensor system subjected to a global power constraint
our basic performance criteria is the probability of fusion error de-Fo is given by,

noted asP.. While only in very special circumstances one can eval-

uate the exact probability of errd?. of (3), even in those cases no = e (L _ i) (9)

it may be in terms of special functions that might require numeri- (% + %> 2z0 7o

cal computations [5]. As a result, they may not give much insight

into the design of decentralized sensor systems. On the other hanglherex = z is the unique positive solution to the equatjbg (z) =
while not exact, error exponents (and the bounds based on them)with

can be very useful in characterizing the performance of a detection

procedure in most situations. The most commonly used bound for fro(z) = log
Bayesian detection is the Chernoff bound given by (with equal pri- ”° 1+
ors)P. < %e“c where Chernoff error exponent is defined as

@“L(l_i_:) (1+x)$(21+2z)'

The optimal number of sensors for a given total power constraint

po = WIEI?})III] log E{L°(r)|Ho} . (5)  can be approximated as follows:
Although somewhat loose than the Chernoff bound a much easier ne 7= ify>1 (10)
to evaluate is the so-called Bhattacharya upper baaned %e“B Yo fypokl’

where Bhattacharya error exponess is defined as [6] _
, whereio ~ 1.535 is the unique zero of the functigitz) = log 2%+
U = logE{LE(rﬂHo}. (6) 22
+o)(1t20)"




""""""" iy : M1 =1—p2x,and), =1+ (n—1)p 2 X\,. Note that,

B / this single different eigenvalue makes the closed form analysis of
the error probability significantly difficult and requires integration
of a pdf involving the confluent hypergeometric function [5]. Let
us denoter? ), = 07, = 72—, fork = 1,--- ,n — 1, and

(1—p)¥
oln =01, = T7——%—— under the hypothesil;, correspond-
/ (1—;£+p)‘v
/ ing to the eigenvaluea, and\,. The Chernoff and Bhattacharya
B error exponents in this case is stated in the Proposition 3 at the top

(@ f () (b) Zero of £, (. of next page.

Fig. 1. Sensor system optimization under a total power constraint. 9
Ye =20 dB. 300

T T T
numerical: Y, = 15dB Yo = -20dB
numerical: y_ = 15dB, y; =20 dB ]
approx:y, = 15dB, Yo << 1
approx:y_ = 15dB, Yo >> 1
numerical: Y, = 20dB Yo = -20dB
numerical: Y, = 20dB Yo = 20 dB
approx:y_ = 20dB, Yo << 1
approx:y_ = 20dB, Yo >> 1
numerical: Y, = 25dB Y, =20 dB ||
numerical: Y, = 25dB Yo = 20 dB
—— approx:y_ = 25dB, Yo << 1

—A- approx:y, = 25dB, Yo>> 1

250

Proof 1 Omitted (can be found in [7]).

The functionf,, is shown on Fig. 1a as a parameterized plot. It
is a well-behaved, smooth function with a unique zero. Moreover, as  *®
can be seen from Fig. 1b, for both very small and very large values
of o the zero off,, converges to fixed limits. In Fig. 2 we have < ,
shown the optimal number of sensor nodes for distributed detection
of a stochastic signal under a total power constraint obtained via
the exact solution to the zero gf,,. Figure 2 shows that indeed
the asymptotic solutions given in (10) provide a good approximation
except for a small range of values for the observation ShR 50

f>4E.J¢DO+++*
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sensor-to-fusion center communication.
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A plot of the (tightest) Chernoff and Bhattacharya error expo-
£ 50 ] nents shows that, as with individual node power constraints, the per-
formance degrades asincreases. Moreover, it can be shown that

© | there is an optimal number of sensor nodes that results in the lowest

oF ———_ : upper bound for each. As before, we base our sensor system op-
S~ timization on the Bharracharya error exponent. However, unlike in
» \ the case of orthogonal sensor-to-fusion center communication, a di-
10 i rect optimization ofuz as a function of. does not, in general, yield
a closed-form expression.
S0 20 0 20 20 60 8 In Fig. 3 we have shown the numerically obtained optimat

Yo no as a function ofp for different-y, and~. values. As can be ob-

served from Fig. 3, for a fixegl, and~., the optimal, decreases as
Fig. 2. Optimal sensor system size as a function of observation SNR function ofp. In fact, an asymptotic expansion shows that optimal
for a given global power constraint with orthogonal sensor-to-fusio n, can be approximated as follows:

center communication. (1—p)r .
oo~ { o R 13)
1=p)y. froxl

3:2. Non-orthogonal Signalling where is the unique zero of the functiof(.) defined in Proposi-

The validity of orthogonal signalling model may not be justified in tion 2. In Fig. 3 we have also included the above approximations to
a practical system due to various reasons, in particular when theptimaln,. Note that, for a fixedy. asp increases, the approxima-
system is subjected to a total bandwidth constraint. A commonlyions in (13) worsen. Itis interesting to note from (13) thit- p)~.

used non-orthogonal signalling model is the equi-correlation modetssentially acts as the effective channel SNR. This shows that the
in which correlation between any two different signalling waveformseffect of non-orthogonal signalling always degrades the final fusio

is assumed to be the same, so i, = 1 and[R] ,» = p for performance. The larger the signalling waveform correlatighe

k # k' where|p| < 1 is the common correlation between any pair more the performance will degrade as one would expect intuitively.
of received signalling waveforms (in the following we will assume Note that, in general, this is not the case in fusion of a deterministic
that0 < p < 1. The analysis for negative follows easily). The signal with analog local processing as was shown in [8]. With a de-
eigenvalues oR can easily be shown to b, = Ay = -+ = terministic signal, at least when the system is perfectly synchronized



Proposition 3 The Chernoff error exponent for Bayesian fusion performance iniblig&d stochastic Gaussian signal detection with equi-
correlated sensor-to-fusion center signalling is

e = "o L 11— s0)log (1 +02.,) —log (1 + (1 — s0)o2,)] + % [(1 = s0)log (1 + o) —log (1+ (1 = s0)as)]
where
" 350 1+ VI+EKr) - 1+$ (VI+EK—1) if§0§1+$b a
1150 (1-VI+E)+ 1+ #b (VI+Ki+1) otherwise
WithK; = — 42 g, — v%l,a —#b, K3 = (n—1)log (1+0%,)+log (1 + 07 ,) andsy = 1"‘%_%- The corresponding

K| 1+ —— 7§0>
1

Bhattacharya error exponent can be written as

n

—11 9 0la 1
©“B 5 [ilog(l-l-al,a)—log(l—%- 5 )}4—5

1 a;
5 log (1+07;) —log <1 + #)] . (12)

the non-zerg can in fact improve the fusion performance due to the[7] S. K. Jayaweera, “Bayesian fusion performance and system op

beam-forming effect. timization in distributed stochastic gaussian signal detection un-
der communication constraintsJEEE Trans. Sig. Pro¢.Sep.
2005, submitted.

[8] K. Altarazi, S. K. Jayaweera, and V. Aravinthan, “Performance

In this paper, we considered sensor system optimization problem for  ©f dese_ntrahzed detection in a resource-constrained sensor net-
a distributed detection and fusion system under global power and WOrk," in 39th Annual Asilomar Conf. on Sig., Syst. and Com-
bandwidth constraints. Assuming analog relay amplifier local pro- ~ Put, Pacific Grove, CA, Nov. 2005, To appear.

cessing we derived the error exponents to the fusion performance

and proposed a method based on the Bhattacharya error exponent to

obtain the optimal sensor system size. We have also shown simple

approximations to the exact solutions that are valid for either the low

or high observation SNR regimes and provide useful insight.

4. CONCLUSIONS
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