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Abstract

We consider the problem of optimal power scheduling
for the decentralized detection of a deterministic signal in
an inhomogeneous wireless sensor network. The observa-
tion noise at local sensors is assumed to be independently
and identically distributed (i.i.d.) and at the local sensors
each node performs analog-relay ampli�er processing for
its observation independently. The communication between
the local sensors and the fusion center is assumed to be
through an inhomogeneous channel. The optimal power
scheduling scheme suggests that the sensors with poor ob-
servation quality and channels should be inactive in order
to save total power expenditure of the system. For the re-
maining active sensors the optimal transmit power is deter-
mined jointly by the individual channel gains, total num-
ber of active sensors, local observation signal to noise ratio
(SNR) and the required probability of error at the fusion
center. We show that the optimal scheme can provide signif-
icant system power savings compared to the uniform power
allocation scheme when the number of sensors in the system
is large.

1 Introduction

Wireless sensor networks (WSN) are ideal for a wide
variety of applications such as environmental monitoring,
smart factory instrumentation, intelligent transportation and
military surveillance [6] because of their low implementa-
tion cost, agility and robustness to sensor failures . Low
power sensors are manufactured using low cost miniature
sensing technologies together with widely available com-
puting resources necessary to handle complex data. The
use of wireless sensor networks in video surveillance sys-
tems is presented in [5]. It shows that such system takes the
advantage of the redundant information coming from multi-

ple sensors monitoring the same target and this information
is fused together to obtain a more accurate estimate. They
also showed that multisensor surveillance system outerper-
forms the single sensor system in object tracking. The use
of WSN in surveillance systems is becoming popular due
to its enhanced monitoring and control capabilities in large
environments.

Typically, in a wireless sensor network (WSN) the sensor
nodes are equipped with small batteries. The replacement
of batteries may not be convenient due to cost of the equip-
ment and dif�culties in accessibility. This leads to power
constrained wireless communication between sensor nodes
and the fusion center. The optimal data fusion in a WSN
is limited by system power, channel properties and other
communication constraints such as available bandwidth. In
[2], [3], the fusion performance of total power constrained
sensor systems are considered. The problem of distributed
detection under communication constraints has been con-
sidered in [1], [4]. Detection problems with a constraint
on the expected cost arising from a measurement have been
addressed by various authors. In [1], they considered the de-
tection problem with constraints on the expected cost aris-
ing from transmission ( from sensor nodes to a fusion node)
and measurement (at each sensor node) to take into account
some of the system level cost constraints in a sensor net-
work.

In this paper we consider the optimal power allocation
for decision fusion in an inhomogeneous sensor network.
This work is motivated by [6], which considered the optimal
power scheduling for decentralized estimation. We consider
a WSN consisting of a fusion center and a large number of
spatially separated sensors. The local sensor nodes collect
observations, computes a local message and transmit it to
the fusion center. The local observation noise is assumed to
be independent and identically distributed. We also assume
that each node performs analog-relay ampli�er processing
on its own observation. The locally processed data is sent



by each node to the fusion center over a noisy wireless chan-
nel to make a �nal decision. The channel is assumed to be
inhomogeneous. As we will show, according to the opti-
mal scheme that conserve power of the whole system, the
sensors with poor observation quality and bad channels be-
come inactive while the rest of the sensors transmit locally
processed data. We will show that when local signal-to-
noise ratio is high a very small number of sensors should
be active to achieve the required fusion error performance
while a relatively large number of sensors should be active
when the local signal-to-noise ratio is low. But still it has
better performance in terms of system energy consumption
than that of the uniform power allocation.

The remainder of this paper is organized as follows: Sec-
tion 2 formulates the fusion problem. In Section 3 the op-
timal fusion performance is analyzed. Optimal power al-
location scheme is given in Section 4. Section 5 presents
the performance results and �nally concluding remarks are
given in Section 6.

2 Fusion Problem Formulation

We consider a binary hypothesis testing problem in an n-
node distributed wireless sensor network. The k-th sensor
observation under each hypothesis is given by,

H0 : zk = vk; k = 1, 2, ...., n

H1 : zk = xk + vk; k = 1, 2, ..., n , (1)

where vk is the observation noise and xk is the signal to be
detected. In vector notation (1) becomes, z = x + v, where
v is a zero mean Gaussian n-vector of observation noise
samples with covariance matrix Σv. We assume that vk's
are independently and identically distributed (i.i.d) so that
v ∼ N (0, σ2

vI). We consider the detection of a determinis-
tic signal so that xk = m for all k. Let us de�ne the local
observation quality SNR at each node as γ0 = m2

σ2
v

. The
prior probabilities of the two hypotheses, H1 and H0 are
denoted by P (H1) = π1 and P (H0) = π0, respectively.

In a distributed network, each node precesses its own ob-
servation to produce a local decision uk(zk) and sends it to
the fusion sensor. Here we assume that amplify and relay
local processing is used at each node, according to which
each node retransmits an ampli�ed version of its own ob-
servation to the fusion center. This class of sensors was
shown to perform well when the observations at the sensor
nodes are corrupted by additive noise [3]. Then, the local
decisions sent to the fusion center are ,

uk = gkzk; k = 1, 2, ...n ,

where gk is the relay ampli�er gain at node k. The received
signal at the fusion center is

rk = gkzk + wk; k = 1, 2, ....n ,

where channel noise wk ∼ N(0, σ2
k) is assumed to be in-

dependent but not identically distributed across the sensor
nodes. Under each hypothesis, the received signal rk is
given by

H0 : rk = nk; k = 1, 2, ...., n

H1 : rk = gkxk + nk; k = 1, 2, ...., n

where nk = gkvk +wk and nk ∼ N(0, g2
kσ2

v + σ2
k). In vec-

tor notation, r = Ax + n where A = diag(g1, g2, ...., gn).
The detection problem at the fusion center can be formu-
lated as,

H0 : r ∼ p0(r) = N(0,Σn)
H1 : r ∼ p1(r) = N(Am,Σn) (2)

where Σn = diag(g2
1σ2

v + σ2
1 , g2

2σ2
v + σ2

2 , · · · , g2
nσ2

v + σ2
n).

The log-likelihood ratio (LLR) for the detection problem
(2) can be written as,

T (r) = mT AΣ−1
n r− 1

2
mT AΣ−1

n Am (3)

= m

n∑

k=1

gk

g2
kσ2

v + σ2
k

rk − m2

2

n∑

k=1

g2
k

g2
kσ2

v + σ2
k

(4)

It is well known that optimal fusion tests should be
threshold tests on the above LLR. Thus the optimal
Bayesian decision rule at the fusion center is given by,

δ(r) =
{

1 if T (r) > log τ
0 if T (r) < log τ,

(5)

where τ is the threshold given by τ = π1
π0

(assuming mini-
mum probability of error Bayesian fusion). Substituting (4)
in (5) leads to,

δ(r) =
{

1 if r̄ > τ
′

0 if r̄ < τ
′

where r̄ = m
∑n

k=1
gk

g2
kσ2

v+σ2
k
rk and we have let τ

′
=

log τ + m2

2 d2 with d2 =
∑n

k=1
g2

k

g2
kσ2

v+σ2
k

.

3 Analysis of Optimal Fusion Performance

Note that r̄ is distributed as r̄ ∼ N(0, m2d2) and r̄ ∼
N(m2d2,m2d2) under H0 and H1, respectively. Hence the
false alarm probability at the fusion center is,

Pf = P (r̄ > τ
′
/H0) = Q

(
τ
′

md

)

= Q

(
log τ

md
+

md

2

)
. (6)



where Q-function is de�ned by

Q(x) =
1√
2π

∫ ∞

x

e−
ζ2

2 dζ.

Similarly, the probability of detection is given by,

PD = P (r̄ > τ
′
/H1) = Q

(
log τ

md
− md

2

)
. (7)

The probability of error at the fusion center for a
Bayesian detector is then,

P (E) = Pfπ0 + (1− PD)π1,

=
1
2
(1 + Pf − PD) , (8)

where prior probabilities are assumed to be equal. Substi-
tuting (6) and (7) in (8) gives,

P (E) = Q

(
md

2

)
, (9)

where, as before, d2 =
∑n

k=1
g2

k

g2
kσ2

v+σ2
k

and we have used
the fact that τ = 1 for equal priors.

It is interesting to note that,

lim
g2

k→∞
d2 = lim

g2
k→∞

n∑

k=1

g2
k

g2
kσ2

v + σ2
k

=
n

σ2
v

. (10)

From (9) and (10) it can be seen that the probability of fu-
sion error for in�nite local ampli�er gain has a performance
�oor.

P (E) = Q

(√
nγ0

2

)
. (11)

Therefore, for a �xed n, the probability of fusion error is
limited by the observation quality at local sensor nodes.

4 Optimal Power Allocation

In the following, we derive an optimal power allocation
scheme that minimizes the total power spent by the whole
sensor network. In contrast, in a uniform power alloca-
tion scheme each sensor node transmits locally processed
data to the fusion center with equal power irrespective of
the quality of local observation and channel. In this case,
the nodes having small local SNR and poor channels waste
power since their contribution to the decision at the fusion
center may be negligible. In the optimal power allocation
scheme, on the other hand, sensor nodes transmit locally

processed data depending on the local SNR and the chan-
nel quality. The optimal power allocation problem can be
formulated as

min
gk≥0

n∑

k=1

g2
k ,

such that

P (E) ≤ Pe, (12)

where Pe is a given threshold of required fusion error prob-
ability. Using (9) in (12), it is easy to see that the constraint
(12) can equivalently be written as

q ≤ d, (13)

where we have de�ned q = 2
mQ−1(Pe). From (13) we can

write, q2 − d2 ≤ 0 since q and d are positive.
Therefore the optimal power allocation problem can be

rewritten as,

min
gk≥0

∑n
k=1 g2

k,

such that

q2 −∑n
k=1

g2
k

g2
kσ2

v+σ2
k
≤ 0,

and
gk ≥ 0 for k = 1, 2, ..., n .

The Lagrangian for the above problem is,

G(L, λ0, µk) =
n∑

k=1

g2
k + λ0

[
q2 −

n∑

k=1

g2
k

g2
kσ2

v + σ2
k

]

+
n∑

k=1

µk(−gk).

where λ0 ≥ 0 and µk ≥ 0 for k = 1, 2, .., n. Then, the
KKT conditions are given by,

2gk − λ0
2gkσ2

k

g2
kσ2

v+σ2
k

2

− µk = 0 for k = 1, 2, ..., n,(14)

λ0

[
q2 −∑n

k=1
g2

k

g2
kσ2

v+σ2
k

]
= 0, (15)

µkgk = 0; for k = 1, 2, ...n,

q2 −∑n
k=1

g2
k

g2
kσ2

v+σ2
k
≤ 0,

and
gk ≥ 0; k = 1, 2, ...n . (16)

In order to �nd a solution that satis�es above KKT condi-
tions, let us assume λ0 6= 0 and µk = 0 for k = 1, 2, · · · , n.
Then, for gk 6= 0, from (14),

g2
k =

σ2
k

σ2
v

(√
λ0

σk
− 1

)
, (17)



10
−4

10
−3

10
−2

10
−1

0

5

10

15

20

25

Probability of Fusion Error

T
ot

al
 P

ow
er

 in
 d

B

 

 

Optimal power n=50
uniform power for n=50
Optimal power n=100
uniform power for n=100
Optimal power n=200
uniform power for n=200

10
−4

10
−3

10
−2

10
−1

0

5

10

15

20

25

Probability of Fusion Error

T
ot

al
 P

ow
er

 in
 d

B

 

 

Optimal power n=50
uniform power for n=50
Optimal power n=100
uniform power for n=100
Optimal power n=200
uniform power for n=200

(a) (b)

Figure 1. Total Power Vs Probability of Fusion Error (a) γ0 = 3dB (b) γ0 = 5dB .

Let us de�ne the set Φ such that Φ = {k; gk 6= 0}. From
(14), (15) and (17) we then have

√
λ0 =

∑
k∈Φ σk

|Φ| − q2σ2
v

, (18)

where |Φ| denotes the cardinality of set Φ.
Let us de�ne a function f(.) as below:

f(k) =
σk(k − q2σ2

v
)

∑k
j=1 σj

, 1 ≤ k ≤ n

Suppose that, without loss of generality, σ1 < σ2 <
· · · < σn. Then it can be shown that (see Appendix), we can
�nd a unique K1 such that f(K1) < 1 and f(K1 + 1) ≥ 1
for 1 ≤ K1 ≤ n. The value of K1 can be found by
searching the maximum integer k such that f(k) < 1 where
k = 1, · · · , n. Then (18) is given by

√
λ0 =

∑K1
k=1 σk

K1 − q2σ2
v

=
σK1

f(K1)
. (19)

From (17) and (19)

g2
k =

σ2
k

σ2
v

(
σK1

σkf(K1)
− 1

)
, (20)

which satis�es the KKT condition (16) if q2σ2
v < K1.

Suppose q2σ2
v > K1, and assume λ0 = 0 and µk 6= 0 for

k = 1, 2, · · · , n. From the KKT conditions it can be seen
that there is no non-trivial solution for gk whenever µk 6= 0
for k = 1, 2, · · · , n.

Thus the solution to the optimal power allocation prob-

lem can be given as,

g2
k =





σ2
k

σ2
v

[ PK1
j=1 σj

σk(K1−q2σ2
v) − 1

]
if f(k)− 1 < 0

and q2σ2
v < K1

0 ; if f(k)− 1 > 0
infeasible ; if q2σ2

v > K1

. (21)

Since there is a feasible optimal solution only when
q2σ2

v < K1, i.e. γ0 > 4
K1

(Q−1(Pe))2, it implies that
we can not achieve probability of errors below Q

(√
K1γ0
2

)

which is consistent with (11).

5 Performance Results

In this section we employ an example wireless sensor
network to illustrate performance gains possible with the
derived optimal power allocation scheme. The wireless
channel between local nodes and the fusion center is as-
sumed to be inhomogeneous and we assume channel noise
variances, σ2

k' s are drawn from a Rayleigh distribution with
the probability distribution function p(x) = x

σ2 e−x2/2σ2 ,
x ≥ 0. In all our numerical results we have assumed that
the mean of the Rayleigh distribution is unity.

Note that our performance measure is the total network
power expenditure de�ned as

Poptimal =
K1∑

k=1

g2
k ,

where g2
k's are given by (21) for the optimal scheme. On

the other hand in the case of uniform power allocation, the
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Figure 2. Number of Active sensors for the same local SNR (a) Fusion Error Probability = 10−3 (b)
Fusion Error Probability = 10−5 .

total power is given by,

Puniform = ng2 ,

where g2 is given by
n∑

k=1

g2

g2σ2
v + σ2

k

= q2 .

Fig. 1 shows the performance characteristics for local
sensor signal-to-noise-ratio γ0 = 3dB and γ0 = 5dB. It
can be seen that when the number of sensors are increased
then the energy savings due to proposed optimal scheme
are more signi�cant compared to uniform power allocation.
When the local signal-to-noise ratio increases it can be seen
that the total power of the system decreases since very high
ampli�cation power is not required when the observation
quality is good. When the required fusion error probability
is not signi�cantly low, it can be seen that the gain of the
optimal power allocation scheme over the uniform alloca-
tion scheme is high. According to Fig. 2, we can see that
when the required fusion error probability is high, only a
small number of sensors is active for the same local SNR
saving the total power spent by the optimal scheme. Fig. 2
also shows that it is enough to activate only a small number
of sensors when the observation quality of the local sensor
nodes is high to achieve the same fusion error probability.

In Fig. 3, the variation of the total power of the system
with local SNR is shown for n = 50 and n = 100 for the
same required fusion error probability. It can be seen that
when the local SNR increases the optimal power allocation
scheme signi�cantly outerperforms the uniform power al-
location scheme. From Figs. 1 and 3, we see that when

the number of sensors in the system is large, then the to-
tal power of the system decreases. This is because when
the number of sensor nodes in the system increases it is not
necessary for all the sensors to transmit data with a large
power level since a large number of replicas of the same
observation contributes to the fusion decision.

6 Conclusion

In this paper we derived the optimal power scheduling
scheme for data fusion in an inhomogeneous wireless sen-
sor networks. We showed that according to the optimal
algorithm the sensors with poor observation and channel
quality must be inactive to save total power spent by the sys-
tem. Moreover, when the observation quality is very good it
is suf�cient to operate a very small number of sensors out of
the total available nodes in the network keeping others shut
off. From numerical results we also observed that the op-
timal scheme provides signi�cant total energy savings over
the uniform power allocation when the number of sensors in
the system is large, or the local observation quality is good.
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Figure 3. Total Power Vs. Local SNR (a) n=50 (b) n=100 .

Appendix

In this Appendix, we show the existence of a unique K1,
where 1 ≤ K1 ≤ n is such that f(K1) < 1 and f(K1 +
1) ≥ 1 where

f(k) =
σk(k − q2σ2

v
)

∑k
j=1 σj

, 1 ≤ k ≤ n ,

and we have assumed σ1 < σ2 < ......... < σn.
When k = 1,

f(1) =
σ1(1− q2σ2

v)
σ1

< 1

So, f(k) > 1 is not possible for all k = 1, 2, · · · , n. There-
fore there are two possibilities:

• f(k) < 1 for all 1 ≤ k ≤ n: In this case we set
K1 = n.

• There exists a unique K1 such that f(K1) < 1 and
f(K1 + 1) ≥ 1, where 1 ≤ K1 ≤ n:

The uniqueness of K1 implies that for any k ≥ K1 + 1,
we should have that f(k) ≥ 1. This can be proved by show-
ing that if f(k) ≥ 1, then f(k + 1) ≥ 1. When f(k) ≥ 1, it
implies that

f(k + 1) =
σk+1(k + 1− q2σ2

v)∑k+1
j=1 σj

=
σk(k − q2σ2

v) + σk+1∑k
j=1 σj + σk+1

+
(σk+1 − σk)(k − q2σ2

v)∑k
j=1 σj + σk+1

(22)

The second term of the (22) is positive since we have as-
sumed that σk+1 > σk and k − q2σ2

v > 0 for f(k) ≥ 1.
Hence

f(k + 1) >
σk(k − q2σ2

v) + σk+1∑k
j=1 σj + σk+1

> 1

as required.

References

[1] S. Appadwedula, V. V. Veeravalli, and D. L. Jones. Energy
ef�cient detection in sensor networks. IEEE Journal on Se-
lected areas in communications, 23(4):693�702, Apr 2005.

[2] J. F. Chamberland and V. V. Veeravalli. Asymptotic results for
decentarlized detection in power constrained wireless sensor
networks. IEEE Journal in Selected Areas in Communica-
tions, 22(6):1007�1015, Aug. 2004.

[3] J. F. Chamberland and V. V. Veeravalli. Decentralized
detection in wireless sensor systems with dependent ob-
servations. In Proc. Intrenational Conference on Com-
puting,Communications and Control Technologies (CCCT),
Austin,TX, Aug. 2004.

[4] S. K. Jayaweera. Large system decentralized detection perfor-
mance under communication constraints. IEEE Comm Let-
ters, 9:769�771, Sep. 2005.

[5] L. Snidaro, R. Niu, P. Varshney, and G. L. Foresti. Sensor fu-
sion for video surveillance. In Proceedings of the 7th Interna-
tional Conference on Information Fusion, Stockholm, June.
2004.

[6] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. J. Goldsmith. Joint esti-
mation in sensor networks under energy constraints. Accepted
for pulication at the IEEE Trans.on Signal Processing, 2005.


