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Abstract

The problem of decision fusion in a large wireless sen-
sor system with many power-constrained distributed nodes
is considered. The sensor network is assumed to be in-
homogeneous. i.e. the channel statistics are not identical
among the sensors. Assuming identical, binary local quan-
tizing schemes at all the nodes, the optimal fusion scheme
is derived. The large system performance of this optimal
decision fusion detector is next analyzed. The asymptotic
fusion performance is derived via the Lindberg-Feller cen-
tral limit theorem for non-identical large samples. Numeri-
cal examples are used to show that the derived large system
closed-form fusion error probability expressions provide a
very close approximation to the exact finite-size sensor sys-
tem fusion performance even for a relatively smaller num-
ber of nodes.

1 Introduction

Recent advances in microelectronics and wireless com-
munication technology have enabled the low cost produc-
tion of small sensor devices with wireless transceivers.
These devices contain sensing, processing and communi-
cation capabilities, that have enabled the idea of wireless
sensor networks (WSN). Arguably, WSN is one of the most
promising technologies in many diverse applications in-
cluding, but not limited to, civil surveillance, health care,
homeland security, agriculture and industry [2, 6, 9]. In a
typical application, a wireless sensor network consists of
a large number of distributed nodes, that are linked to a
fusion center through a wireless communication channel.
The fusion center or the data gathering node, in principle,
can have unlimited power and processing capabilities, and
performs a decision making procedure, relying on the gath-
ered data. The distributed nodes may have different sensing

modalities and can perform various processing operations
such as imaging, seismic or chemical detection and radar.

Power management is considered as a core issue in de-
signing a wireless sensor network since sensor nodes are
usually powered by a battery that is impossible, or imprac-
tical, to be recharged due to cost and operating environment
considerations. For example, the sensor network may have
been deployed in a hostile enemy territory by dropping sen-
sor nodes from air. A solution to power conservation at in-
dividual nodes is to employ a large number of low-power
nodes across the network and combine partial information
derived from them at a central fusion center. This is the
classical decentralized detection and data/decision fusion
with the additional caveat of limited communications re-
sources (transmit power and bandwidth).

In a decentralized sensor network each distributed node
derives a partial information about a phenomenon of inter-
est (POI) from its own observation and convey a summary
to the fusion center. Relying on the gathered information
from distributed nodes, the fusion center makes a final de-
cision by selecting from a possible set of hypotheses. An
important problem in this context is the characterization
of final fusion error probability performance. A consid-
erable amount of previous work is available on this prob-
lem [1,8,14]. However, it is only recently that the problem
has been addressed in the specific context of power and
bandwidth constrained wireless sensor networks in which
channel errors are non-negligible. For example, based on
large system techniques [4] and [7] investigated the fusion
error performance under communication constraints. How-
ever, they were only concerned with amplify-and-relay lo-
cal processing. In general, however, the local processing
can assumed to be a form of quantization at distributed
nodes. Only a few results are available on the analysis of fi-
nal fusion performance with quantized decisions and com-
munication channel impairments. For example, [3] derived
an optimum fusion rule in the case of correlated observa-
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tions. Niu, Chen and Varshney, further assumed a fading
channel, and derived a fusion rule that only requires the
knowledge of fading channel statistics [10]. A fusion rule
that dose not require the knowledge of sensor performance
indices was proposed in [11]. The proposed fusion rule
used the total number of detections transmitted from local
senors to the fusion center as the fusion statistics.

However, none of the above previous work has consid-
ered an inhomogeneous network with different communi-
cation channel signal-to-noise-ratios (SNR’s) among sen-
sors. In a low-power wireless sensor network it is likely
that dynamic power control may not be a possibility. Un-
der such situations, it is possible that the received signal
powers can vary across the nodes due to their spatial distri-
bution as well as channel fading. In this paper, we address
the problem of evaluating optimal decision fusion perfor-
mance in such an inhomogeneous wireless sensor network
with binary quantized local processing.

The remainder of this paper is organized as follows: In
Section 2 we describe our assumed sensor system model,
formulate the decision fusion problem and derive the opti-
mal fusion detector. Next, in Section 3 we analyze the large
system performance of the above optimal fusion detector
in a resource-constrained, inhomogeneous wireless sensor
network. Numerical examples that validate our asymptotic
performance analysis are also provided in Section 3. Fi-
nally Section 4 concludes the paper.

2 System model

We consider a binary hypothesis testing problem in an
n-node distributed sensor system. The k-th sensor obser-
vation is given by

H0 : yk = x0,k + vk

H1 : yk = x1,k + vk, (1)

where observation noise vk is assumed to be a sequence
of iid (independent and identically distributed) zero-mean
Gaussian random variables. We consider the fusion of a
deterministic signal, so that x0,k = −m under H0 and
x1,k = m under H1 for k = 1, · · · , n. In vector nota-
tion (1) becomes, y = x + v, where v is a zero mean,
Gaussian n-vector of noise samples with covariance ma-
trix Σv. The k-th node applies a local processing scheme
to its observation, to generate a message given by q(yk).
In this paper, we assume that the k-th node makes a bi-
nary decision q(yk) ∈ {0, 1} with false-alarm and detec-
tion probabilities Pfk

and Pdk
, respectively. These local

decisions are transmitted to the fusion center via antipodal
signalling. Hence the transmit symbol from node k is given
by uk = 2q(yk) − 1 where uk ∈ {+1,−1}.
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Figure 1. Distributed sensor network model

In addition, we assume the far field detection as shown
in Fig. 1 (the need for this assumption is to be explained
later). Assuming orthogonal sensor-to-fusion center com-
munication, the received signal at the fusion center due to
the k-th node can be written as zk = guk + wk, where g
is the transmit power allocation at the k-th node assumed
to be the same at all nodes (i.e. no power control). Note
that we consider an inhomogeneous wireless sensor net-
work such that the channel statistics are independent but
not identical, i.e. wk ∼ N (0, σ2

k). In vector notation, we
have z = Au + w, where z = [z1, · · · , zn]T , A = gI and
w ∼ N (0, diag(σ2

1 , · · · , σ2
n)).

The optimal procedures at the fusion center should be
designed based on the received vector z. It is well-known
that for this type of binary hypothesis testing problems,
the optimal fusion receivers are the likelihood ratio tests
(LRT’s) [13]. For the above problem, the likelihood ratio
(LR) at the fusion center is given by

L(z) =
n∏

k=1

p(zk|H1)
p(zk|H0)

. (2)

We may use the same conditioning approach used in [10]
to obtain the conditional densities p(z|H1) and p(z|H0), as
follows. First, note that

p(uk|H1) =
{

Pdk
uk = 1

1 − Pdk
uk = −1 ,

and

p(uk|H0) =
{

Pfk
uk = 1

1 − Pfk
uk = −1 ,

where Pdk
and Pfk

are the detection and false alarm prob-
abilities at the k-th node, respectively. Then, the received
signal distribution at the fusion center can be written as:

p(zk|H1) =
∑

uk∈{+1,−1}
p(uk|H1)p(zk|uk)

=
1√

2πσk

[
Pdk

e
− (zk−g)2

2σ2
k + (1 − Pdk

)e
− (zk+g)2

2σ2
k

]
.(3)



Using the same approach, we can show that

p(zk|H0) =
Pfk

e
− (zk−g)2

2σ2
k + (1 − Pfk

)e
− (zk+g)2

2σ2
k√

2πσk

. (4)

Substituting (3) and (4) in (2), and after some simplifica-
tions, we obtain

L(z) =
n∏

k=1

Pdk
e

gzk
σ2

k + (1 − Pdk
)e

− gzk
σ2

k

Pfk
e

gzk
σ2

k + (1 − Pfk
)e

− gzk
σ2

k

. (5)

Let us define the sets S0 = {k : zk < 0}, and S1 = {k :
zk > 0}. With these definitions, (5) can be rewritten as
given in (6) at the top of next page:

In order to obtain a useful characterization of the op-
timal fusion rule that facilitates performance analysis, we
assume identical local detectors at distributed nodes. In this
case, all sensor nodes have the same performance such that
Pdk

= Pd and Pfk
= Pf , for all k = 1, · · · , n. Also, as-

suming high SNR operation (i.e. σ2
k −→ 0), the LR in (6)

can be simplified as

L(z) =
∏

k∈S0

(1 − Pd)
(1 − Pf )

×
∏

k∈S1

Pd

Pf
.

Equivalently, the log-likelihood ratio (LLR) at the fusion
center is given by

Γ = K1 log
Pd(1 − Pf )
Pf (1 − Pd)

+ n log
1 − Pd

1 − Pf
, (7)

where K1 is defined as

K1 =
n∑

k=1

I{zk:zk≥0}(zk),

and I(.) is the indicator function given by

IA(z) =
{

1 z ∈ A
0 z ∈ A

.

From (7) we note that optimal fusion tests compare Γ to
the threshold log(τ), where τ is a threshold determined
by the particular optimality criteria (for example, Bayesian
vs. Neyman-Pearson). Since Γ is an affine function of
K1 (which is a function of z), the optimal fusion rule can
equivalently be written as

δ0(z) =




1 ≥
if K1 τ ′

0 <
, (8)

where τ ′ is a modified new threshold given by:

τ ′ =
log(τ) − n log 1−Pd

1−Pf

log Pd(1−Pf )
Pf (1−Pd)

.

3 Large system asymptotic fusion perfor-
mance

Let Xk = I{zk:zk≥0}(zk). Then it is clear that Xk’s,
for k = 1, · · · , n, are a set of binary random variables that
takes values 1 and 0 and the decision variable K1 in the
optimal test (8) can be rewritten as

K1 =
n∑

k=1

Xk. (9)

Note that, under the hypothesis Hj

E{Xk|Hj} = p(Xk = 1|Hj) × 1 + p(Xk = 0|Hj) × 0
= p(zk ≥ 0|Hj). (10)

Similarly, the variance of Xk under hypothesis Hj is

ν2
j,k = E{X2

k |Hj} − E{Xk|Hj}2

= p(zk ≥ 0|Hj) − (p(zk ≥ 0|Hj))2. (11)

As we see from (10) and (11), the first and second order
statistics of Xk’s are determined by the probability of a
non-negative observation zk denoted as p(zk ≥ 0|Hj). Let
us denote this probability under the hypothesis Hj , for j =
0, 1, by Pj,k. Then we have that

P1,k = p(zk ≥ 0|H1) =
∫ ∞

0

p(zk|H1)dzk

=
1√

2πσk

∫ ∞

0

[
Pdk

e
− (zk−g)2

2σ2
k + (1 − Pdk

)e
− (zk+g)2

2σ2
k

]
dzk

= Pd + (1 − 2Pd)Q
(
g

σk

)
. (12)

Similarly, it can be shown that

P0,k = p(zk ≥ 0|H0)

= Pf + (1 − 2Pf )Q
(
g

σk

)
. (13)

It is clear from (12) and (13) that Xk’s are a set of in-
dependent, but not identical, binary random variables due
to the inhomogeneous nature of the sensor network. As
a result K1 in (9) is a sum of non-identical random vari-
ables. This makes analysis of the fusion performance com-
plicated since it is difficult to characterize the distribution
of K1. Even in the case of a large sensor system in which
n −→ ∞, the decision statistic K1 does not admit a useful
density function since convergence in distribution assured
in regular central limit theorem does not apply in this case.
To get around this problem, we apply a modified version of
the central limit theorem (CLT) for non-identical distribu-
tions, known as the Lindberg-Feller central limit theorem
that requires extra regularity conditions [5, 12]:



L(z) =
∏

k∈S0

Pdk
+ (1 − Pdk

)e
−2gzk

σ2
k

Pfk
+ (1 − Pfk

)e
−2gzk

σ2
k

×
∏

k∈S1

Pdk
e

2gzk
σ2

k + (1 − Pdk
)

Pfk
e

2gzk
σ2

k + (1 − Pfk
)
. (6)
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Figure 2. Fusion center performance as a function of the number of sensors (a) detection probability
(b) false-alarm probability.

Theorem 1 Lindberg-Feller Central Limit Theorem
Suppose that Xk, for k = 1, · · · , n, is a sequence

of independent but non-identical random variables with
E{Xk} = ηk and Var(Xk) = ν2

k . Further, suppose that
following two regularity conditions are held for B1 and B2

positive constants:

Var(Xk) > B1, (14)

and

E{|Xk − E{Xk}|3} < B2. (15)

Then, for large n, the sum Sn = 1
n

∑n
k=1Xk converges in

distribution to a Gaussian random variable characterized
by

Sn i.d.
−→

N
(

1
n

n∑
k=1

ηk,
1
n

n∑
k=1

ν2
k

)
.

(For a proof of the Lindberg-Feller CLT, see [5]). In the
Appendix we have shown how above two regularity condi-
tions are satisfied in the case of far-field detection, as as-
sumed in Fig. 1. Thus, in a large sensor network, under the
far-field detection assumption at the fusion center, we may
apply the Lindberg-Feller CLT to approximate the distri-
bution of the fusion decision statistic under the hypothesis

Hj , for j = 0, 1, to be a Gaussian random variable such
that

K1 ∼ N
(

n∑
k=1

Pj,k,
n∑

k=1

(
Pj,k − P 2

j,k

))
(16)

where Pj,k = p(zk > 0|Hj) is given by (12) and (13).
The large system distribution of K1 given in (16) can

be conveniently employed to characterize the final fusion
performance. In particular, the detection and false alarm
probabilities at the fusion center can shown to be given by:

PD = Q


 τ ′ −∑n

k=1 P1,k√∑n
k=1 P1,k − P 2

1,k


 , (17)

and

PF = Q


 τ ′ −∑n

k=1 P0,k√∑n
k=1 P0,k − P 2

0,k


 , (18)

where P0,k and P1,k are given by (13) and (12). In the
special case of equi-probable hypotheses, the minimum
achievable probability of fusion error can be written as in

(19), shown at top of next page, where τ ′′ = n
log

1−Pf
1−Pd

log
Pd(1−Pf )
Pf (1−Pd)

.



Pe =
1
2
Q


 ∑n

k=1 P1,k − τ ′′√∑n
k=1 P1,k − P 2

1,k


+

1
2
Q


 τ ′′ −∑n

k=1 P0,k√∑n
k=1 P0,k − P 2

0,k


 (19)
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Figure 3. Fusion center minimum achievable
probability of error as a function of the num-
ber of sensors

In Figs. 2 and 3 we have shown the fusion center de-
tection, false-alarm and Bayesian error probabilities as a
function of the number of nodes n in the sensor network.
In all figures we have assumed that local detector perfor-
mance is characterized by Pd = 0.85 and Pf = 0.1. More-
over, the channel noise variances σ2

k’s have assumed to be
uniformly distributed in the interval [0.8, 1.8]. The figures
clearly show that the above large-sample theory approxi-
mation to the optimal fusion performance indeed provides a
close approximation to the exact performance (obtained via
numerical simulations) even for a relatively smaller num-
ber of sensor nodes. In particular, as can be seen from Fig.
3, as n increases, the derived large-sample asymptotic pro-
gressively becomes closer to the exact fusion performance.

4 Conclusions

In this paper, we analyzed the decision fusion perfor-
mance in a large, inhomogeneous, wireless sensor net-
work. Assuming identical, binary quantizers at all dis-
tributed nodes we derived the optimal fusion rule for an
inhomogeneous sensor network in which channel statistics
are not identical among distributed nodes. The main con-
tribution of the paper was to derive the performance of the
optimal fusion rule in a large inhomogeneous sensor sys-
tem via large-sample theory. In particular, we showed that

under the far-field detection that can be justified in many re-
alistic wireless sensor networks, the fusion decision statis-
tic converges in distribution to a normal random variable,
thereby facilitating the performance analysis. We explic-
itly derived the large system fusion error probabilities in
closed-form and shown them to provide a close approxi-
mation to the exact fusion performance, even in a relatively
small finite-size sensor system, via numerical examples.

Appendix

Below we show how the two required regularity condi-
tions (14) and (15) for the Lindberg-Feller CLT are met for
K1 when we assume far-field detection at the fusion cen-
ter. Note that, essentially, the purpose of the two required
regularity conditions in the Lindberg-Feller CLT is to guar-
antee that no one random variable in the sum dominates all
the others. Below we list several assumptions on the far
filed detection in Fig. 1 that we will need in the sequel:

a. Define sm and and sM as the sensor nodes with mini-
mum and maximum distances dmin and dmax, respec-
tively, from the fusion center. Then for any other node
sk with distance dk from the fusion center

σ2
sm

< σ2
sk
< σ2

sM
. (20)

b. As a result of (20), we also have that

Q

(
g

σsm

)
< Q

(
g

σsk

)
< Q

(
g

σsM

)
.

c. Pd > 0.5 (which should be true for any useful detec-
tion system) and Pf < 0.5.

.
Note from (11) and (12) that the variance ν2

1,k of Xk

under the hypotheses H1 is given by:

ν2
1,k =

(
Pd + ψ(Pd)Q

(
g

σsk

))(
1 −

(
Pd + ψ(Pd)Q

(
g

σsk

)))
,

where, for brevity, we have defined ψ(x) = 1 − 2x. To
prove the first condition (14), it is sufficient to show that
each of the two factors in the above expression is greater
than a positive value. Taking each term alone, we have that

Pd + ψ(Pd)Q
(

g

σsk

)
> Pd + ψ(Pd)Q

(
g

σsM

)
,



ν2
1,k >

(
Pd + (1 − 2Pd)Q

(
g

σsM

))
×
(

1 −
[
Pd + (1 − 2Pd)Q

(
g

σsm

)])
(21)

ν2
0,k >

(
Pf + (1 − 2Pf )Q

(
g

σsm

))
×
(

1 −
[
Pf + (1 − 2Pf )Q

(
g

σsM

)])
. (22)

P1,k(1 − P1,k) <

[
Pd + ψ(Pd)Q

(
g

σsm

)][
1 − Pd − ψ(Pd)Q

(
g

σsM

)]
(23)

and

1 −
(
Pd + ψ(Pd)Q

(
g

σsk

))
> 1 −

(
Pd + ψ(Pd)Q

(
g

σsm

))
,

where we have used the assumptions (a) and (b).
Therefore, under the hypothesis H1, the variance ν2

1,k

of Xk, for k = 1, · · · , n, is lower bounded as shown in
(21), at the top of the page. Note that since argument of
the Q(.)-function g

σsk
is always positive, Q( g

σsk
) < 0.5.

This ensures that the terms on the left hand side of (21) are
positive. The same approach can be used to show that, un-
der the hypothesis H0 also, the variance of Xk’s are lower
bounded as given in (22).

To show that the second regularity condition (15) is
held, let us make use of the fact thatK1 has a Binomial dis-
tribution (Below we show this under the assumption of hy-
pothesis H1 explicitly, but the same approach can be used
to show its validity under the hypothesis H0). It is straight-
forward to show that under the hypotheses H1

E
[|Xk − E[Xk]|3|H1

]
= P1,k(1 − P1,k)(P 2

1,k + (1 − P1,k)2)
< P1,k(1 − P1,k), (24)

Hence it is sufficient to show that P1,k(1 − P1,k) is less
than a positive value under the hypothesis H1. Following
the same approach as in the proof of (14) leads to (23), at
the top of the page, that proves the validity of the condition
(15) under H1.

Acknowledgment

This research was supported in part by Kansas National
Science Foundation (NSF) EPSCOR program under the
First Award grant KUCR # NSF32241.

References

[1] R. S. Blum, S. A. Kassam, and H. V. Poor. Distributed
detection with multiple sensors: Part II - Advanced topics.
Proc. of the IEEE, 85(1):64–79, Jan. 1997.

[2] J. Burrell, T. Brooke, and R. Beckwith. Vineyard comput-
ing: Sensor networks in argicultural production. IEEE Per-
vasive computing, 3(1), Jan 2004.

[3] Z. Chair and P. Varshney. Distributed Detection and Data
Fusion. Springer-Verlag, New York, 1997.

[4] J. F. Chamerland and V. V. Veeravalli. Decentralized de-
tection in wireless sensor systems with dependent obser-
vations. In International Conference on Computing, Com-
munications and Control Technologies, Austin, TX, Aug.
2004.

[5] H. Cramer. Mathematical Methods of Statistics. Princeton
University Press, Princeton, NJ, 1946.

[6] A. J. Goldsmith and S. B. Wicker. Design challenges for
energy-constrained ad-hoc wirelss networks. IEEE Wirelss
Commun., pages 8–27, Aug. 2002.

[7] S. K. Jayaweera. Large system decentralized detection per-
formance under communication constraints. IEEE Com-
mun. Letters, 9:769–771, Sep. 2005.

[8] S. K. Jayaweera and R. Viswanathan. Distributed Antenna
Systems: Open Architecture for Wireless Communication,
chapter Distributed Signal Processing for Wireless Sensor
Networks. Auerbach Publications, CRC Press, 2007. to be
published.

[9] A. Mainwaring, J. Polastre, R. Szwczyk, D. Culler, and
J. Anderson. Wireless sensor networks for habit monitor-
ing. pages 88–97, Atlanta, GA, Sep. 2002. in 1st ACM Int.
Workshop on Wireless Sensor Networks and Applications.

[10] R. Niu, B. Chen, and P. K. Varshney. Decision rules in wire-
less sensor networks using fading channel statistics. In Con-
ference on Information Sciences and Systems. The Johns
Hopkins University, March 2003.

[11] R. Niu, P. K. Varshney, M. Moore, and D. Klamer. Deci-
sion fusion in a wireless sensor network with large number
of sensors. In The 7th International Conference on Infor-
mation Fusion, Stockholm, Sweden, July 2004.

[12] P. Z. Peebles. Probability, Random Variabels, and Ran-
dom Signal Principles. McGraw-Hill, NJ, USA, 3rd edi-
tion, 1993.

[13] H. V. Poor. An Introduction to Signal Detection and Esti-
mation. Springer-Verlag, New York, 1994.

[14] R. Viswanathan and P. K. Varshney. Distributed detection
with multiple sensors: Part I - Fundamentals. Proc. of the
IEEE, 85(1):54–63, Jan. 1997.


