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Abstract— In this paper, we propose asynchronous non-ortho-
gonal communication between distributed sensors and a data
fusion center via asynchronous direct-sequence code-division
multiple access (DS-CDMA). Furthermore, we evaluate the per-
formance of such a system in the presence of local-sensor and
channel errors due to multiple-access interference (MAI) and
noise. We derive the optimal Bayesian receiver for this system
operating over both a simple AWGN channel and a Rayleigh-
fading channel, assuming full knowledge of the channel fading
coefficients. The optimal receiver is shown to have exponential
complexity as a function of the number of sensors. A set of low-
complexity partitioned receivers are then proposed and analyzed
in relation to the optimal one. These partitioned receivers are
based on well-known linear and nonlinear multiuser detectors for
DS-CDMA. The synchronous DS-CDMA case was studied in [1],
and it is shown here that the degradation induced by moving to
an asynchronous model is relatively small for the optimal receiver.
Moreover, we provide compelling evidence that the quality of the
local-sensor decisions is the limiting factor in fusion performance
for fading channels with high signal-to-noise ratio.

I. INTRODUCTION

Much of the current literature on low-power wireless sensor
networks assumes fully-orthogonal sensor communication and
in many cases assumes no errors in communication between
the sensors and the fusion center. However, in some applica-
tions involving dense, low-power, distributed wireless sensor
networks, it may be more effective to employ non-orthogonal
multi-sensor communication. Direct-sequence code-division
multiple-access (DS-CDMA) can be a good candidate for this
situation and similar spread-spectrum techniques have already
been considered for wireless sensor networks in [2], [3].

In most cases, overall system efficiency is a major concern.
The transmission of only the local decisions made at the nodes
of a wireless sensor network to a fusion center, as opposed to
directly sending the sensor observations themselves, can save
significant resources in terms of communication bandwidth
and sensor power. The treatment of such problems dates back
at least two decades [4]–[6]. In particular, it has been shown
that in a Bayesian approach, the solution to the distributed
detection problem is a set of likelihood-ratio–based decision
rules at the local sensors, potentially involving coupled thresh-
olds. The data fusion problem for such a distributed detection

1Currently with the Department of Statistics, Stanford University, Stanford,
CA 94305-4065.

system can also be formulated as a Bayesian hypothesis testing
problem. The optimal Bayesian data fusion rule was derived
in [6] assuming error-free reception of the local decisions at
the fusion center.

In this paper, we consider Bayesian data fusion based on
distributed local decisions in a coherent asynchronous DS-
CDMA sensor network in Rayleigh fading. Although each
sensor node may have data to be sent to the fusion center very
rarely, due to the large number of nodes in a dense network,
multiple nodes may have data at the same time. In such cases,
a CDMA based scheme may allow all nodes to access the
channel simultaneously and then return quickly to an idle or
sleep mode for energy savings, rather than waiting for a long
time in an active mode as in a time-division multiple-access
(TDMA) based orthogonal signaling scheme. This ability is
further enhanced by allowing for channel access to occur
asynchronously. A similar synchronous DS-CDMA scheme
was considered in [1].

We begin by deriving the optimal Bayesian data fusion
receiver for an asynchronous DS-CDMA–based distributed
wireless sensor network, where we seek to optimize the
individual-hypothesis decision at a particular time instant. We
show that the optimal receiver has computational complexity
that is exponential in the number of sensors. In an effort to
reduce this complexity and provide practical solutions for low-
power sensor networks, we proceed to consider several low-
complexity suboptimal fusion receiver structures based on an
approach first proposed in [1] that partitions the receivers into
two distinct stages. The first stage corresponds to multi-sensor
detection of the received data and the second stage handles the
data fusion. For the first stage, we consider several well-known
multiuser detectors for asynchronous DS-CDMA, namely the
one-shot joint-maximum-likelihood (JML) receiver, the linear
MMSE receiver and the linear decorrelating receiver. The
second stage receives the output from the first stage and
performs the data fusion on them.

This paper makes several contributions to the distributed
detection and data fusion literature for wireless sensor net-
works. One of the main contributions is the consideration
of asynchronous non-orthogonal DS-CDMA for low-power
wireless sensor networks dedicated to distributed detection
and data fusion. Although there is a considerable amount
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of work on the subject of distributed detection, only a few
consider the effect of channel errors on performance. In
particular, to the best of our knowledge, synchronous non-
orthogonal DS-CDMA was first considered in this context
in [1]. Another major contribution is the formulation of the
problem of Bayesian fusion of distributed sensors for such a
network and the associated general performance characteristics
via numerical simulation. Our current work involves somewhat
modified local detector models in order to facilitate the ana-
lytical performance analysis.

The rest of this paper is organized as follows: Section II pro-
vides an outline of our system model, Section III derives the
optimal receiver under the given model, Section IV presents
several low-complexity suboptimal partitioned receivers, Sec-
tion V provides simulations and performance results, and,
finally, Section VI gives conclusions and paths to explore in
future research.

II. SYSTEM MODEL

For the purposes of our analysis, we consider a wireless
sensor network with a total of K nodes, each of which are
connected to a data fusion center in a distributed parallel
architecture [5]. At regular time intervals, each of the sensors
makes a local observation and a corresponding local decision
and transmits this binary decision asynchronously via DS-
CDMA over a Rayleigh fading channel to the fusion center.

Let H0 and H1 be the null and alternative hypotheses
with prior probabilities P (H0) = p0 and P (H1) = p1,
respectively. We further assume that each sensor is observing
an underlying process that can be modeled as a Gaussian-
location testing problem. That is, under the two hypotheses, the
kth local-sensor observation, denoted zk, for k = 1, 2, . . . ,K
is distributed as

H0 : zk ∼ N (0, σk
2)

H1 : zk ∼ N (µk, σk
2) (1)

where N (µ, σ2) denotes a Normal (Gaussian) probability
distribution with mean µ and variance σ2. Conditioned on the
underlying hypothesis, each of the local sensor observations
are considered to be jointly independent. Furthermore, each
sensor processes its observations independently to arrive at a
local decision uk ∈ {0, 1}, where uk is the local decision of
the kth sensor and is computed according to

uk =
{

1 if L(zk) ≥ τk

0 if L(zk) < τk
(2)

Here, we adopt a Bayesian formulation, where L(zk) is the
local likelihood ratio defined by

L(zk) =
p(zk | H1)
p(zk | H0)

where p(· | Hj) is the probability density function under
hypothesis Hj , j ∈ {0, 1}. In (2), τk corresponds to the
threshold of the likelihood ratio test at the kth sensor. These
local sensor thresholds depends on the prior probabilities, p0

and p1, and an assumed cost function [7]. If we assume that

p0 = p1 = 1/2 and that we wish to minimize the total
probability of committing an error, than the cost function
can be chosen to be uniform, and hence, τk = τ = 1
for all k = 1, 2, . . . , K [7]. We note here that while an
optimal distributed detection scheme may require the joint
determination of local thresholds, the above formulation can
easily be modified for such a case. In either case, the optimal
fusion rule only depends on the quality of the individual local
sensor decisions as long as they are independent.

The local decision uk’s are then transmitted asynchronously
to the fusion center using DS-CDMA over a Rayleigh channel.
Each node employs a signature waveform, sk(t), normalized
to have unit energy. We will assume that the local sensors
take a sequence, zk(i) of observations which correspond to
a sequence of true hypotheses, denoted by H0(i) or H1(i).
Furthermore, as the local decisions are binary-valued, it makes
sense to transmit these decisions using binary phase-shift
keying (BPSK), where each local decision is mapped as
bk(i) = 2uk(i) − 1, so that bk(i) ∈ {−1,+1} for each
k and each i. The resulting antipodal bit stream is then
modulated using the corresponding node’s signature waveform
for transmission to the fusion center. By making hard decisions
at the local sensors and transmitting these, as opposed to
an approximation of the actual sensor observations, zk’s, the
distributed detection and fusion system can greatly reduce the
transmission requirements. This can lead to significant energy
conservation in a wireless sensor network.

The complex baseband received signal at the fusion center
is expressed as

r(k) =
M−1∑
i=0

K∑
k=1

Akbk(i)sk(t − iT − τk) + n(t) (3)

where M is the number of data symbols per sensor per frame,
T is the symbol interval, n(t) is the zero-mean complex
additive white-Gaussian noise at the receiver, with variance
σ2 = N0 (N0/2 per dimension) and sk(t) denotes the normal-
ized signature waveform of the kth sensor. The coefficients,
Ak’s, are assumed to be zero-mean complex Gaussian with
variance, A

2

k. Furthermore, each of the Ak’s are assumed to
remain fixed over the entire duration of the M -bit frame (i.e.,
block-fading model). We also consider only the case where
the receiver must make a bit-by-bit decision, i.e., a one-shot
model.

For ease of notation in the subsequent analysis, we define
the kth local-sensor signal-to-noise ratio as SNRl

k, where
SNRl

k = µk
2

σk
2 , and the average channel SNR of the kth sensor

as SNRch
k = A

2
k

σ2 .

III. OPTIMAL FUSION RECEIVER FOR AN ASYNCHRONOUS

DS-CDMA WIRELESS SENSOR NETWORK

This Bayesian fusion problem can be formulated as one
of deciding between H0(i) and H1(i) based on the observed
receiver waveform, r(t), in order to minimize a cost function.
It is easily shown that a sufficient statistic for this fusion
problem is given by the output of a bank of K matched filters,
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each of which are matched to a particular sensor’s signature
waveform. This is similar to optimal multiuser detection for
DS-CDMA described in [8]. The vector of matched filter
outputs for the ith bit of the frame, y[i] = (y1, y2, . . . , yK)T

can be shown to be given by [8]

y[i] = R1
T Ab[i + 1] + R0Ab[i] + R1Ab[i− 1] + n[i] (4)

where R0 is the K×K cross-correlation matrix of the various
signature sequences, R1 is a strict upper-triangular matrix
of the partial cross-correlations among signature waveforms
due to asynchronicity, A is the diagonal K × K matrix of
fading coefficients, and n is the K-dimensional vector of
zero-mean correlated Gaussian noise. Though this noise is
correlated among the sensors and in time, Verdú showed in
[8] that there exist matrices F0, lower triangular, and F1,
strictly upper triangular, such that R0 = F0

T F0 + F1
T F1,

and R1 = F0
T F1. Via a whitening filter at the receiver, the

following set of equivalent matched-filter outputs results

y[i] = F0Ab[i] + F1Ab[i − 1] + n[i] (5)

where n ∼ N (0, σ2I). This equivalent system given in (5)
will provide for an easier formulation of the optimal Bayesian
receiver, and so we will focus on it for the remainder of this
paper.

Now, a particular vector b[i] contains the local decisions of
each of the sensors based on the underlying true hypothesis at
time-instant, i. We denote this true hypothesis by H(i). Now,
H(i) enters in only through b[i]; thus, by examining (5) we
see that the 2K × 1 vector

ỹ[i] =
(

y[i]
y[i + 1]

)
(6)

contains all available information regarding H(i).
The data fusion problem for this coherent DS-CDMA

wireless sensor network can now be viewed as a binary-
hypothesis–testing problem based on the observation vector,
ỹ, and the fading coefficient matrix, A. Thus, the optimal
Bayesian fusion rule is given by the likelihood ratio test

L(ỹ) =
p(ỹ | H1,A)
p(ỹ | H0,A)

H1≥
<
H0

τF

where τF corresponds to the threshold at the fusion center.
This threshold depends on the prior probabilities, p0 and
p1, as well as the cost function. We now introduce some
further notation that will greatly simplify the expression for the
optimal Bayesian fusion rule. First, we denote the false-alarm
probability at the kth sensor as, PFk

, and the corresponding
miss probability as PMk

. It is straightforward to verify [7] that

PFk
= Q

(
τ ′
k

σk

)
and

PMk
= 1 −Q

(
τ ′
k − µk

σk

)
(7)

where Q(·) denotes the Gaussian tail distribution and τ ′
k =

σk
2

µk
log(τk) + µk

2 .

Now, assuming, as we have, that the local sensor decisions
are independent, we can calculate the conditional probabilities
p(b | Hj), for j = 0, 1 as

p(b | Hj) =
K∏

k=1

p(bk | Hj)

where

p(bk | H1) =
{

1 − PMk
if bk = +1

PMk
if bk = −1

and

p(bk | H0) =
{

PFk
if bk = +1

1 − PFk
if bk = −1 .

For simplicity of notation, let ỹi ≡ ỹ[i], yi ≡ y[i], bi ≡
b[i], bi−1 ≡ b[i− 1], bi+1 ≡ b[i + 1]. Thus, for the ith time
instant, our likelihood-ratio test (LRT) becomes

L(ỹi) =
p(ỹi | H1(i),A)
p(ỹi | H0(i),A)

. (8)

As we shall see, for purposes of the derivation, it is sufficient
to focus our attention on the numerator of (8). First we rewrite
the numerator as

p(ỹi | H1(i),A) =
∑
bi−1

∑
bi

∑
bi+1

(
p(ỹi | A,bi,bi−1,bi+1) ×

p(bi | H1(i))p(bi−1 | H1(i)) ×
p(bi+1 | H1(i))

)
(9)

where the summations are taken over all bi−1 ∈ {−1,+1}K ,
bi ∈ {−1,+1}K , and bi+1 ∈ {−1,+1}K , respectively.

Now, since the local decision at time i−1 is assumed to be
independent of that at time i, it is evident that the vector bi−1

must be independent of the true hypothesis at time i, which
leads to the conclusion that p(bi−1 | Hj(i)) = p(bi−1) for
j = 0, 1. Clearly, by independence of the bk’s and the theorem
of total probabilities [9]

p(bi−1) =
K∏

k=1

(p(bk | H1)p(H1) + p(bk | H0)p(H0)) (10)

where bi−1 = (b1, b2, . . . , bK) in (10). This same argument
also holds for bi+1for the same reasons. Furthermore, it is
obvious from the system model that

p(ỹi | A,bi,bi−1,bi+1) =
1

(2πσ2)
K
2

exp
(−(Qi + Qi+1)

2σ2

)

(11)
where

Qi = (yi −F0Abi −F1Abi−1)H(yi −F0Abi −F1Abi−1)
(12)

and Qi is a real-valued scalar for the ith bit of a frame. We
further define the set of functions given by

fm(ỹi,bi−1,bi,bi+1) = exp
(−(Qi + Qi+1)

2σ2

)
×

p(bi | Hm(i))p(bi−1)p(bi+1) (13)

where m ∈ {0, 1}.
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At this stage of the development, combining (9), (10), (11),
and (13) gives a straightforward final construction of the
likelihood ratio test. L(ỹi) can now be expressed as

L(ỹi) =

∑
bi−1

∑
bi

∑
bi+1

f1(ỹi,bi−1,bi,bi+1)∑
bi−1

∑
bi

∑
bi+1

f0(ỹi,bi−1,bi,bi+1)
.

Note that one can “simplify” this by factoring out the like
terms of the numerator and denominator, but the corresponding
expression is a bit more cumbersome. In any case, the optimal
fusion decisions are then simply

δopt(ỹi) =
{

1 if L(ỹi) ≥ τF

0 if L(ỹi) < τF
. (14)

Finally, for equal a priori probabilities, p0 and p1, in order
to minimize the probability of error at the fusion center, the
threshold for the fusion LRT should be chosen as τF = 1 [7].

IV. LOW-COMPLEXITY PARTITIONED RECEIVERS

From the preceding section, we see that the optimal fu-
sion decision requires O(4K) multiplications and additions in
order to arrive at its global decision. In an effort to try to
reduce this complexity, in this section, we present a set of
lower-complexity partitioned sub-optimal receiver structures
analogous to those first proposed in [1] and evaluate their
performance relative to the optimal fusion rule. The basic
approach used here is to separate the detection of the binary-
valued sensor data from the fusion decision. For the detection
of the sensor data, we apply several approaches to multiuser
detection from the literature. The demodulated estimates of
the bk’s are then fed to a second stage that performs the
data fusion. This stage assumes that it receives the true local
decisions. Thus, in effect, we are making hard decisions in the
first stage, and these are fed to the fusion center in the second
stage. As with convolutional decoding, there is a performance
loss associated with transitioning from the use of soft decisions
(i.e., the optimal fusion rule) to that of hard decisions (i.e., the
suboptimal approaches of this section). On the other hand, a
considerable reduction in complexity is attained.

We begin by addressing the first stage of the partitioned
receiver. In what follows, we will consider several well-known
multiuser detectors for asynchronous DS-CDMA as the first
stage of the partitioned receivers, namely: the one-shot joint-
maximum-likelihood (JML) detector, the MMSE detector, and
the decorrelating detector.

The one-shot JML detector estimates the symbol vector, bi,
by the following estimate. This estimate maximized the joint
likelihood function of bi for a one-shot model, however, it is
important to note that unlike in the synchronous case, this is
not the optimal multiuser detector for an asynchronous DS-
CDMA system [8].

b̂(JML) = arg max
bi,bi−1∈{−1,+1}K

Qi (15)

where Q is defined as in (12).
Another conventional multiuser detector is the linear decor-

relating detector. This receiver is designed to output a scaled

version of the transmitted signal under the condition in which
there is no noise present and is most easily described in the
z-transform domain. Referring back to (5), we can rewrite this
in the z-transform domain as

y(z) = (F0 + F1z−1)Ab(z) + n(z) .

If we let G(z) =
(
F0 + F1z−1

)
, then under the condition

in which there is no noise, i.e., n(z) = 0, the function that will
produce a scaled version of the transmitted signal is simply

b̂(decorr) = sgn
{
IZT

{
AHG−1(z)y(z)

}}
(16)

where IZT{·} denotes the inverse z-transform. One must be
careful that the inverse, G−1(z), exists and is stable, and these
conditions are given in [8].

The final multiuser detector that we wish to evaluate for
the first stage of the low-complexity partitioned receivers is
the linear minimum mean-square error (MMSE) receiver. This
receiver seeks to minimize the expected value of the square
error between the transmitted signal and a linear combination
of the matched-filter outputs. In the case in which no noise is
present, the MMSE detector degenerates to the decorrelating
detector, and thus we would expect a similar structure. In fact,
the estimates of the asynchronous MMSE multiuser detector
are

b̂(MMSE) = sgn
{

IZT
{
AH

(
G(z) + σ2(AHA)−1

)−1
y(z)

}}
(17)

It turns out that
(
G(z) + σ2(AHA)−1

)−1
always exists and

is always stable [8]. In addition, the MMSE receiver achieves
better performance than the decorrelating detector for lower
channel SNRs. These two properties make it an attractive
choice.

Now that we have addressed some possible choices for the
first stage of the partitioned receiver, we turn our attention to
the second stage. The second stage of the receiver performs
the actual data fusion using the estimates from the first stage.
The second stage assumes that the estimated binary-valued
vector that it receives are the true local decisions of the sensors
and, furthermore, that the estimates are independent of one
another. Strictly speaking, neither one of these assumptions are
true; however, our primary intent is to develop low-complexity
receivers that give reasonable performance, and these assump-
tions allow for this (as we shall see in the following section).
For the purposes or our development, we will use the estimates
of the one-shot JML, however, the second stage is identical
no matter how the first stage develops its estimates. Therefore,
under the assumptions of independence and perfect detection,
the likelihood ratio test is

L(b̂(JML)) =
K∏

k=1

p(b̂(JML)

k | H1)

p(b̂(JML)

k | H0)
. (18)

Furthermore, it is clear from the preceding development that

p(b̂(JML)

k | H1) =
{

1 − PMk
if b̂(JML)

k = +1
PMk

if b̂(JML)

k = −1
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Fig. 1. Fusion Probability of Error vs. Local Sensor SNR, for a fixed channel SNRch
k = 6dB for all k. (a) AWGN channel, (b) Rayleigh channel.

and

p(b̂(JML)

k | H0) =
{

PFk
if b̂(JML)

k = +1
1 − PFk

if b̂(JML)

k = −1
.

The false-alarm and miss probabilities are calculated as
before in (7). Under the stated assumptions, and for equal prior
probabilities and uniform cost function, the optimal Bayesian
fusion rule is then simply

δ(JML) =
{

1 if L(b̂(JML)) ≥ 1
0 if L(b̂(JML)) < 1

. (19)

As previously stated, the second stage described above is
identical for all of the first-stage detectors examined. That is,
the estimated bits from the first stage are fed to the likelihood
ratio in (18), which in turn is used by (19) to arrive at
the decision. The complexity of these partitioned receivers
is determined by the first stage, as the second stage can
be implemented as a simple table lookup [1]. Note that the
complexity of the one-shot JML receiver is exponential in K,
like the optimal fusion rule of the previous section, and that of
the decorrelating and MMSE detectors is effectively O(K3),
as they both result in a multiple of K vector-matrix operations
that each involve a K × K matrix.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the optimal
fusion receiver and the low-complexity partitioned receivers of
the previous sections in a coherent asynchronous DS-CDMA
system. This analysis is performed via computer simulation,
as the analytical analysis of such a system seems intractable.
For these simulations, we assume a four-node sensor network
using non-orthogonal signature sequences, employing BPSK,
and transmitting in both AWGN and Rayleigh-fading channels.

The assumed correlations among the users are represented
by R0 and R1 of the previous development, and are taken to

be

R0 =




1 0.7 0.7 0.7
0.7 1 0.7 0.7
0.7 0.7 1 0.7
0.7 0.7 0.7 1




and

R1 =




0 0.1807 0.1704 0.2236
0 0 0.1916 0.2246
0 0 0 0.2220
0 0 0 0


 .

We further assume that the null and alternative hypotheses are
equally likely and that the Bayesian cost function is uniform.
Under these conditions, the probability of error at the output
of the fusion receiver is minimized, and thus, this probability
of error will be our metric of performance. Figure 1 shows the
performance of the various receivers as a function of the local
SNR when the channel SNR is fixed at 6dB. In Figure 1(a)
we show the performance in AWGN for the asynchronous
receivers. We also show, for reference, the performance of
the optimal fusion receiver for the synchronous case (i.e.,
when R1 = 0) studied in [1]. From this we note that the
synchronous and asynchronous performance are essentially
identical, which is essentially a function of the fixed channel
SNR selected and the partial cross-correlations (i.e., the R1

matrix) of the present bits with the previous bits transmitted.
Also, of all of the low-complexity partitioned receivers, the
best performing is the one-shot JML, followed by the MMSE
and decorrelating detectors, both of which exhibit a floor at
higher SNRs due to MAI.

In the Rayleigh case of Figure 1(b), we see a very slight
degradation in the optimal performance in an asynchronous
system from that of the synchronous system of [1]. Even
so, out to a local-sensor SNR of 12dB, the loss is less than
1dB. Furthermore, the one-shot JML still results in the best
performance for the low-complexity receivers, again with the
MMSE and decorrelating detectors lagging in performance.
However, the performance gain achieved by the one-shot JML
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over the two linear detectors is not as pronounced in the
Rayleigh case.

We also observe from Figure 1 that for a fixed channel
SNR, the optimal asynchronous performance is monotonic
as a function of the local SNR. The sizable difference in
performance between the optimal and suboptimal approaches
in the asynchronous case, leads one to conjecture that better
low-complexity partitioned receivers can be developed.

Figure 2 depicts the performance of the optimal Bayesian
fusion rule and the low-complexity partitioned receivers as a
function of the channel SNR, SNRch

k . For this simulation,
the local SNR has been fixed at 10dB for each of the nodes.
Here we note that the optimal asynchronous performance is
very slightly worse than the synchronous performance found
in [1]. All of the asynchronous receivers, including the optimal
receiver, exhibit a performance floor at high channel SNR. This
is due to the fact that the errors introduced by channel noise,
fading, and asynchronicity are overshadowed by the quality (or
lack thereof) of the local decisions. Hence, the local-sensor
SNR becomes the limiting factor on overall performance.
We also see that there is a considerable separation between
the suboptimal partitioned receivers and the optimal fusion
receiver. These receivers also converge to the optimal for
very high channel SNR, as the number of errors introduced
by the channel becomes negligible with respect to the errors
induced at the local sensors. In terms of a tradeoff between
complexity and performance, the MMSE provides the best
tradeoff, particularly for high channel SNR, however, the
performance difference is significant for lower channel SNR.

This leads one to conclude that it may be fruitful to search
for better low-complexity receivers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of optimal
Bayesian data fusion using a one-shot model for a wireless
sensor network transmitting via asynchronous DS-CDMA in
a Rayleigh channel. We have derived the optimal one-shot
receiver for this model and have shown that the complex-
ity is exponential in the number of nodes in the network.
Furthermore, the performance of this optimal fusion rule is
not substantially different from that of a synchronous model,
as long as the partial correlations among sensors is only of
moderate magnitude. We have also proposed a set of one-shot
low-complexity partitioned receivers based on various multi-
user detector structures for DS-CDMA, though work remains
to develop ones that more closely approximate the optimal.
Moreover, for higher channel SNR, the performance of each of
the systems under study is limited by the quality of the local-
sensor decisions, as measured through the local-sensor SNR.
Future work will include the analytical performance of both
optimal and proposed low-complexity partitioned receivers, in
addition to the exploration of low-complexity receivers that
attain even better performance than those examined herein.
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