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ABSTRACT

We consider the problem of optimal power scheduling for de-
centralized detection of a deterministic signal in a wireless sen-
sor network with correlated observations. Each distributed sen-
sor node independently performs amplify-and-forward (AF)
processing of its observation. The fading coefficients of wire-
less links from distributed sensors to the fusion center (FC) are
assumed to be available at transmitting nodes. When sensor
observations are correlated it is difficult to derive a closed form
solution for optimal power values to achieve a required fusion
error performance. In this work, we develop an evolutionary
computation technique based on Particle Swarm Optimization
(PSO) to obtain the optimal power allocation under a required
fusion error probability threshold constraint. It is shown that
the optimal power allocation scheme turns off the nodes with
poor channels and provides significant system power savings
compared to that of uniform power allocation scheme espe-
cially when either the number of sensors in the system is large
or the local observation quality is good.

I INTRODUCTION

Consider a Wireless Sensor Network (WSN) consisting of a
fusion center (FC) and a large number of spatially separated
sensors. The distributed sensor nodes collect observations, per-
form amplify-and-forward (AF) processing and transmit them
to the FC. The node observations are assumed to be correlated.
The wireless channel between sensor nodes and the FC is as-
sumed to undergo fading. In this paper we consider the prob-
lem of optimal power allocation for fusion of a deterministic
signal in such a sensor network with correlated observations to
keep the fusion error probability under a required threshold.

We first derive the fusion error probability at the fusion cen-
ter and then use Particle Swarm Optimization (PSO), which
is an evolutionary computation technique based on the move-
ment and intelligence of particles of a swarm, to numerically
find the optimal power allocation scheme to keep the fusion
error probability under a required threshold. Note that, he opti-
mal power allocation scheme when observations are i.i.d. was
previously derived in [1]. We show that the optimal power al-
location scheme has considerably better performance over the
uniform power allocation scheme specifically when the num-
ber of nodes in the network is large or the local SNR is high.
It is also verified that the results obtained via PSO-based nu-
merical method closely match with analytical results under the
same network conditions.

The remainder of this paper is organized as follows: In Sec-
tion II, the fusion problem is formulated and the optimal fu-

sion performance is derived. Optimal power allocation scheme
based on PSO is developed in Section III. Section IV presents
the performance results and, finally, Section V gives conclud-
ing remarks.

II FUSION PROBLEM FORMULATION

We consider a binary hypothesis testing problem in an n-node
distributed wireless sensor network. The k-th sensor observa-
tion under each hypothesis is given by,

H0 : zk = vk; k = 1, 2, ...., n

H1 : zk = xk + vk; k = 1, 2, ..., n , (1)

where vk is the zero-mean observation noise with variance σ2
v

and xk is the signal to be detected. In vector notation, (1) be-
comes z = x + v where v is a zero mean Gaussian n- vector
of noise samples with covariance matrix Σv. In general Σv is
not a diagonal matrix unless the observation noise is i.i.d..

We consider the detection of a deterministic signal so that
xk = m for all k. Let us define the local signal-to-noise ratio
as γ0 = m2

σ2
v

. The prior probabilities of the two hypotheses
H1 and H0 are denoted by P (H1) = π1 and P (H0) = π0,
respectively.

Each node processes its own observation to produce a local
decision uk(zk) and sends it to the fusion sensor. In this paper
we assume AF local processing, according to which each node
retransmits an amplified version of its own observation to the
fusion center. Note that this class of processing has been shown
to perform well when the observations at the sensor nodes are
corrupted by additive noise [2]. Hence the local decisions sent
to the fusion center are, uk = gkzk; k = 1, 2, ...n, where gk

is the amplifier gain at node k. The received signal rk at the
fusion center under each hypothesis is given by

H0 : rk = nk; k = 1, 2, ...., n

H1 : rk = hkgkxk + nk; k = 1, 2, ...., n

where nk = hkgkvk + wk, hk is the channel fading coefficient
and wk is the receiver noise that is assumed to be independent
and identically distributed with mean zero and variance σ2

w. It
can be shown that the probability of error at the fusion center
for a Bayesian optimal detector is given by

P (E) = Q

(
1
2

√
m2eTAΣ−1

n Ae
)

. (2)

where Q-function is defined by Q(x) = 1√
2π

∫ ∞
x

e−
ζ2

2 dζ,

A = diag(h1g1, h2g2, ...., hngn), Σn = AΣvA + σ2
wI, I is
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the n × n identity matrix and e is the n-length vector of all
ones. Note that, the prior probabilities are assumed to be equal
in (2).

III PSO FOR OPTIMAL POWER ALLOCATION

The objective is to allocate transmit power to distributed nodes
in order to maintain a required fusion error probability at the
fusion center with minimum total power consumption by the
whole network. Thus the optimal power allocation problem
can be formulated as,

mingi≥0

∑n
i=1 g2

i such that

P (E) = Q
(

1
2

√
m2eTAΣ−1

n Ae
)
≤ ε

and gi ≥ 0; i = 1, 2, · · · , n (3)

where ε is the required fusion error probability threshold. Since
it is not possible to find a closed form solution for gi’s in (3), (it
is difficult to evaluate Σ−1

n in closed form when Σv is not diag-
onal) in the following we propose a numerical method based on
PSO to find the optimal power when local observations are cor-
related. Since the PSO is not directly applicable for constrained
optimization problems, we first transform our constrained op-
timization problem in (3) into an unconstrained optimization
problem using the exterior penalty function approach [3].

A Penalty function approach for constrained optimization

In the penalty function method, the constrained problem is
transformed into a sequence of unconstrained minimization
problems such that the constrained minimum can be obtained
by solving the sequence of unconstrained minimization prob-
lems. There are basically two types of penalty function meth-
ods: the interior penalty function method and the exterior
penalty function method [3]. In the interior penalty function
method the initial solution should be in the feasible region,
which may not be easily verifiable; whereas in exterior penalty
function method the initial solution does not necessarily have
to be in the feasible region. For this reason, the exterior penalty
function method is widely used in evolutionary constrained op-
timization problems.

Let us re-write the the optimization problem (3) as,

min f(g) such that hj(g) ≤ 0; j = 1, · · · ,m. (4)

where f(g) =
∑n

i=1 g2
i , h1(g) = β2 − eTAΣ−1

n Ae where
β = 2

mQ−1(ε), hi+1(g) = gi for i = 1, 2, · · · , n and g =
[g1, · · · , gn]T . Then the exterior penalty function for the above
minimization problem can be formulated as [3],

φ(g, rk) = f(g) + rk{(max[h1(g), 0])q

+
m∑

j=2

(max[hj(g), 0])q} (5)

where rk is a positive penalty parameter and q is a non-negative
constant. Usually, the value of q is chosen to be 2 in prac-
tice [3]. The exterior penalty function algorithm to find the
optimal solution for the problem (4) can be stated as below.

(Note that subscript of g denotes the index corresponding to
a penalty parameter while the superscript of g denotes the it-
eration number of the minimization algorithm for a particular
penalty parameter.)

step 1: Start from any initial solution g1
1 and a suitable value

of r1. Set k = 1.
step 2: Find the vector g∗

k that minimizes the function given
in (5).

step 3: Test whether the point g∗
k satisfies all the constraints.

If g∗
k is feasible, it is the desired optimum and hence terminate

the procedure. Otherwise go to next step.
step 4: Choose the next value of the penalty parameter ac-

cording to the relation rk+1
rk

= c where c is a constant greater
than one and set g1

k+1 = g∗
k and k = k + 1. Go to step 2.

When f(g) and hj(g), j = 1, 2, · · · ,m are continuous, as
in this case, the unconstrained minima g∗

k of φ(g, rk) converge
to the optimal solution of the original problem f(g) as k → ∞
and rk → ∞, as long as an optimal solution exits for (4) [3].
When the observations are i.i.d, it can be shown that φ(g, rk)
is a strictly convex function for gi ≥ σ2

w

3h2
i σ2

v
for i = 1, 2, · · · , n.

Further, it can be seen that when hi’s are small enough the con-
vexity of φ(g, rk) holds for gi ≥ 0, ensuring a global minimum
for φ(g, rk). Thus, we may expect that φ(g, rk) has a global
minimum for each rk even when the observation noise is cor-
related under above conditions at least for sufficiently small
correlations.

B Particle swarm optimization

To evaluate optimal g∗
k for each penalty parameter rk as re-

quired in the step 2 above, we use the particle swarm optimiza-
tion technique [4–6]. Note that PSO is a stochastic evolution-
ary computation technique based on the movement and intel-
ligence of swarms, that has been shown to outerperform other
optimization methods such as genetic algorithms [6] in certain
applications. A brief overview of the particle swarm terminol-
ogy is given in Table 1. (For more details see [5]).

Each particle in the swarm is given an initial random location
in the n-dimensional solution space of the problem being op-
timized. The solution space consists of a reasonable range for
the parameter set in which to search for the optimal solution.
This essentially specifies the minimum and maximum values
that parameters can take in each dimension. In this solution
space each particle acts individually and accelerates toward the
best personal location (pbest) while checking the fitness value
of its current position (fitness value of a position is obtained by
evaluating the so-called fitness function at that location). If a
particles’s current location has a better fitness value than that
of its current pbest, then the pbest is replaced by the current lo-
cation. Each particle in the swarm has knowledge of the loca-
tion with best fitness value of the entire swarm which is called
the global best or gbest. At each point along their path, each
particle also compares the fitness value of their pbest to that of
gbest. If any particle has a pbest with better fitness value than
that of current gbest, then the current gbest is replaced by that
particle’s pbest. The movement of particles is stopped once all
particles reach sufficiently close to the position with best fitness
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value of the swarm.

Table 1: PSO Terminology
Particle/Agent A single individual in the swarm
Location/Position An agent’s n-dimensional

coordinates which represent a
solution to the problem

Swarm The entire collection of agents
Fitness A single number representing

the goodness of a given solution
pbest The location in parameter space of the

best fitness returned for a specific agent
gbest The location in parameter space of the

best fitness returned in the entire swarm
Vmax The maximum allowed velocity

in a given direction

In the following we give the algorithmic steps needed to im-
plement the PSO for a given problem.

(I). Define the solution space and fitness function:

Pick the parameters that need to be optimized and give
them a reasonable range in which to search for the optimal
solution which is called the solution space. For the opti-
mization problem (4), the parameter set to be optimized
is [g1, · · · , gn], and the corresponding solution space for
each gi is [0,∞) for i = 1, · · · , n. The fitness function
should exhibit a functional dependance that is relative to
the importance of each characteristic being optimized. For
the optimization problem in (4) we select the penalty func-
tion (5) as the fitness function.

We denote the swarm size by M . For each k in (5), we per-
form PSO algorithm to find g∗

k. For each k, let us define,
gk,m as the position vector of the m- th particle; Pk,m as
the pbest of the m th particle; Pk,gbest as the gbest of the
swarm; φ(gk,m, rk) as the fitness value corresponding to
the location gk,m of the m-th particle; φ(Pk,m, rk) as the
fitness value corresponding to the pbest Pk,m of the m-th
particle; φ(Pk,gbest, rk) as the fitness value correspond-
ing to the gbest of the swarm and Vk,m as velocity of the
m-th particle. The maximum number of iterations of PSO
for each k is set to S.

(II). Initialize swarm locations and velocities for each particle:

Initializing position: For k = 1, (i.e. for the penalty pa-
rameter r1) and for each particle m, m = 1, · · · ,M , g1

k,m

is chosen randomly within the solution space. If k > 1,
g1

k,m=PS
k−1,m where PS

k−1,m is the pbest for the m-th
particle for k = k − 1 at the S-th iteration of PSO.

Initializing pbest: Since its initial position is the only
location encountered by each particle at the run’s start,
this position becomes each particle’s initial pbest. i.e.
P1

k,m = g1
k,m.

Initializing gbest: The first gbest is selected
as the initial pbest which gives the best fit-

ness value: i.e. P1
k,gbest=P1

k,m1
where m1 =

arg min1≤m≤M{φ(P1
k,m, rk)}.

Initializing velocities: Initialize V1
k,m as zeros for each

particle m.

(III). Fly the particles through the solution space:

Each particle is then moved through the solution space by
performing following steps on each particle individually.

(a). Evaluate the particle’s fitness value and compare it
with those of pbest and gbest.

In the s-th iteration of the PSO, for each particle
m, if φ(gs

k,m, rk) < φ(Ps
k,m, rk) then set Ps

k,m =
gs

k,m. Set Ps
k,gbest = Ps

k,ms
where ms =

arg min1≤m≤M{φ(Ps
k,m, rk)}.

(b). Update the particle’s velocity: The velocity of the
particle is changed according to the relative locations of
pbest and gbest. The particles are accelerated in the direc-
tions of the locations of best fitness value according to the
following equation [5, 7]:

Vs+1
k,m = X (wVs

k,m + c1rand()(Ps
k,m − gs

k,m)
+c2rand()(Ps

k,gbest − gs
k,m)), (6)

where X is the constriction factor that controls and con-
stricts velocities; w is the inertia weight that determines to
what extent the particle remains along its original course
unaffected by the pull of pbest and gbest, c1 and c2 are
positive constants that determine the relative ”pull” of
pbest and gbest (In fact c1 determines how much the parti-
cle is influenced by the memory of its best location and c2

determines how much the particle is influenced by the rest
of the swarm) and rand() is the random number generator
that returns a number between 0 and 1.

(c). Move the particle: Once the velocity has been deter-
mined as in (6), move the particle to its next location as
gs+1

k,m = gs
k,m + ∆tVs+1

k,m. The velocity is applied for a
given time step ∆t.

(IV). Repetition:

After the velocity and the position are updated the process
is repeated starting at step (III) until the termination crite-
ria are met. The termination criteria can be a user-defined
maximum iteration number or a target fitness termination
condition. In the latter case, the PSO is run for the user-
defined number of iterations, but at any time if a solution
is found that is greater than or equal to the target fitness
value, then PSO is stopped at that point. In our work we
set the maximum iteration number (S) for PSO as defined
before. Once the termination criteria are met, the optimal
solution g∗

k for the unconstrained minimization problem
in (5) for given k is PS

k,gbest.

C Selection of parameter values for constrained PSO

We chose the population size to be M = 30 as this has been
shown to be sufficient for many engineering problems [8]. Var-
ious values for inertia weight w have been suggested in the
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literature. Since larger weights tend to encourage global explo-
ration and, conversely smaller initial weights encourage local
exploitations, Eberhart and Shi have suggested to vary w lin-
early from 0.9 to 0.4 over the course of the run [9]. We set both
c1 and c2 to 2.0 [5,7], and the constriction factor X to 0.73 [7].

When the particle hits the boundary of the solution space,
there are basically 3 ways to take this into account; Absorbing
walls, reflecting walls and invisible walls [5]. It was shown in
[5] that ”invisible walls” technique has better performance over
the other two in many optimization problems. In our problem,
we used the invisible walls technique which allows the particles
to fly without any restriction when they hit the boundary of
the solution space. However, particles that roam outside the
allowed solution space are not evaluated for fitness until they
returned back to the solution space.

IV NUMERICAL RESULTS

In this section we illustrate performance gains possible with
the derived optimal power allocation scheme via PSO-based
constrained optimization. We assume that fading coefficients
hk’s of the channel between sensors and the fusion center to
be Rayleigh distributed with a unit mean. Note that, without
loss of generality, the fading coefficients hk’s have been ar-
ranged in the descending order (i.e. h1 ≥ h2 ≥ · · · ≥ hn) in
obtaining Tables 2 and 3. Although the above PSO-based nu-
merical method is applicable for any noise covariance matrix
Σv, in the simulations we assume a 1-D sensor network in
which adjacent nodes are separated by distance d and corre-
lation between nodes i and j is proportional to ρ

d|i−j|
0 where

|ρ0| < 1. Letting ρd
0 = ρ, the noise covariance matrix Σv can

be written as a Hermitian Toeplitz matrix with the first row,
σ2

v(1, ρ, · · · , ρ(n−1)).

A Convergence of constrained PSO based on exterior penalty
function approach

When the observations are i.i.d., the solution for the optimal
power allocation problem (3) can be found analytically [1]. It
was sown in [1] that the optimal solution turns off the sensors
with poor observation quality and bad channels so that they do
not need to send the observations to the fusion center. Here, we
observe that the results obtained via PSO-based method closely
match with that of the analytical solution when the observa-
tions are i.i.d. The convergence of the optimal penalty func-

Table 2: Numerical results: n = 10, γ0 = 10dB, ρ = 0 and
ε = 0.01

Value of rk φ(g∗, rk) f(g∗) error
1 156.1372 6.5386 149.5986

20 15.0887 15.0784 0.0103
40 15.0934 15.0864 0.0069
60 15.0955 15.091 0.0045
80 15.0965 15.093 0.0035

100 15.0972 15.0945 0.0028
120 15.0977 15.0954 0.0023

tion value φ(g∗, rk) to the optimal objective function f(g∗) as

Table 3: Comparison of Analytical and Numerical Results
g∗: Analytical [1.6172, 1.5888, 1.5555, 1.4666, 1.4616,

(ρ = 0) 1.4107, 1.1231, 0, 0, 0]
g∗: Numerical [1.6163, 1.5696, 1.5548, 1.5014, 1.4501,

(ρ = 0) 1.4099, 1.1212, 0.0013, 0.0066, 0.0008]
g∗: Numerical [1.6717, 1.5867, 1.6112, 1.5034, 1.5285,

(ρ = 0.1) 1.4758, 1.3381, 0.3366, 0.0062, 0.0005]

penalty parameter rk is varied, is shown in table 2. The results
in Table 2 corresponds to n = 10, γ0 = 10dB, ρ = 0 and
ε = 0.1. As can be observed from Table 2, after seven itera-
tions of rk, the penalty function is very close to the objective
function. The comparison of g∗ obtained numerically as in Ta-
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Figure 1: Best fitness returned for PSO iterations for a given
penalty parameter: P(e)=0.1

ble 2 and analytically under the same network conditions are
shown in first two rows of the Table 3 for 10 nodes. (analytical
results are obtained from [1]). It can be seen that the numer-
ical results closely match with that of analytical results after
a few iterations over the penalty parameter. The third row of
the Table 3 shows the optimal g∗ obtained numerically when
ρ = 0.1, n = 10, γ0 = 10dB and ε = 0.01. It shows that,
when the observations are correlated the optimal solution for
(3) turns off the sensors with poor channels similar to that in
i.i.d observation case. But it is also seen that the sensors need
to spend slightly more power when the observations are corre-
lated (under the same n, γ0 and ε).

Note that we deployed the PSO algorithm for each penalty
parameter rk of the unconstrained optimization problem (5)
to find optimal φ(g∗, rk). Figure. 1 shows how fast the best
fitness value of PSO converges for a given penalty parame-
ter rk; The penalty parameter rk was set to 1, 20, 40, · · · for
k = 1, 2, 3, · · · . As can be seen, when the penalty parame-
ter is r1, the penalty function (φ(g, r1)) converges to its opti-
mal value within less than 50 iterations of PSO. For the rest of
the penalty parameters rk where k > 1, the penalty function
(φ(g, rk)) converges to its optimal value in 1-2 iterations of
PSO.
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Figure 2: PSO: Total Power Vs. Fusion Error Probability when
observation noise is correlated. (a). n = 20, γ0 = 10dB (b).
n = 20, ρ = 0.1

B Optimal power allocation via constrained PSO

In the following we show the performance of the optimal
power allocation scheme, obtained through numerical method
based on constrained-PSO, over the uniform power allocation
scheme. The performance measure is the total network power
expenditure defined as Ptotal =

∑n
i=1 g2

i . The dependance of
the total power on the required fusion error probability is shown
in Fig. 2, parameterized by n, ρ and γ0.

Figure 2a shows that the network needs more power when
the correlation coefficient of the observation noise is high since
then the new information added by each additional sensor de-
creases degrading the fusion performance. On the other hand,
when local SNR is high it is enough to turn on only the nodes
having channels with high fading coefficients so that the total
power spent by the network decreases (Fig. 2b). It was ob-
served that when the number of sensors in the network is large
the required total power with optimal power allocation is less
than that with uniform power allocation, since all sensors do
not need to operate at their maximum power level when there
is a large number of nodes.

V CONCLUSION

In this paper we developed a numerical method for obtaining
the optimal power scheduling scheme for data fusion in a wire-
less sensor network when the observations are correlated. The
proposed method is an evolutionary computation technique
based on extending the PSO to constrained optimization prob-
lems. We saw that the constrained PSO via exterior penalty
function approach has a fast convergence to the required op-
timal solution. From numerical results we observed that the
optimal power allocation scheme provides significant total en-
ergy savings over that of the uniform power allocation scheme
specifically when number of nodes in the system is large, or the
local observation quality is good.
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