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Abstract� In this paper we consider the problem of optimal
power allocation for fusion of a deterministic signal in an
inhomogeneous wireless sensor network (WSN) with correlated
observations. We assume that each distributed node performs
analog-relay ampli�er local processing on its observation and
transmits locally processed data to the fusion center over a
wireless channel. We also assume that the channel between
the fusion center and sensors undergoes fading and the fading
coef�cients are assumed to be known to the transmitter. We derive
exact fusion error probability and an easy to optimize upper
bound for the fusion error probability that is valid for suf�ciently
small correlations. The transmit power is allocated to sensor
nodes to keep the fusion error probability bound under a required
threshold while minimizing the total power spent by the network.
It is shown that the optimal scheme inactivates the sensor nodes
with poor observation quality and low fading coef�cients. For the
remaining active sensors the transmit power is determined by
the individual channel gains, local observation quality, required
fusion error probability bound and the correlation coef�cient.
From numerical results we see that this optimal scheme has a
signi�cant gain over the uniform power allocation scheme when
either local observations are good or the number of sensors is
large and the correlation coef�cient is suf�ciently small. It is
also shown that the optimal power allocation scheme can be
implemented distributively with a minimal feedback from the
fusion center.

Key words−Data fusion, sensor networks, decentralized
detection, correlated observations, hypothesis testing.

I. INTRODUCTION

Decentralized detection is more attractive in many Wireless
Sensor Networks (WSN) applications over the centralized
approach since it drastically reduces communication resource
requirements. In decentralized detection, each node sends a
summary of its observations to the fusion center [1], [2] in
contrast to that in centralized detection. The fusion center
makes use of partially processed data from local nodes to
make the �nal decision. Since only a summary of observations
is transmitted, at the expense of some performance reduction,
decentralized detection is reliable and survivable compared to
centralized detection.

The fusion performance of a decentralized detection system
in a low power WSN is limited by resource constraints, namely
power and bandwidth. In a typical WSN, communication and
computing capabilities of sensor nodes can be limited due
to design considerations such as small battery and available
bandwidth. For example, it may be impractical to replace or

recharge the batteries due to cost and operating environment
considerations. Therefore, the power management is a core
issue in designing a WSN. Power should be allocated to
the sensor nodes to obtain optimal fusion performance while
conserving total power of the network.

The problem of distributed detection and fusion perfor-
mance under resource constraints has been considered by
many authors in literature. In [3], it was shown that when
the network is subjected to a joint power constraint, having
identical sensor nodes (i.e. each node using the same transmis-
sion scheme) is asymptotically optimal in binary decentralized
detection. When the whole system is subjected to a total
average power constraint [4] shows that it is better to combine
as many not-so-good local decisions as possible rather than
relying on a few very good local decisions in the case of
deterministic signal detection. The optimal power scheduling
for distributed detection in WSN has recently been considered
in [5], where they developed the optimal power allocation
scheme with respect to the so-called J-divergence performance
index. The optimal power scheduling scheme for decentralized
estimation to achieve a target Mean Squared Error (MSE)
at the fusion center (with independent observations) has also
been considered in [6], [7]. The minimum energy decentralized
estimation with correlated data was addressed in [8].

In a typical WSN, sensor observations are likely to be
correlated, especially when the sensors are densely deployed.
In this paper we consider the optimal power allocation for
data fusion in a wireless sensor network when local obser-
vations are correlated. We consider a WSN consisting of
a fusion center and a large number of spatially separated
sensors. Each distributed sensor node collects observations,
computes a local message and transmits it to the fusion
center. We speci�cally assume that each node performs analog-
relay ampli�er processing on its own observation. Each node
sends the locally processed data to the fusion center over a
dedicated noisy wireless channel. We derive the exact, as well
as an upper bound, for the fusion error probability which
is easy to optimize when the local observation correlations
are suf�ciently small. The optimal power is allocated to keep
the fusion error probability bound under a required threshold.
As we will show that the optimal power allocation offers
signi�cant energy savings when compared to the uniform
power allocation scheme. The proposed scheme has a simple



distributed implementation with minimal feedback from the
fusion center.

The remainder of this paper is organized as follows: Section
II formulates the fusion problem. In Section III the optimal
fusion performance is analyzed. Optimal power allocation
scheme is given in Section IV. Section V presents the perfor-
mance results and �nally section VI gives concluding remarks.

II. FUSION PROBLEM FORMULATION

We consider a binary hypothesis testing problem in an n-
node distributed wireless sensor network. The k-th sensor
observation under each hypothesis is given by,

H0 : zk = vk; k = 1, 2, ...., n

H1 : zk = xk + vk; k = 1, 2, ..., n , (1)

where vk is the observation noise and xk is the signal to
be detected. In vector notation (1) becomes, z = x + v,
where v is a zero mean Gaussian n- vector of noise samples
with covariance matrix Σv. We consider the detection of a
deterministic signal so that xk = m for all k. Let us de�ne
the local signal-to-noise ratio as γ0 = m2

σ2
v

where σ2
v is the

observation noise variance. The prior probabilities of the two
hypotheses, H1 and H0 are denoted by P (H1) = π1 and
P (H0) = π0, respectively.

Each node processes its own observation to produce a
local decision uk(zk) and sends it to the fusion sensor. Here
we assume that amplify-and-forward local processing is used
at each node, according to which each node retransmits an
ampli�ed version of its own observation to the fusion center.
This class of sensors has been shown to perform well when
the observations at the sensor nodes are corrupted by additive
noise [7], [9]. The local decisions sent to the fusion center
are, uk = gkzk; k = 1, 2, ...n where gk is the relay ampli�er
gain at node k. The received signal at the fusion center is
rk = hkgkzk + wk; k = 1, 2, ....n, where hk is the channel
fading coef�cient and the receiver noise wk ∼ N(0, σ2

w) is
assumed to be independent and identically distributed. Under
each hypothesis, the received signal rk is given by

H0 : rk = nk; k = 1, 2, ...., n

H1 : rk = hkgkxk + nk; k = 1, 2, ...., n

where nk = hkgkvk + wk. De�ning r = [r1, · · · , rn]T , in
vector notation, r = Ax + n under H1 and r = n under
H0, where A = diag(h1g1, h2g2, ...., hngn). The detection
problem at the fusion center can be formulated as,

H0 : r ∼ p0(r) = N (0,Σn)
H1 : r ∼ p1(r) = N (Am,Σn) (2)

where Σn = ATΣvA + σ2
wI, and m = me where e is

the n-length vector with all ones. The log-likelihood ratio
(LLR) for the detection problem (2) can be written as,
T (r) = meT AΣ−1

n r − 1
2m2eT AΣ−1

n Ae. It is well known
that optimal fusion tests should be threshold tests on the above

LLR. Thus the optimal Bayesian decision rule at the fusion
center is given by,

δ(r) =
{

1 if T (r) ≥ log τ
0 if T (r) < log τ,

(3)

where τ is the threshold given by τ = π1
π0

(assuming minimum
probability of error Bayesian fusion).

III. ANALYSIS OF OPTIMAL FUSION PERFORMANCE

The LLR T (r) has the following distribution under the two
hypotheses:

H0 : T (r) ∼ N (−1
2
m2eTAΣ−1

n Ae, m2eTAΣ−1
n Ae)

H1 : T (r) ∼ N (
1
2
m2eTAΣ−1

n Ae, m2eTAΣ−1
n Ae).

(4)

Hence the probability of error at the fusion center for a
Bayesian detector is given by

P (E) = Q

(
1
2

√
m2eTAΣ−1

n Ae
)

, (5)

where Q-function is de�ned by Q(x) = 1√
2π

∫∞
x

e−
ζ2

2 dζ and
the prior probabilities are assumed to be equal in (5).

It is not clear how to evaluate Σ−1
n in (5) analytically

for a general Σv unless it has a diagonal structure. In the
following we consider a speci�c sensor network model and
obtain an upper bound for P (E) in (5) that is valid for
small correlations. To that end we assume a 1-D sensor
network in which adjacent nodes are separated by distance
d and correlation between observations at nodes i and j is
proportional to ρ

d|i−j|
0 where |ρ0| ≤ 1. Letting ρd

0 = ρ, Σv

can be written as

Σv = σ2
v




1 ρ . . . ρn−2 ρn−1

ρ 1 . . . ρn−3 ρn−2

. . . . . . .
ρn−2 ρn−3 . . . 1 ρ
ρn−1 ρn−2 . . . ρ 1




. (6)

When ρ is suf�ciently small, we may approximate (6) by its
tri-diagonal version by dropping second and higher order terms
of ρ. Now, using Bergstrom's inequality [10], for any two
positive de�nite matrices P and Q it can be shown that

(eTP−1e) ≥ (eT(P + Q)−1e)(eTQ−1e)
(eTQ−1e− eT(P + Q)−1e)

. (7)

Since m2eTAΣ−1
n Ae = m2eT(Σv + σ2

wA−2)−1e we take
P = (Σv + σ2

wA−2) and de�ne the matrix Q such that,

Q = σ2
v




1 −ρ . . −ρn−2 −ρn−1

−ρ 1 . . −ρn−3 −ρn−2

. . . . . .
−ρn−2 −ρn−3 . . 1 −ρ
−ρn−1 −ρn−2 . . −ρ 1




.

For small enough ρ it can be shown that eTQe > 0. In fact,
when Σv has the tri-diagonal structure (implying only the



adjacent node observations are correlated), it can be shown that
for any |ρ| < n

2(n−1) , we will have eTQe > 0. In general, if
Σv was in (6), this will be true for small enough ρ. The noise
covariance matrix (6) can be used in many applications in 1-
D sensor networks such as traf�c monitoring or in industrial
monitoring, where the sensors are equally spaced. The tri-
diagonal version of (6) is a more realistic model when the
correlation coef�cient ρ is small, since then the second and
higher order terms of ρ in (6) are negligible. From (7) it can
be shown that

eT(Σv + σ2
wA−2)−1e ≥


 1

∑n
k=1

h2
kg2

k

2h2
kg2

kσ2
v+σ2

w

− 1
D



−1

, (8)

where D = eTQ−1e. From (5) and (8), we then have the
following upper bound for the fusion error probability when
the observations are correlated:

P (E) ≤ Q


m

2


 1

∑n
k=1

h2
kg2

k

2h2
kg2

kσ2
v+σ2

w

− 1
D



− 1

2

. (9)

For ρ = 0, D = n/σ2
v . Then,

lim
g2

k→∞ k=1,··· ,n


 1

∑n
k=1

h2
kg2

k

2h2
kg2

kσ2
v+σ2

w

− 1
D



−1

=
n

σ2
v

.

That is the fusion error probability bound (9) has a perfor-
mance �oor of Q

(√
nγ0

2

)
for in�nite ampli�er gains.

On the other hand, when observation noise is i.i.d.,
the exact fusion error probability is given by P (E) =

Q

(
m
2

√∑n
k=1

h2
kg2

k

h2
kg2

kσ2
v+σ2

w

)
(note that when the observation

noise is i.i.d. Σ−1
n in (5) can be evaluated analytically) and it

has a performance �oor, P (E) = Q
(√

nγ0

2

)
as g2

k →∞; k =
1, 2, · · · , n. It can be seen that both the exact fusion error
probability and the proposed error probability bound exhibit
the same performance for i.i.d. observations when the local
ampli�er gain is in�nite. An experimental analysis of the
tightness of the bound is illustrated in Fig. 1, which we will
discuss in Section V.

IV. OPTIMAL POWER ALLOCATION

In the following, we derive a power allocation scheme that
minimizes the total power spent by the whole sensor network
subjected to the constraint that the fusion error probability
be less than a given threshold. When the observation noise
is independent the exact fusion error probability (5) can be
easily evaluated analytically and the optimal power allocation
scheme was derived in [11]. However, when observations
are correlated, the exact error expression (5) is not easy
to optimize analytically. Thus, here we use the bound (9)
obtained above for our power optimization. The optimal power
allocation problem can be formulated as

min
gk≥0 for k=1,··· ,n

n∑

k=1

g2
k ,

such that

Q


m

2


 1

∑n
k=1

h2
kg2

k

2h2
kg2

kσ2
v+σ2

w

− 1
D



− 1

2

 ≤ ε,

where ε is the required threshold for fusion error probability.
The above problem can alternatively be written as,

min
gk≥0 for k=1,··· ,n

n∑

k=1

g2
k ,

such that q − ∑n
k=1

h2
kg2

k

2h2
kg2

kσ2
v+σ2

w
≤ 0 and gk ≥ 0; k =

1, 2, · · · , n where q =
(

1
β2 + 1

D

)−1

and β = 2Q−1(ε)
m (Note

that, q > 0 since D > 0). Then the Lagrangian for the above
optimization problem is given by

G(L, λ0, µk) =
n∑

k=1

g2
k + λ0

[
q −

n∑

k=1

h2
kg2

k

2h2
kg2

kσ2
v + σ2

w

]

+
n∑

k=1

(−gk)µk, (10)

where λ0 ≥ 0 and µk ≥ 0 for k = 1, 2, · · · , n. The optimal
solution should satisfy the following KKT conditions:

2gk − λ0
2gkh2

kσ2
w

(2h2
kg2

kσ2
v + σ2

w)2
− µk = 0; k = 1, 2, · · · , n(11)

λ0

[
q −

n∑

k=1

h2
kg2

k

2h2
kg2

kσ2
v + σ2

w

]
= 0 (12)

n∑

k=1

(−gk)µk = 0

q −
n∑

k=1

h2
kg2

k

2h2
kg2

kσ2
v + σ2

w

≤ 0

gk ≥ 0; k = 1, 2, · · · , n (13)

In order to �nd a solution that satis�es above KKT conditions,
let us assume that λ0 6= 0 and µk = 0 for k = 1, 2, · · · , n.
Then, for gk 6= 0, from (11) we have,

g2
k =

σ2
w

2h2
kσ2

v

[√
λ0hk

σw
− 1

]
. (14)

Let us de�ne the set Φ such that Φ = {k; gk 6= 0}.
From (12) and (14), we get

√
λ0 =

σw
P

k∈Φ
1

hk

|Φ|−2σ2
vq where |Φ|

denotes the cardinality of Φ. Let us de�ne a function f(.) as
f(k) = k−2σ2

vq

hk

Pk
j=1

1
hj

Suppose that, without loss of generality,
h1 ≥ h2 ≥ · · · ≥ hn. Then it can be shown that (see the
Appendix), we can �nd a unique K1 such that f(K1) < 1
and f(K1 + 1) ≥ 1 for 1 ≤ K1 ≤ n. The value of K1 can
be found by searching for the maximum integer k such that
f(k) < 1 where k = 1, · · · , n. With this notation, we have

√
λ0 =

σw

hK1f(K1)
. (15)
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Fig. 1. Total power Vs. the fusion error probability: γ0 = 5dB, n = 100

From (14) and (15) we get, g2
k = σ2

w

2h2
kσ2

v

[
hk

hK1f(K1)
− 1

]
which

satis�es the KKT condition (13) if n > 2σ2
vq. Suppose n ≤

2σ2
vq, and assume λ0 = 0 and µk 6= 0 for k = 1, 2, · · · , n.

From the KKT conditions it can be seen that there is no non-
trivial solution for gk whenever µk 6= 0 for k = 1, 2, · · · , n.
Thus the solution to the optimal power allocation problem can
be given as,

g2
k =





σ2
w

2h2
kσ2

v

[
hk

PK1
j=1

1
hj

(K1−2σ2
vq) − 1

]
; if k < K1 and
n− 2σ2

vq > 0
0 ; if k > K1

and n− 2σ2
vq > 0

infeasible ; if n− 2σ2
vq ≤ 0

. (16)

Note from (16) that to achieve the required fusion error
probability at the fusion center the total number of the active
sensors should be greater than 2σ2

vq in the optimal solution.
The implementation of optimal power allocation scheme

shown in (16) has in general centralized structure; i.e. the
fusion center determines each node's power values and sends
to each node. But this can be implemented distributively using
side information from the fusion center. If each node is aware
of its channel fading coef�cients (via feedback assuming a
block fading channel) then once the fusion center determines
and broadcasts

√
λ0 as side information to the nodes, each

node can determine its power as in (14).

V. PERFORMANCE RESULTS

In our numerical results we assume that fading coef�cients
hk of the channel between sensors and the fusion center to be
Rayleigh distributed with unit mean. Our performance measure
is the total power expenditure de�ned as POB =

∑n
k=1 g2

k

where gk's are given by (16). In contrast, in a uniform power
allocation scheme each node transmits locally processed data
to the fusion center with equal power irrespective of the quality
of local observation and the channel. The corresponding total
power spent with uniform power allocation is PUB = ng2,
where g is given by the expression, q = g2

∑n
k=1

h2
k

2h2
kg2σ2

v+σ2
w

.
The total power under uniform power allocation for the exact
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Fig. 2. Active sensors Vs. total number of sensors for ρ=0.1

P (E) is given by PUE = ng
′2 and g

′2 is given by,

g
′2eTH(g

′2HΣvH + σ2
w)−1He = β2

where H = diag(h1, h2, · · · , hn).
From Fig. 1, it can be seen that the optimal power allocation

scheme based on the fusion error probability bound has sig-
ni�cant performance over the uniform power allocation based
either on the exact or bound to the fusion error probability.
It also shows how tight the bound is at least with uniform
power allocation. It can be seen from Fig. 1 that the total
optimal power required to keep the fusion error probability
bound under a given threshold is less than the total uniform
power required to keep the exact fusion error probability under
the same threshold. Also the bound is well performed when
the required threshold is not signi�cantly low.

Observe from Fig. 2 that only a small number of sensors are
active when the local observation quality is good and when the
required fusion error probability bound is not signi�cantly low.
It is depicted in Fig. 3 that the gain of the optimal scheme over
the uniform scheme increases when the required fusion error
probability is relatively high since then only a small number
of sensor are active in the optimal scheme conserving total
power of the system. Figure 3 also shows that the total power
spent by the system decreases when the number of sensors in
the system increases since it is not necessary to operate all the
sensors in large power levels because large number of replicas
of the same signal contributes to the fusion decision.

From Fig. 4 we can see that when γ0 is high the gain
of the optimal power allocation scheme over the uniform
scheme is high. This is because when γ0 is high the optimal
scheme only needs a small number of active sensors. Figure
4 also depicts that the network needs more power when the
correlation coef�cient of the observation noise is high since
the new information added by each additional sensor then
decreases leading to degraded fusion performance.

VI. CONCLUSION

In this paper we derived an upper bound for the fusion error
probability in a WSN when local observation noise correlation
is suf�ciently small. The optimal power allocation scheme over
the distributed nodes was derived to keep the upper bound of



10
−4

10
−3

10
−2

10
−1

4

6

8

10

12

14

16

18

20

Probability of Fusion Error

T
ot

al
 P

ow
er

 in
 d

B

 

 

P
UB

:n=50

P
OB

:n=50

P
UB

:n=100

P
OB

:n=100

Fig. 3. Optimal Total Power and Fusion Error Probability; ρ = 0.1, γ0 =
5dB

the fusion error probability under a required threshold. The
derived upper bound for the fusion error probability is valid
for 1-D WSN models with equally spaced sensors which can
be justi�ed in certain applications. We showed that the optimal
power allocation scheme saves total power in the system when
compared with the uniform power allocation by inactivating
nodes with poor observation quality and bad channels. The
gain of optimal power allocation scheme over the uniform
power allocation scheme becomes more prominent when γ0

is high. We also showed that the proposed optimal power
allocation scheme has a distributed implementation with a
small feedback from the fusion center.

APPENDIX

In this Appendix, we show the existence of a unique K1,
where 1 ≤ K1 ≤ n is such that f(K1) < 1 and f(K1 +
1) ≥ 1 where f(k) = (k−2σ2

vq)

hk

Pk
j=1

1
hj

and we have assumed

h1 > h2 > · · · , hn. When k = 1, f(1) = (1−2σ2
vq)

h1. 1
h1

<

1; since q is positive. So, f(k) > 1 is not possible for all
k = 1, 2, · · · , n. Therefore there are two possibilities:
• f(k) < 1 for all 1 ≤ k ≤ n: In this case we set K1 = n.
• There exists a unique K1 such that f(K1) < 1 and

f(K1 + 1) ≥ 1, where 1 ≤ K1 ≤ n:
The uniqueness of K1 implies that for any k ≥ K1 + 1, we
should have that f(k) ≥ 1. This can be proved by showing that
if f(k) ≥ 1, then f(k+1) ≥ 1. When f(k) ≥ 1, it implies that
f(k + 1) = (k+1−2σ2

vq)

hk

Pk+1
j=1

1
hj

= (k−2σ2
vq)+1

(hk

Pk
j=1

1
hj

+1)−(hk−h
k+1 )

Pk
j=1

1
hj

.
The second term of the denominator of the last equality is
positive since we have assumed that hk > hk+1 and k −
2σ2

vq > 0 for f(k) ≥ 1. Hence f(k + 1) >
(k−2σ2

vq)+1

hk

Pk
j=1

1
hj

+1
> 1

as required.
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