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ABSTRACT

We consider the problem of optimal (fixed) wireless sensor net-
work (WSN) design for distributed detection of a randomly-
located target. A distributed one-dimensional (1-D) WSN
model with equal spacing d between any two adjacent nodes is
assumed. We first model the target as being randomly located
following an exponential distribution with a known parameter,
and the channel between the nodes and the fusion center to
be AWGN with path loss attenuation. A simplified decision fu-
sion rule for the high observation signal-to-noise ratio (SNR)
regime and its Bayesian error probability are derived, which
then is used to optimize the parameters of the WSN. The op-
timal sensor placements are obtained in the limit of a large
sensor system and the analytical properties of the obtained so-
lution are discussed with corresponding numerical examples. It
is shown that in many cases deviation from optimal inter-node
spacing can cost significant performance penalty. Finally, the
results are generalized to a fading wireless channel and for any
target-location distribution specified only via its second-order
statistics. It is shown that the optimal sensor placements es-
sentially stays the same regardless of whether the channel is
AWGN or fading, and are insensitive to operating SNR’s either
at the fusion center or at the local sensor nodes.

I. INTRODUCTION

In many distributed wireless sensor networks (WSN’s) pre-
serving the node power is crucial, especially when they are
deployed in difficult/hostile environments that prevent replac-
ing or recharging the batteries. In such situations, initial op-
timization of network design can help save precious battery
life thereby extending the network lifetime. In this paper, we
formulate and solve this problem for a one-dimensional (1-
D) WSN, made of n equi-spaced nodes, employed to detect
a randomly-located target.

Remote/distributed target detection and decision fusion have
been researched extensively over the years in various contexts
(see [1–5], and references therein). However, in this paper, our
focus is specifically on the optimal design of wireless sensor
networks for such an application. In recent years the concept
WSN’s has gained considerable attention in various detection,
tracking and/or monitoring applications due to their versatility
and flexibility. In many cases, however, distributed wireless
sensor networks operate under strict constraints on node power
and available communication bandwidth [6, 7]. These inher-
ent resource constraints make judicial system design extremely

important in order to extend the lifetime of the network.
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Figure 1: 1-D Equi-spaced Sensor Network.

In this paper, we formulate the problem of optimal de-
sign of a one-dimensional wireless sensor network to detect a
randomly-located target. The WSN is assumed to be made of n
equi-spaced nodes, where d denotes the distance between any
two adjacent nodes as shown in Fig. 1. The distributed nodes
make independent binary decisions on whether the target is
present or not based on their own observations, and wirelessly
relay these local decisions to the fusion center. The fusion cen-
ter observes a noisy version of the local decisions and makes
a final decision on whether the target is present or not. The
wireless channel suffers from both path loss due to attenuation
as well as random fading. The amount of path loss is a func-
tion of the distance between a particular node and the fusion
center and, of course, the path loss exponent of the wireless
channel. In addition, the quality of local decisions from dis-
tributed nodes is also a function of the relative location of the
target at any given time with respect to a specific nodes. Hence,
the fusion error probability performance critically depends on
the node locations of the wireless sensor network which are
essentially determined by the inter-node spacing parameter d.
The goal in this paper is to propose an optimal WSN design
by deriving the best d that leads to the minimum achievable
Bayesian fusion probability of error.

It is interesting to note that the inter-node spacing d also di-
rectly relates to the infrastructure cost of the wireless sensor
network as well as the coverage area. If one were to use a
too small value of d in designing the network, this will require
more sensor nodes to cover a given area leading to more infras-
tructure cost. on the other hand, for a fixed number of nodes
n it will limit the coverage area. On the other hand, if d were
to be too large the sensor network could be sparse leading to
poor sensing performance, as well as needless waste of trans-
mit power over long communication distances. Of course, the
optimal d would provide the correct trade-off between these
extremes leading to the best possible performance.

The remainder of this paper is organized as follows: Section
II. details the assumed models for the sensor network, target
and the wireless communication system. In Section III. we de-

1-4244-1513-06/07/$25.00 c©2007 IEEE 1



rive the optimal decision fusion strategy in the regime of high
local observation SNR and analyze its error probability. Sec-
tion IV. derives the optimal sensor placements that leads to the
minimum possible Bayesian fusion performance for different
target-location models and wireless channel models. Numeri-
cal examples that shows superior performance of optimal sen-
sor networks designed according to the derived results are also
presented in Section IV.. Finally, Section V. concludes the pa-
per.

II. SYSTEM MODEL

In this paper, we consider the detection of a randomly-located
target using an n-node, one-dimensional wireless sensor net-
work. The target is also assumed to be located randomly in a
1-D space. Denoting the target absent and present hypotheses
by H0 and H1, respectively, the k-th sensor observations under
the hypothesis Hj , for j = 0, 1, are given by

Hj : yk = xj,k + vk, (1)

where observation noise vk is assumed to be a sequence of iid
(independent and identically distributed), zero-mean random
variables. Due to node power and bandwidth constraints, the
k-th node makes a local binary decision δk(yk) ∈ {0, 1} on the
true hypothesis that is to be sent to a fusion center. Note that,
each node makes its decision based on its own observation, so
there is no need for any inter-sensor communication. Let us
denote by Pfk

(rt) and Pdk
(rt) the false-alarm and detection

probabilities, respectively, associated with the k-th node’s bi-
nary decisions δk(yk)’s, conditioned on the target location be-
ing at location rt.

The local decisions are transmitted to the fusion center over
a noisy, wireless channel via antipodal signalling. Hence, the
transmit symbol from node k is given by uk = 2δ(yk) − 1
where uk ∈ {+1,−1}. Assuming orthogonal sensor-to-fusion
center communication, the equivalent complex-baseband rep-
resentation of the received signal at the fusion center due to the
k-th node can be written as

zk = gkhkuk + wk, (2)

where gk is the transmit amplitude at the k-th node, hk is the
(in general) complex fading coefficient between k-th node and
the fusion center and wk is the additive receiver noise that is
assumed to be zero-mean, complex-Gaussian with variance σ2.
Throughout this paper, we assume equal power allocation at all
nodes, so that gk = g for all k. For convenience, let z =
[z1, · · · , zn]T denote the received signal vector at the fusion
center from all sensor nodes.

In a spatially distributed wireless sensor network, the dis-
tance between any given node and the fusion center varies from
node to node. If the distance from the fusion center to the k-th
node is dk, the received power from that node is attenuated in
proportion to d−α

k , where α ≥ 2 is the path loss exponent of the
wireless channel and usually can be 2 ≤ α ≤ 6 [8]. In addi-
tion, in a wireless channel there is short-term fading that is typ-
ically modeled as being random (for convenience, in this paper

we do not explicitly model shadowing effects). Thus, in gen-
eral, the propagation channels seen by nodes in a distributed,
fixed wireless sensor network are inhomogeneous. Accord-
ingly, we assume that the channel fading coefficients are inde-
pendent but non-identically distributed such that hk = αk

√
γk

where αk is a random variable with E
{|αk|2

}
= 1 account-

ing for random channel variations that is independent from the
node-location dependent γk. In particular, in a Rayleigh fading
channel, without a line-of-sight (LOS) component, αk is zero-
mean, complex-Gaussian with independent real and imaginary
parts. Note that E{|hk|2} = E

{|αk|2
}

γk = γk. Thus γk

represents the received channel power level at the fusion cen-
ter due to transmissions from node k as a function of distance
between them.

In a fixed wireless sensor network the dependence of γk’s
over the sensor nodes is different depending on the spatial
distribution of the nodes. In this paper, we consider a one-
dimensional fixed sensor network as shown in Fig. 1 where
sensor nodes are equi-spaced along a straight line so that dk =
kd. In this case γk’s represent the average received power level
at the fusion center due to node k:

γk =
γd

kα
. (3)

where α ≥ 2 is the path loss exponent of the wireless channel
and γd is the average received channel power from the first
node when it transmits at a unit power. The average received
channel power per node (averaged over all nodes) is

γ̄d =
1
n

n∑
k=1

γk =
γd

n

n∑
k=1

1
kα

≈ γd

n
ζ(α), (4)

where ζ(α) =
∑∞

k=1
1

kα , for α > 1, is the Riemann-zeta func-
tion. Thus (3) can be written in terms of the parameter γ̄d as

γk =
nγ̄d/ζ(α)

kα
. (5)

III. OPTIMAL DECISION FUSION RECEIVER AND ITS

PERFORMANCE

The optimal detection procedures at the fusion center for bi-
nary hypothesis testing problem are the likelihood ratio tests
(LRT’s) based on the received signal vector z [9]. Assuming
coherent detection, the required likelihood ratio (LR) at the fu-
sion center is

L (z|h) =
n∏

k=1

p(zk|hk,H1)
p(zk|hk,H0)

, (6)

where h = (h1, · · · , hn)T . The conditional density
p(zk|hk,H1) can be written as:

p(zk|hk,H1) =
∑
uk

Ert
{p(uk|rt,H1)p(zk|hk, uk)}

=
1√
2πσ

[
Ert

{Pdk
(rt)} e−

|zk−gkhk|2
2σ2

+ (1 − Ert
{Pdk

(rt)}) e−
|zk+gkhk|2

2σ2

]
, (7)
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where Ert
{.} denotes the expectation with respect to the ran-

dom target location and we have let

p(uk|rt,H1) =
{

Pdk
(rt) if uk = 1

1 − Pdk
(rt) if uk = −1 .

Similarly, we have

p(zk|H0) =
1√
2πσ

[
Ert

{Pfk
(rt)} e−

|zk−gkhk|2
2σ2

+ (1 − Ert
{Pfk

(rt)}) e−
|zk+gkhk|2

2σ2

]
, (8)

where again we have let

p(uk|rt,H0) =
{

Pfk
(rt) if uk = 1

1 − Pfk
(rt) if uk = −1 .

If the k-th node location is dk, then assuming a Rayleigh fading
channel between the target location and the k-th node, we may
reasonably approximate the false-alarm probability Pfk

(rt) as

Pfk
(rt) ≈ 1

2
(
1 + γ0

|dk−rt|2
) , (9)

where γ0 denotes the local observation SNR at each distributed
node (assumed to be the same for all nodes). Under these con-
ditions it is also reasonable to assume that

Pdk
(rt) ≈ 1 − Pfk

(rt) , (10)

an approximation that we will make use of throughout the rest
of the paper.

In order to obtain a useful characterization of the optimal
fusion rule that facilitates performance analysis and network
design optimization, in the following we investigate the LR ob-
tained by substituting (7) and (8) in (6) in the high observa-
tion SNR regime of γ0 � 1. When local observation SNR
γ0 at distributed nodes is large so that Pfk

(rt) � 1 and
1 − Pdk

(rt) � 1, for all k = 1, · · · , n, we may simplify
the LR to obtain

L (z|h) ≈
n∏

k=1

Ert
{Pdk

(rt)}
1 − Ert

{Pfk
(rt)}e

2gkRe{h∗
kzk}

σ2 . (11)

Using (10), the corresponding log likelihood ratio (LLR) is

log L (z|h) =
2
σ2

n∑
k=1

gkRe{h∗
kzk}. (12)

From (12) we note that optimal fusion tests compare the lin-
ear decision fusion statistic log L (z|h) to the threshold log(τ),
where τ is a threshold determined by the particular optimality
criteria (for example, Bayesian vs. Neyman-Pearson):

δ(z) =




1 ≥
if T (z) t

0 <
. (13)

where we have defined

T (z) =
n∑

k=1

gkRe{h∗
kzk}, (14)

and

t =
σ2

2
log τ. (15)

For example, in the case of Bayesian fusion with the minimum
probability of fusion error optimality criterion, τ = 1, and the
threshold t simplifies to t = 0.

To analyze the performance of the above coherent detector,
we assume that in the case of a large sensor network (i.e. large
n), the decision statistic T is a normal random variable under
both hypotheses. When local observation quality is good, it
can then be shown that

under H0:

T (z) ∼ N
(

n∑
k=1

g
2
k|hk|2

(
2Ert

{
Pfk

(rt − 1)
})

,
σ2

2

n∑
k=1

g
2
k|hk|2

)
,

and

under H1:

T (z) ∼ N
(

n∑
k=1

g
2
k|hk|2

(
1 − 2Ert

{
Pfk

(rt)
})

,
σ2

2

n∑
k=1

g
2
k|hk|2

)
, (16)

where we have used the approximation (10) in obtaining (16).
The false-alarm and detection probabilities at the fusion center
can then be derived to be, respectively

PF = Eh


Q


 t +

∑n
k=1 g2

k|hk|2
(
1 − 2Ert

{
Pfk

(rt)
})

√
σ2
2

∑n
k=1 g2

k|hk|2




 ,(17)

and

PD = Eh


Q


 t −∑n

k=1 g2
k|hk|2

(
1 − 2Ert

{
Pfk

(rt)
})

√
σ2
2

∑n
k=1 g2

k|hk|2




 .(18)

Using the fact that when local decision quality is good t = 0,
the Bayesian fusion error probability can be written as

Pe = Eh


Q




∑n
k=1 g2

k|hk|2
(
1 − 2Ert

{
Pfk

(rt)
})

√
σ2
2

∑n
k=1 g2

k|hk|2




 . (19)

IV. OPTIMAL SENSOR NETWORK DESIGN

A. Exponential Target in a 1-D Sensor Network with No
Short-term Fading

When there is no short-term fading the channel coefficients are
simply given by |hk|2 = γk where γk is the received power at
the fusion center from the k-th node when it uses a unit transmit
power. The target location is assumed to follow an exponential
distribution with a known parameter Dt. Assuming γ0 � 1,
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and using (9), we can approximate the average local false-alarm
probability as

Ert
{Pfk

(rt)} ≈ D2
t

2γ0

[
1 +

(
1 − dk

Dt

)2
]

. (20)

We can obtain the false-alarm, detection and Bayesian error
probabilities by substituting (5) and (20) in (17)-(19). In par-
ticular, the fusion center error probability can be written as

Pe ≈ Q

( √
2nγ̄dγc

ζ(α)

n∑
k=1

(
1 − 2Ert

{
Pfk

(rt)
})

kα

)
(21)

= Q

(√
2nγ̄dγc

[
1 − D2

t

γ0

(
2 − 2

d

Dt

ζ(α − 1)

ζ(α)
+

d2

D2
t

ζ(α − 2)

ζ(α)

)])

(22)

where, in (22) we have used (20) with dk = kd and defined
the fusion center SNR as γc = g2

σ2 . In (22) we require that
α > 3 for Riemann-zeta functions to be well-defined. Note
that (22) indicates an asymptotic performance floor as γ0 tends
to infinity, since

lim
γ0−→∞Pe = Q

(√
2nγ̄dγc

)
. (23)
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Figure 2: Dependance of Decision Fusion Error Probability on
Normalized Inter-node Spacing d

Dt
for Dt = 1, α = 3.5, γ̄d =

1, γc = 0 dB and n = 20.

Of course, this is usually the case in many decision fusion
problems with distributed decisions: the fusion performance
will ultimately be limited by the quality of the communication
channel between the distributed nodes and the fusion center (as
characterized by the channel SNR γc) no matter how good the
local decisions are [10, 11]. This behavior is shown in Fig. 2
for the assumed parameters of α = 3.5, Dt = 1, γ̄d = 1,
γc = 0dB and n = 20 (for convenience, in Fig. 2 we have used
the normalized inter-node distance defined as d

Dt
). Observe

from Fig. 2 that the fusion error probability finally converges
to the same asymptotic limit (23) regardless of the actual inter-
node distance d. However, the inter-node distance determines
how large γ0 needs to be for Pe to achieve its asymptotic value

(23) for a given n and channel SNR γc. Intuitively, this reflects
the trade-off between the inter-node distance d and the required
local SNR γ0.

Figure 2 also shows the non-uniform dependence of fusion
error probability on inter-node distance d. Clearly, there is an
optimal d = d0 that leads to the minimum error probability for
any given target parameter Dt, channel SNR γc and the obser-
vation SNR γ0. As seen from Fig. 2, even a small deviation
from the optimal d may lead to significant degradation of the
final fusion error probability. Hence, the node placements need
to be optimized for the best possible performance. It can eas-
ily be seen that both Neyman-Pearson (in which the detection
probability PD is maximized subject to a required false-alarm
probability PF threshold) and Bayesian optimality amounts to
maximizing the argument of the Q-function in (21). Equiva-

lently, it is enough to minimize
∑n

k=1

Ert{Pfk
(rt)}

kα as a func-
tion of the inter-node distance d. Due to the quadratic structure
of (20), it follows easily that the optimal inter-node distance d0

is given by

d0 =
ζ(α − 1)
ζ(α − 2)

Dt. (24)

Observe that the optimal inter-node distance d0 is indepen-
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Figure 3: Optimal Normalized Inter-node Spacing d
Dt

as a
Function of Path Loss Exponent.

dent of the actual operating SNR’s (either channel or local) and
only dependent on the target parameter Dt and the path loss ex-
ponent α. This makes the design of wireless sensor networks
based on (24) simpler and more general. Figure 3 shows the
optimal d0 as a function of the path loss exponent. Note that
for large α, d0 −→ Dt. However, real wireless channels usu-
ally have 2 < α ≤ 6 and very large α’s are simply unrealistic.
Hence, the optimal d0 for a given channel environment and a
target needs to be carefully determined via (24).

The resulting minimum achievable fusion error probability
with d = d0 can easily shown to be

Pe ≈ Q

(√
2nγ̄dγc

[
1 − D2

t

γ0

(
2 − ζ2(α − 1)

ζ(α)ζ(α − 2)

)])
.

4



−3 −2 −1 0 1 2 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Decision Fusion Probability of Error

Sensor transmit SNR (γ
c
) in dB

F
us

io
n 

er
ro

r 
pr

ob
ab

ili
ty

 (
P

e)

 

 
d

norm
 = 0.5*d

opt

d
norm

 = d
opt

d
norm

 = 2*d
opt

d
norm

 = 3*d
opt

Figure 4: Decision Fusion Error Probability Versus Channel
SNR γc for Dt = 1, α = 3.5, γ̄d = 1, γ0 = 10 dB and n = 20.

Figure 4 shows the performance penalty in terms of the re-
quired channel SNR that results from not using the optimal
inter-node distance in designing a sensor network. The as-
sumed parameters in Fig. 4 are α = 3.5, Dt = 1, γ̄d = 1,
γ0 = 10dB and n = 20. For example, from Fig. 4 we observe
that at Pe = 10−6, there is about 3dB penalty in channel SNR
γc if we were to use d = 3d0 rather than d = d0. This shows
that in some cases, there can be severe waste of node power if
sensors are placed without regard to the optimal choice of lo-
cations. Interestingly, Fig. 4 also shows that the SNR penalty
is severe when d > d0 compared to when d < d0 (by the same
factor). However, smaller d values lead to large number of re-
quired nodes to cover the same area (node density increases),
which of course is costly. On the other hand, larger d values
allow covering the same area with fewer sensing nodes. The
above d0 of course gives the optimal inter-node spacing that
provides the correct trade-off between the error performance
and required node density.

B. Target Specified via Second-order Statistics in a 1-D Sen-
sor Network with No Short-term Fading

It can be shown that the optimal inter-node distance derived in
the previous section in fact holds for a general class of target
location models. Indeed, if we were to assume that the target
location is randomly distributed with mean location E{rt} =
mt and variance V ar(rt) = σ2

t , then under the assumption of
high observation SNR regime (γ0 � 1), we can show that

Pe ≈ Q


√

2nγ̄dγc


1 −

(
m2

t + σ2
t − 2dmt

ζ(α−1)
ζ(α) + d2 ζ(α−2)

ζ(α)

)
γ0




 . (25)

By comparing the above fusion error probability expression, it
is easily seen that (22) is in fact a special case of (25) since the
assumed exponential target location distribution has mt = Dt

and σ2
t = D2

t . It is also easy to show that the optimal inter-node
distance d0 that minimizes (25) is given by

d0 =
ζ(α − 1)
ζ(α − 2)

mt. (26)

Note that, again the optimal inter-node distance is only a func-
tion of the mean target location mt and the path loss exponent
α. In particular, it does not depend on the operating SNR val-
ues at either the fusion center or the distributed nodes. The
resulting minimum fusion error probability is given by

Pe ≈ Q

(√
2nγ̄dγc

[
1 − σ2

t

γ0

(
1 +

m2
t

σ2
t

(
1 − ζ2(α − 1)

ζ(α)ζ(α − 2)

))])
.

It can be verified that the performance characteristics observed
in the previous section in the case of an exponentially dis-
tributed target hold verbatim in general for the second-order-
specified target in the asymptotically large observation SNR
regime. In particular, there is a performance floor determined
by the channel SNR for large observation SNR γ0, as observed
previously for an exponentially-located target.

C. Target Specified via Second-order Statistics in a 1-D Wire-
less Sensor Network with Fading

We can further show that the above optimal inter-node spacing
expression derived above holds true even when there is channel
fading between the fusion center and the distributed nodes (in
addition to path attenuation). When there is random fading the
channel coefficients can be written as |hk|2 = αkγk where αk

is a random variable that specifies the fading distribution (as-
sumed to be the same for all k) and γk is as defined above. We
assume that αk is normalized so that E{|αk|2} = 1. As in the
previous section we assume that the target location is specified
via its second-order statistics: E{rt} = mt and V ar(rt) = σ2

t
(Note that, the assertions we make below are then also applica-
ble to the case of exponential target location discussed earlier
in Section A. without fading). Assuming high observation SNR
regime at the distributed nodes, the fusion error probability can
derived to be

Pe ≈ Eh




Q



√

2nγ̄dγc

ζ(α)

∑n
k=1

|αk|2
kα

(
1 −

(
m2

t +σ2
t −2dmtk+d2k2

)
γ0

)
√∑n

k=1
|αk|2

kα
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Figure 5: Decision Fusion Error Probability Versus Channel
SNR γc for Dt = 1, α = 3.5, γ̄d = 1, γ0 = 20 dB and n = 20
in the Presence of Rayleigh Fading.

While optimizing the above error probability directly is dif-
ficult, when the number of sensor nodes n is very large it can
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be argued that the average performance (over the fading real-
izations) is approximately maximized by choosing the optimal
d that maximizes the average SNR. Assuming further that this
is approximately the same as maximizing the expected value
of the numerator of the argument of the Q-function in (27),
it can be shown that when n is sufficiently large the optimal
inter-node spacing is approximately given by d0 ≈ mt

ζ(α−1)
ζ(α−2) ,

which is the same as (24). In Figure 5 we have shown the fusion
error probability in the presence of small-scale random fading
(modeled as being Rayleigh) on top of path loss attenuation.
Note that every point on Fig. 5 was obtained by averaging over
100 independent fading samples. As can be seen from Fig. 5,
the above optimal inter-node d0 indeed provides a very good
approximation. Furthermore, as in an AWGN channel, the per-
formance degradation is more severe for sub-optimal d values
larger than the optimal d0 compared to those that are smaller.

V. CONCLUSIONS AND FUTURE WORK

We considered the problem of optimal design of fixed wire-
less sensor networks for distributed target detection with deci-
sion fusion. The optimal fusion receiver and its error probabil-
ity performance were derived assuming high local observation
SNR regime at distributed nodes. The optimal inter-node spac-
ing d was derived for a 1-D, equi-spaced WSN with no short-
term fading in detecting an exponentially located target. It was
shown that the derived optimal inter-node spacing expression
also holds true approximately when fading is present and also
generalizes to a target location distribution specified via only
the second order statistics. Further, the optimal node locations
are only a function of channel path loss exponent and the mean
target location. In particular, they do not depend on operat-
ing SNR either at the fusion center or at local nodes. These
properties of the optimal inter-node spacing simplify the design
of optimal WSN’s since the optimality is essentially preserved
under various network conditions (fading, no fading, second-
order target and operating SNR’s). It is of further interest to
investigate optimal sensor placement problem for other com-
monly assumed sensor network models as well as target mod-
els.
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