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Abstract— The problem of distributed estimation of a non-
random parameter in a Wireless Sensor Network (WSN) with,
in general, correlated observations over a bandlimited channel is
addressed. Each distributed node performs amplify-and-forward
(AF) processing on its noise corrupted local observations and
sends the locally processed data to the fusion center over a
wireless channel sharing a common bandwidth. The bandwidth
constraint is taken into account by assigning a direct sequence
code division multiple access (DS-CDMA) signaling waveform for
each node. The communication with orthogonal, equi-correlated
and perfect correlated signaling waveforms is considered. We
find the Best Linear Unbiased Estimator (BLUE) based on the
observations at the fusion center. Assuming perfect synchronization
in sensor transmissions, we first analyze the asymptotic Mean
Squared Error (MSE) performance with correlated observations
assuming equal node power and identical channel gains. Next
the optimal power allocation scheme is derived to minimize the
total power consumption of the network meeting a required MSE.
We show that the optimal power scheduling scheme with perfect
correlated signaling waveforms has a significant performance over
that of using orthogonal signaling. The impact of synchronization
errors on MSE performance is also analyzed and it is shown that
with small synchronization errors the use of perfect correlated
signaling waveforms performs well when compared with orthogonal
channels.

I. INTRODUCTION

In most distributed estimation approaches, it is assumed that
the sensors transmit their observations to the fusion center over
a set of orthogonal channels. However, the use of bandlimited
(or non-orthogonal) channels has been attracted considerable
attention in the context of wireless sensor networks since the
available bandwidth of the system is fixed regardless of the
number of nodes.

The use of bandlimited channels in WSNs has been consid-
ered by many recent works. In [1] the estimation over Type-
Based Multiple Access (TBMA) was considered where each
sensor transmits its observations using certain signaling in a
shared channel. They have shown that TBMA is asymptotically
optimal in the limit of large number of sensors if the channel
gains are identical. Power efficient distributed estimation of a
random parameter over bandlimited channel was considered
in [2]. The asymptotic performance analysis based on non-
orthogonal channels for distributed detection was addressed in
[3], [4].

In addition to limited bandwidth, an important issue to be
considered in WSNs is node power, since sensors are usually

equipped with small size batteries that can be expensive and/or
difficult to replace. A considerable work has been done on power
constrained WSNs for distributed estimation in the literature,
to name a few [2], [5], [6]. In [5] the minimum energy
decentralized estimation with correlated data was addressed.
They have exploited the knowledge of noise covariance matrix
to select quantization levels at nodes and minimum power was
derived accordingly to meet a target MSE. In [6], the optimal
power scheduling scheme meeting a required target MSE at the
fusion center (with independent observations) was considered
assuming quantized decisions at local nodes. It was shown that
the optimal power scheduling scheme decreases the quantization
resolutions of the nodes correspond to bad channels or poor
observation qualities. In [2], the same problem was addressed
with AF processing at local nodes.

In this work, the estimation of a non-random parameter over
a bandlimited channel with, in general, correlated observations
is considered with analog forwarding at local nodes. Each node
is assigned a signaling waveform (or code) which corresponds
to DS-CDMA. We consider the cases where signaling wave-
forms are orthogonal, equi-correlated and perfectly correlated.
Assuming perfect synchronization in sensor transmissions, first
we analyze the asymptotic MSE performance for correlated
observations with equal power at nodes and identical channel
gains. Next, we derive the optimal power allocation schemes
for the communication with orthogonal and perfectly correlated
codes to achieve a required MSE performance at the fusion
center. It is shown that the optimal power scheduling scheme
for perfectly correlated channels has a better performance over
that of the orthogonal channels. We also discuss the effect of
the synchronization errors on the estimation performance.

The remainder of this paper is organized as follows. Section II
presents the sensor network model and formulates the estimation
problem. In Section III, the asymptotic MSE performance is
analyzed for correlated observations assuming equal power at
sensor nodes and identical channel gains. Assuming channels
undergo fading, the optimal power allocation schemes for or-
thogonal and non-orthogonal communication are presented in
Section IV. In Section V, the effect of the synchronization errors
in sensor transmissions on estimation performance is discussed.
The conclusions of this work are given in Section VI.



II. SENSOR NETWORK MODEL

Consider a WSN with n spatially separated sensors. Each
sensor has a measurement zk of a non-random parameter θ:

zk = θ + vk; k = 1, 2, · · · , n

where vk’s are assumed to be zero mean correlated additive
noise with covariance matrix Σv. We assume that θ has a finite
range so that its average energy is finite. Let us define the
local signal-to-noise ratio γ0 = Ps

σ2
v

where Ps is the average
power of the parameter to be estimated and σ2

v is the noise
variance of each vk. Each node performs AF processing on
its observation with a gain of gk. The k-th node is assigned
a signaling waveform sk normalized such that sT

k sk = 1,
for k = 1, · · · , n. The number of degrees of freedom in the
signaling waveform is assumed to be N so that sk is a length
N vector for k = 1, · · · , n. Then the transmitted signal uk at
each sensor node is given by uk = gkzksk. A sufficient statistic
for the estimation of θ at the fusion center is given by the output
of a bank of n filters matched to the signalling waveforms sk’s.
Assuming perfect synchronization in sensor transmissions, the
matched filter output is given by [7],

y = RAz + w (1)

where R is the code cross correlation matrix, A =
diag(h1g1, · · · , hngn) where hk’s are the channel fading co-
efficients and w is the filtered Gaussian noise vector distributed
as w ∼ N (0, σ2

wR) where σ2
w is the receiver noise power

at the fusion center. In this paper we assume that R has the
following form which is a common assumption in practice:

R =




1 ρ . . . ρ ρ
ρ 1 . . . ρ ρ
. . . . . . .
ρ ρ . . . ρ 1


 where |ρ| ≤ 1. The Best

Linear Unbiased Estimator (BLUE) at the fusion center based
on matched filter output y can shown to be (which is the same
as MVUE when the noise is Gaussian),

θ̂(y) =
eTARΣn

−1y
eTARΣn

−1RAe
,

where Σn = RAΣvAR + σ2
wR and e is the n-length vector

with all ones. The resulting MSE is given by,

MSE(θ̂) =
(
eTARΣn

−1RAe
)−1

. (2)

III. ASYMPTOTIC MSE PERFORMANCE

For asymptotic analysis, we assume that each node has the
same amplification factor g and identical channel gains, hk = 1
for k = 1, · · · , n. Then MSE in (2), using matrix inversion
lemma, can shown to be

MSE(θ̂) =
1

g2

σ2
w

(
eTRe− g2

σ2
w
eT

[
(RΣvR)−1 + g2

σ2
w
R−1

]−1

e
) .

Let us denote, Zn =
(
(RΣvR)−1 + g2

σ2
w
R−1

)
. Further, let us

assume the noise covariance matrix Σv has the Gauss-Markov

model, so that

Σv = σ2
v




1 ρd . . . ρn−2
d ρn−1

d

ρd 1 . . . ρn−3
d ρn−2

d

. . . . . . .
ρn−1

d ρn−2
d . . . ρd 1


 (3)

where |ρd| ≤ 1. It is easy to see that with noise covariance
matrix (3), Zn becomes a circulant matrix for sufficiently large
n . Since the inverse of a circulant matrix is also circulant, Z−1

n

is a circulant matrix. It can be shown that for large n [8],

eTZ
−1

n e = nλZ−1,M (4)

where λZ−1,M is the largest eigenvalue of Z−1
n . By using

eigenvalue decomposition (EVD) and exploiting the fact that
all circulant matrices have same eigenvectors, we have Z−1

n =

U
[
Λ−1

R Λ−1
v Λ−1

R + g2

σ2
w

Λ−1
R

]−1

U∗ where ΛR and Λv are diag-
onal matrices of eigenvalues of R and Σv respectively. U is a
unitary matrix where columns of U contain eigenvectors of an
n×n circulant matrix. The m-th eigenvalue of Z−1

n is given by
λZ−1

n ,m = σ2
wλ2

R,mλv,m

σ2
w+g2λR,mλv,m

. Now, (4) becomes,

eTZ
−1

n e = n
σ2

wλ2
R,Mλv,M

σ2
w + g2λR,Mλv,M

where λR,M and λv,M are maximum eigenvalues of R and Σv

respectively. It can be shown that [4], [8], for large n, λR,M

equals to (1+ρ(n−1)) for 0 ≤ ρ ≤ 1 and 1−ρ for −1 ≤ ρ < 0
respectively and λv,M = σ2

v(1+|ρd|)
(1−|ρd|) for |ρd| < 1. Then MSE

asymptotically is given by,

MSE(θ̂) =
(1− ρd)σ2

w + g2σ2
v(1 + ρd)(1− ρ + (nρ)+)

ng2(1− ρd)(1− ρ + (nρ)+)

where (x)+ equals 0 for x < 0, and otherwise equals to x.
1) ρ=0: Orthogonal Communication: For orthogonal chan-

nels, the cross correlation between codes is ρ = 0. Then the
asymptotic MSE is given by,

MSE(θ̂) =
(1− ρd)σ2

w + g2σ2
v(1 + ρd)

ng2(1− ρd)
. (5)

2) ρ=1: Perfect correlation between codes : In this case, each
node uses same signalling code. Then the MSE asymptotically
is given by,

MSE(θ̂) =
(1− ρd)σ2

w + ng2σ2
v(1 + ρd)

n2g2(1− ρd)
. (6)

It is clear from (5) and (6), that the use of non-orthogonal
channels improves the MSE performance. Figure 1 shows the
derived asymptotic MSE performance and the exact MSE as a
function of n for a given ρd. It can be seen that the derived
asymptotic expression for MSE is a good approximation for
the exact MSE even with relatively small n. The figure also
shows that the MSE performance is improved by increasing code
cross correlation. This is because, with AF local processing and
non-orthogonal channels, the distributed sensor system tends
to act as a cooperative beam-former. For ρ = 1, the system
has a perfectly directed beam towards the fusion center that
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Fig. 1. MSE as a function of number of sensors n
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Fig. 2. The dependence of MSE on local observation correlation parameter ρd

exploits the full coherent gain. In contrast, when ρ = 0, a
set of orthogonal channels are used for sending information
regarding the same estimator and does not have the cooperative
beam-forming gain. In Fig. 2 the dependence of MSE on
local observation correlation ρd is shown. It is observed that
when observation correlation is larger, the MSE performance is
degraded. This is because of the fact that the new information
added by the additional sensors decreases as the correlation
increases. However, it is shown that by increasing the code cross
correlation ρ, a better performance can be achieved even when
the observations are highly correlated.

IV. OPTIMAL POWER ALLOCATION IN FADING CHANNELS

In the following we assume the channels between sensors and
the fusion center undergo fading. The objective is to allocate the
node power in an optimal way such that the minimum power is
spent by the network to achieve a desired MSE performance at
the fusion center. The optimization problem can be formulated
as

min
gk≥0,k=1,··· ,n

n∑

k=1

g2
k such that MSE(θ̂) ≤ D0 (7)

where D0 is the required MSE threshold at the fusion center.

A. ρ = 0 and i.i.d observations

When the observations are i.i.d., Σv = σ2
vI. Since

ρ = 0, R = I. Then MSE in (2) becomes MSE(θ̂) =

(∑n
k=1

h2
kg2

k

σ2
vh2

kg2
k+σ2

w

)−1

. Letting D = 1
D0

, the optimization
problem (7) becomes

min
gk≥0,k=1,··· ,n

n∑

k=1

g2
k such that

D −
n∑

k=1

h2
kg2

k

h2
kg2

kσ2
v + σ2

w

≤ 0 (8)

The optimal solution g∗2k for (8) can shown to be,

g∗2k =





σ2
w

h2
kσ2

v

[
hk

∑K1
j=1

1
hj

(K1−Dσ2
v) − 1

]
; if f(k)− 1 < 0 and

n > Dσ2
v

0 ; if f(k)− 1 > 0 and
n > Dσ2

v

infeasible ; if n < Dσ2
v

(9)

where assuming, without loss of generality, h1 ≥ h2 ≥ · · · ≥
hn, f(k) = (k−Dσ2

v)

hk

∑k
j=1

1
hj

, 1 ≤ k ≤ n and K1 is found such that

f(K1) < 1 and f(K1 + 1) ≥ 1 for 1 ≤ K1 ≤ n. Note that

letting
√

δ0 = σw

∑K1
k=1

1
hk

K1−Dσ2
v

, for f(k) − 1 < 0 and n > Dσ2
v ,

the optimal g∗2k can be written as, g∗2k = σ2
w

h2
kσ2

v

(
hk

√
δ0

σw
− 1

)
.

Hence, assuming channel state information (CSI) is available at
sensor nodes, once the fusion center broadcasts

√
δ0, each node

can determine its power using
√

δ0 as a side information.

B. ρ = 1 and i.i.d. observations

For ρ = 1 with i.i.d. observations, the MSE in (2) is shown
to be

MSE(θ̂) =
σ2

v

∑n
k=1 h2

kg2
k + σ2

w

(
∑n

k=1 hkgk)2
. (10)

Since MSE(θ̂) in (10) is not convex over gk’s a variable
transformation as in [2] is done to obtain a convex programming
problem for (7). Let qk = hkgk for k = 1, 2, · · · , n and
s =

∑n
k=1 qk. Then gk = qk

hk
and the optimization problem

becomes,

min
q1,··· ,qn;s

∑n
k=1

q2
k

h2
k

such that
∑n

k=1 q2
k + σ2

w

σ2
v
≤ ds2 and s = q1 + · · ·+ qn,

where d = D0
σ2

v
. By solving the above optimization problem, the

optimal g∗2k can shown to be,

g∗2k =
µ2

4
h2

k

(1 + λ0h2
k)2

, k = 1, 2, · · · , n (11)

where λ0 can be found numerically by solving the equa-
tion

∑n
k=1

λ0h2
k

(1+λ0h2
k)

= 1
d and µ is given by, µ =

2σw

σv

(
1

λ2
0d
−∑n

k=1
h4

k

(1+λ0h2
k)2

)− 1
2

. The optimal total power

spent is Ptotal =
∑n

k=1 g∗2k = σ2
w

σ2
v
λ0. From (11), it can be

seen that the optimal power has a distributed structure with λ0

and µ as side information from the fusion center assuming CSI
is available at the transmitter.
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Fig. 3. Comparison of optimal power and uniform power for ρ = 0 and ρ = 1

The performance of the optimal power allocation schemes
derived in sections IV-A and IV-B are shown in Fig. 3. As
observed in Section III, it is seen that the MSE performance is
improved as ρ increases. Also it is observed that the derived
optimal power allocation scheme has a better performance
compared to the uniform power allocation scheme especially
when the number of sensors in the system is large and/or the
required MSE is not significantly small.

It is noted from Sections IV-A and IV-B that for orthogonal
communication (ρ = 0), it is optimal to activate the sensors with
good channel quality and high local SNR while turning off the
sensors with poor channel and local SNR quality. However, in
the case where the channels are perfectly correlated (ρ = 1),
it is optimal to combine all the observations irrespective of the
channel and the local SNR quality. This is because, for ρ = 1,
the system has a perfectly directed beam towards the fusion
center that exploits a n factor of coherent gain when there are
n sensors in the network. Therefore, for ρ = 1, in the optimal
power allocation scheme, all the sensors are active to exploit the
full coherent gain at the fusion center in contrast with ρ = 0
case where there is no cooperative beamforming gain.

C. ρ = 1 and correlated observations

In this case, MSE (2) can shown to be,

MSE(θ̂) =
eTAΣvAe + σ2

w

(eTAe)2
. (12)

Since when the observations are correlated, it is difficult to
obtain an analytical closed form solution for the optimal power
allocation problem (7), using the fact that the Rayleigh quotient
of a Hermitian matrix is upper bounded by its maximum
eigenvalue, we find the following upper bound for the MSE
(12), MSEB(θ̂) = λM

∑n
k=1 h2

kg2
k+σ2

w

(
∑n

k=1 hkgk)2 where λM is the maximum
eigenvalue of Σv. Now the optimal power allocation scheme is
found to keep the MSE bound under a desired threshold D0.
Following a similar procedure as in Section IV-B, the optimal
power can shown to be

g2
k =

µ
′2

4
h2

k

(1 + λ
′
0λMh2

k)2
, k = 1, · · · , n (13)

where λ
′
0 is found by solving the expres-

sion λ
′
0

∑n
k=1

h2
k

(1+λ
′
0λM h2

k)
= 1

D0
and µ

′
=

2σw

(
1

λ
′2
0 D0

− λM

∑n
k=1

h4
k

(1+λ
′
0λM h2

k)

)−1/2

.
The performance of the power allocation scheme based on

the MSE bound is shown in Fig. 4. From Fig. 4 (a) and (b)
it can be seen that the optimal power allocation scheme based
on the MSE bound significantly outperforms the uniform power
allocation scheme based on exact MSE when the number of
sensors in the network n is large or the observation correlation
coefficient ρd is relatively small or the local SNR quality γ0 is
moderate and high. However, it is seen that (Fig. 4 (b)) for large
ρd, when n and γ0 is small, the power allocation scheme based
on the MSE bound does not perform well. In those cases, the
uniform power allocation scheme based on exact MSE provides
less total power consumption.
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Fig. 4. The performance of the power allocation scheme based on MSE bound
for ρ = 1 and correlated observations. (a). Total power vs. MSE, n = 20,
γ0 = 20dB (b). Total power vs. number of sensors, γ0 = 12dB, D0 = 0.08

V. SYNCHRONIZATION IN SENSOR TRANSMISSIONS AND
THE EFFECT OF SYNCHRONIZATION ERROR ON MSE

PERFORMANCE

An important assumption that has been made in the above
analysis is perfect synchronization of sensor transmissions. In
practice, achieving perfect synchronization among nodes might
be a difficult task. In this section we discuss a strategy for
achieving synchronization and consider the impact of synchro-
nization errors on the MSE performance. For the analysis given
below we assume a network model with i.i.d. observations and
ρ = 1.

We follow a similar strategy as described in [9] to achieve
synchronization in the sensor network. We assume that there is
a master-node which broadcasts the carrier and timing signals to
the rest of the sensor nodes (slave nodes). Then there are (n−1)
slave nodes, each at distance dk + δk from the master node for
k = 1, 2, · · · , n − 1 where dk and δk are the nominal distance
and the sensor placement error of the k-th node, respectively.
The master node broadcasts a carrier signal cos(2πf0t) where
f0 is the carrier frequency. The received carrier signal at the
k-th slave node is a noisy version of cos(2πf0t + ψk + ψek)
where ψk = 2πf0dk

c and ψek = 2πf0δk

c . Each slave node
employs a Phase Locked Loop (PLL) to lock onto the carrier.
If each slave node precompensates for the difference in their
nominal distances dk, to the master node, by transmitting its
modulated and locally processed observation with a proper delay
and phase shift ψk, then the received signal at the fusion center
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Fig. 5. The effect of the synchronization error for the MSE performance

is corrupted by the timing error and the phase error due to the
sensor placement error δk. Considering only the phase error
due to sensor placement error, the matched filter output at the
fusion center is given by y =

∑n
k=1 hkgkzkcos(ψek) + w.

To analyze the effect of phase error due to sensor placement
error, we assume that the placement error δk is distributed
as Gaussian with zero mean and the variance σ2

δ which is
much smaller than the wavelength λ0. Then the phase error
ψek ∼ N (0, σ2

ψ) and we assume that σ2
ψ is small. To obtain

the BLUE estimator, we take the expectation of y with respect

to both zk and ψek. i.e. E(y) = θe−
σ2

ψ
2

∑n
k=1 hkgk assuming

the observation noise vk is i.i.d.. Then the BLUE estimator is
θ̂BLUE(y) = y

e−
σ2

ψ
2

∑n
k=1 hkgk

and the resulting MSE with the

phase error is given by,

MSE
′
(θ̂) =

e−σ2
ψσ2

v

∑n
k=1 h2

kg2
k + σ2

w

e−σ2
ψ (

∑n
k=1 hkgk)2

=
σ2

v

∑n
k=1 h2

kg2
k + eσ2

ψσ2
w

(
∑n

k=1 hkgk)2

which is greater than the MSE with perfect synchronization in
(10), showing that the synchronization error causes a degrada-
tion of MSE performance at the fusion center. Figure 5 shows
the effect of the synchronization error on the MSE performance
for i.i.d. observations. It can be seen that when the variance
of the phase error σ2

ψ is significantly small, the affect of the
synchronization error on the MSE performance with perfect non-
orthogonal channels (ρ = 1), is small. Even for relatively large
σ2

ψ , the use of perfect non-orthogonal channels gives significant
performance compared to that of orthogonal channels (ρ = 0).

VI. CONCLUSION

The distributed estimation of a non-random parameter in
a bandlimited channel with AF processing at local nodes is
addressed in this paper. We consider in general, correlated obser-
vations. First, assuming equal power and identical channel gains,
asymptotic performance of MSE was analyzed for correlated
observations. It was shown that the performance based on the
derived asymptotic expression closely matches with the exact
MSE performance even for relatively small network sizes. It

was also shown that the use of non-orthogonal channels results
significant performance over that of the orthogonal channels.

Next, assuming fading channels between sensor nodes and the
fusion center, we derived the optimal power allocation schemes
with both orthogonal and perfectly correlated channels while
keeping the required MSE at the fusion center under a given
threshold. In the case of i.i.d. observations, it was shown that
the derived optimal power allocation scheme has a distributed
implementation with a limited feedback from the fusion center.
Also it was shown that the optimal power allocation schemes
with both perfectly correlated and orthogonal channels have
better performance over corresponding uniform power allocation
schemes. For correlated observations with ρ = 1, the power
allocation scheme was found analytically using the derived
bound for the MSE. It was shown that the optimal power
allocation scheme based on the MSE bound has a significant
performance over the uniform power allocation scheme based
on the exact MSE when n is large, γ0 is high and for relatively
small observation correlation coefficient ρd.

When the communication between the sensors and the fusion
center is non-orthogonal, the coherent gain achieved above
is based on the assumption that the sensor transmissions are
perfectly synchronized. We also discussed the synchronization
of the sensor transmissions and the effect of synchronization
errors on the MSE performance. It was shown that, for relatively
small synchronization errors, the performance of the power al-
location scheme for perfectly correlated channels does not have
a significant degradation and it is still better than that of using
orthogonal channels. Also it gives an insight on deciding the
level of tolerance of the sensor placement errors within which
the multiple-access communication has better performance over
the orthogonal communication.
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