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ABSTRACT

The problem of optimal (fixed) wireless sensor network (WSN)
design for distributed detection of a randomly-located target
is addressed. This is an extension of the previous work re-
ported in [1] where the problem was addressed for a one-
dimensional (1-D) network assuming wireless channels be-
tween sensors and the fusion center undergo only the path-
loss attenuation. In this paper we consider both one and
two-dimensional (2-D), equi-spaced WSN models in the pres-
ence of short-term fading in addition to path-loss attenuation.
The target is assumed to be exponentially distributed with a
known mean. The optimal inter-node spacing is derived by
optimizing the Bhattacharya bound on the error probability
of the Bayesian detector. In the presence of fading, it is shown
that the optimal node placement depends on the channel SNR,
path loss exponent and the mean target location. However,
we show that for low channel SNR’s, the optimal spacing ob-
tained for no fading case, which is only a function of path-loss
exponent and the mean target location, is a good approxima-
tion to that with fading. In particular, it is not a function of
the channel SNR. It is shown that in many cases the devia-
tion from optimal inter-node spacing can cost significant per-
formance penalty. From numerical results, it is verified that
the optimal inter-node spacing obtained based on the Bhat-
tacharya bound holds true if the performance measure were
to be the exact fusion error probability.

1. INTRODUCTION

Initial optimization of node locations can have a great impact
on the overall performance of a wireless sensor network. Op-
timal deployment of nodes will allow the nodes to capture the
best information regarding a target that it attempts to detect,
thereby saving the network resources. In this paper, we for-
mulate and solve the problem of optimal node deployment
(the best node placement) in one and two-dimensional (1-D
and 2-D) WSNs to detect a randomly-located target.

In recent years WSN’s have gained considerable attention
in various detection, tracking and monitoring applications due
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to their versatility and flexibility. Distributed target detection
and decision fusion have been researched extensively over the
years in various contexts (see [2–6], and references therein).
In many cases, distributed wireless sensor networks operate
under strict constraints on node power and available commu-
nication bandwidth [2, 7, 8]. These inherent resource con-
straints make judicial system design important in order to ex-
tend the lifetime of the network. In this paper, our focus is
specifically on the optimal design of wireless sensor networks
for such applications.

We address the optimal node deployment problem for 1-
D and 2-D wireless sensor networks to detect a randomly-
located target. The target is assumed to be randomly dis-
tributed with a known parameter. For the 1-D WSN, it is as-
sumed that there are n, equi-spaced nodes, where d denotes
the distance between any two adjacent nodes as shown in Fig.
1. For the 2-D WSN model, the X and Y coordinates of the
sensor locations are assumed to be equi-spaced with a dis-
tance d as shown in Fig. 5. Distributed nodes make indepen-
dent binary decisions on the presence or absence of a target
based on their own observations, and send the local decisions
to the fusion center over a wireless channel which is assumed
to undergo both path loss attenuation and small-scale fading.
Based on the received noisy versions of the local decisions,
the fusion center makes a final decision on whether the target
is present or not.

The wireless channel suffers from both path loss due to at-
tenuation as well as random fading. The amount of path loss
is a function of the distance between a particular node and
the fusion center and the path loss index of the wireless chan-
nel. In addition, the quality of local decisions from distributed
nodes is a function of the relative location of the target at any
given time with respect to a specific node. Hence, the fusion
error probability performance critically depends on the node
locations of the wireless sensor network which are essentially
determined by the inter-node spacing parameter d for the as-
sumed equi-spaced WSN models. The goal in this paper is to
propose an optimal WSN design by deriving the best d that
leads to the minimum achievable Bayesian fusion probability
of error.

It should be noted that the inter-node spacing d directly re-
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lates to the infrastructure cost of the wireless sensor network
as well as the coverage area. If one were to use too small a
value of d, more sensor nodes will be required to cover a given
area leading to more infrastructure cost. On the other hand,
for a fixed number of nodes n it will limit the coverage area. If
d were to be too large the sensor network could be sparse lead-
ing to poor sensing performance, as well as needless waste
of transmit power over long communication distances. The
optimal d would provide the correct trade-off between these
extremes leading to the best possible performance.

The remainder of this paper is organized as follows: Sec-
tion 2 details the network model, derives the optimal Bayesian
decision fusion strategy in the regime of high local observa-
tion SNR and analyzes its error probability. Sections 3 and
4 derive the optimal sensor placements that lead to the min-
imum Bayesian error performance for 1-D and 2-D target-
location models, respectively. Finally, Section 5 concludes
the paper.

2. SYSTEM MODEL, OPTIMAL DECISION FUSION
RECEIVER AND ITS PERFORMANCE

Let us consider an equi-spaced wireless sensor network with
n spatially distributed nodes. The target to be detected is as-
sumed to be randomly located. The k-th sensor observation is
given by,

H0 : yk = x0,k + vk, k = 1, · · · , n

H1 : yk = x1,k + vk, k = 1, · · · , n

where H0 and H1 denotes target absent and present hypothe-
ses respectively, the observation noise vk is assumed to be
i.i.d. zero mean random variables and xj,k is the signal to
be detected under hypothesis j, where j = 0, 1. The k-th
node makes a binary decision δk(yk) ∈ {0, 1} based on the
likelihood ratio of its own observation and transmits its de-
cision to the fusion center over a wireless channel which un-
dergoes both path-loss attenuation and fading. Let Pdk

(rt)
and Pfk

(rt) be the false alarm and detection probabilities as-
sociated with the local decision δk(yk) at the k-th node. We
assume that these probabilities in general depend on the target
location rt.

The transmitted symbol from the k-th node is given by
uk = 2δk − 1 where uk ∈ {−1, 1}. Then the received
signal at the fusion center from the k-th node is given by,
zk = gkhkuk + wk, for k = 1, · · · , n, where gk is the am-
plifier gain at the k-th node, hk is the complex channel fad-
ing coefficient between the k-th node and the fusion center
and wk is the receiver additive noise which is assumed to be
i.i.d. Gaussian with mean zero and variance σ2. In a spa-
tially distributed wireless network, the received signal power
at the fusion center from the k-th node varies according to the
distance between the k-th node and the fusion center. If the
distance from the k-th node to the fusion center is rk, the re-
ceived power from that node is attenuated proportional to rα

k

where α ≥ 2 is the path loss exponent.

The optimal detection procedures at the fusion center for
binary hypothesis testing problem are the likelihood ratio tests
(LRT’s) based on the received signal vector z = [z1, · · · , zn]T

[9]. Assuming coherent detection, the required likelihood ra-
tio (LR) at the fusion center is L (z|h) =

∏n
k=1

p(zk|hk,H1)
p(zk|hk,H0)

,
where h = (h1, · · · , hn)T . The conditional density p(zk|hk,H1)
can be written as:

p(zk|hk,H1) =
1√
2πσ

[
Ert {Pdk

(rt)} e−
|zk−gkhk|2

2σ2

+ (1− Ert {Pdk
(rt)}) e−

|zk+gkhk|2
2σ2

]
, (1)

where Ert {.} denotes the expectation with respect to the ran-
dom target location and we have let p(uk|rt,H1) equals to
Pdk

(rt) if uk = 1 and 1− Pdk
(rt) if uk = −1, respectively.

Similarly,

p(zk|hk,H0) =
1√
2πσ

[
Ert {Pfk

(rt)} e−
|zk−gkhk|2

2σ2

+(1− Ert {Pfk
(rt)}) e−

|zk+gkhk|2
2σ2

]
,(2)

where we have let p(uk|rt, H0) equals to Pfk
(rt) if uk = 1

and 1 − Pfk
(rt) if uk = −1, respectively. Then the LR

becomes,

L(z|h) =
n∏

k=1

P̄dk
e

gkRe{h∗kzk}
σ2 + (1− P̄dk

)e−
gkRe{h∗kzk}

σ2

P̄fk
e

gkRe{h∗
k

zk}
σ2 + (1− P̄fk

)e−
gkRe{h∗

k
zk}

σ2

(3)

where P̄fk
= Ert{Pfk

(rr)} and P̄dk
= Ert{Pdk

(rr)}.
If the k-th node location is rk, then assuming a Rayleigh

fading channel between the target location and the k-th node,
we may reasonably approximate the false-alarm probability,
averaged over the Rayleigh distribution, as

Pfk
(rt) ≈ 1

2
(
1 + γ0

|rk−rt|2
) , (4)

where γ0 denotes the local observation SNR at each distributed
node (assumed to be the same for all nodes). Under these con-
ditions it is also reasonable to assume that

Pdk
(rt) ≈ 1− Pfk

(rt) , (5)

an approximation that we will make use of throughout the rest
of the paper. In order to obtain a useful characterization of the
optimal fusion rule that facilitates performance analysis and
network design optimization, in the following we investigate
the LR (3) in the high observation SNR regime of γ0 À 1.
When local observation SNR γ0 at distributed nodes is such
that Pfk

(rt) ¿ 1 and 1−Pdk
(rt) ¿ 1, for all k = 1, · · · , n,

we may simplify (3) to obtain

L (z|h) ≈
n∏

k=1

P̄dk

1− P̄fk

e
2gkRe{h∗kzk}

σ2 . (6)
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Using (5), the corresponding log likelihood ratio (LLR) is

T (z|h) = log L (z|h) =
2
σ2

n∑

k=1

gkRe{h∗kzk}. (7)

From (7) we note that optimal fusion tests compare the lin-
ear decision fusion statistic T (z|h) to the threshold log(τ),
where τ is a threshold determined by the particular optimal-
ity criteria:

δ(z) =





1 ≥
if T ′(z) t

0 <
, (8)

where we have defined T ′(z) =
∑n

k=1 gkRe{h∗kzk} and t =
σ2

2 log τ .
To analyze the performance of the above coherent detec-

tor, we assume that in the case of a large sensor network (i.e.
large n), the decision statistic T ′ is a normal random vari-
able under both hypotheses. When local observation quality
is good, it can then be shown that (see Appendix) under each
hypotheses H0 and H1, T ′(z) has the following distribution:

H0 : T
′
(z) ∼ N

(
n∑

k=1

g
2
k|hk|2

(
2P̄fk

− 1
)

,
σ2

2

n∑

k=1

g
2
k|hk|2

)

H1 : T
′
(z) ∼ N

(
n∑

k=1

g
2
k|hk|2

(
1− 2P̄fk

)
,

σ2

2

n∑

k=1

g
2
k|hk|2

)
, (9)

where we have used the approximation (5) in obtaining (9).
The false-alarm and detection probabilities at the fusion cen-
ter can then be derived to be,

PF = Eh



Q


 t +

∑n
k=1 g2

k|hk|2
(
1− 2P̄fk

)
√

σ2

2

∑n
k=1 g2

k|hk|2








and

PD = Eh



Q


 t−∑n

k=1 g2
k|hk|2

(
1− 2P̄fk

)
√

σ2

2

∑n
k=1 g2

k|hk|2






 ,

respectively, where Q(x) , 1√
2π

∫∞
x

e
−t2
2 dt. Using the fact

that t = 0, for Bayesian fusion with the minimum probability
of fusion error optimality criterion with equal prior probabili-
ties, when local decision quality is good, the Bayesian fusion
error probability can be written as

Pe = Eh



Q




∑n
k=1 g2

k|hk|2
(
1− 2P̄fk

)
√

σ2

2

∑n
k=1 g2

k|hk|2






 . (10)

When the channels between sensors and the fusion cen-
ter undergo fading, we assume that E{|hk|2} = γ2

k where
γ2

k represents the received channel power at the fusion center
from the k-th node. Since it is not straightforward to analyze
expectation of the fusion error probability in (10) in closed
form, in the following we consider the Bhattacharya bound
on the Bayesian performance, Pe ≤ 1

2eµB . The Bhattacharya
error exponent µB is defined as µB = lnE{e 1

2 logL(z)} where
L(z) is the likelihood ratio of z [9].

3. 1-D SENSOR NETWORK WITH RANDOMLY
LOCATED TARGET

The 1-D WSN is assumed to be made of n equi-spaced nodes,
where d denotes the distance between any two adjacent nodes
as shown in Fig. 1 with fusion center at the origin. In this

1 32Fusion

d d d

Fig. 1. 1-D Equi-spaced Sensor Network.

case the average received power level at the fusion center due
to node k is, γ2

k = γ2
d

kα , where α ≥ 2 is the path loss exponent
of the wireless channel and γ2

d is the average received channel
power from the first node when it transmits at a unit power.
The average received channel power per node (averaged over
all nodes) is

γ̄2
d =

1
n

n∑

k=1

γ2
k =

γ2
d

n

n∑

k=1

1
kα

≈ γ2
d

n
ζ(α), (11)

where ζ(α) =
∑∞

k=1
1

kα , for α > 1, is the Riemann-zeta
function. Thus the average received power level at the fusion
center from the k-th node can be written in terms of the pa-
rameter γ̄2

d as

γ2
k =

nγ̄2
d/ζ(α)
kα

. (12)

For the analysis of the paper, hereafter, target location is as-
sumed to follow an exponential distribution with a known pa-
rameter Dt. But in fact, the analysis can be performed easily
as far as first and second order statistics of the target distribu-
tion are available as described later in this section.

Assuming the target is distributed as exponentially with
the parameter Dt starting from the origin, and letting rk =
kd for k = 1, · · · , n, we can find the average false alarm
probability at the k-th node, assuming γ0 À 1, as,

P̄fk
= Ert {Pfk

(rt)} ≈ D2
t

2γ0

[
1 +

(
1− kd

Dt

)2
]

.(13)

For the 1-D network model assuming Rayleigh fading, the
Bhattacharya bound Peb on the fusion error probability be-
comes

Peb =
1

2
Eh

{
exp

(
− 1

σ2

n∑

k=1

g
2
k|hk|2(1− 2P̄fk

) +
1

4σ2

n∑

k=1

g
2
k|hk|2

)}
,

=
1

2

n∏

k=1

1

γ2
k

(
1

γ2
k

+ γc(1− 2P̄fk)− γc

4

)−1

, (14)

using the relationship in (5) and γc = g2

σ2 is the channel SNR
assuming equal power at each node such that g2

k = g2 for
k = 1, · · · , n. Substituting for γ2

k and P̄fk
in (14) we get

Peb =

n∏

k=1

ζ(α)

2nγ̄2
d

k
α

(
kαζ(α)

nγ̄2
d

+ γc

[
3

4
− D2

t

γ0
− D2

t

γ0

(
1− kd

Dt

)2
])−1

.
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Fig. 2. Bhattacharya Error Exponent Vs the Normalized Inter-
node Spacing; Dt = 1, γ̄2

d = 1, γc = 0dB, α = 3.5, n = 20

Our goal is to minimize Peb with respect to d to find the opti-
mal inter-node spacing. Since log(.) is a monotonic function
of its argument, minimizing Peb is equivalent to minimizing
log(Peb) w.r.t. d. Thus, (after dropping the terms that do not
depend on d), the optimal inter-node spacing is given by

dopt = arg max
d

{
n∑

k=1

log

(
kαζ(α)

nγ̄2
d

+ γc

[
3

4
− D2

t

γ0
− D2

t

γ0

(
1− kd

Dt

)2
])}

.

It can be shown that dopt is given by the solution to the fol-
lowing equation:

n∑

k=1

k(1− kd
Dt

)
µk

= 0, (15)

where µk = kαζ(α)
nγ̄2

d
+ γc

[
3
4 −

D2
t

γ0
− D2

t

γ0

(
1− kd

Dt

)2
]

. For

large γ0, it is interesting to note that from (15),

lim
γ0→∞

dopt =

∑n
k=1

k
(λk+ 3

4 γc)∑n
k=1

k2

(λk+ 3
4 γc)

Dt (16)

where λk = kαζ(α)
nγ̄2

d
. From (16), it is seen that for large γ0,

the optimal inter-node distance dopt depends on the channel
SNR in addition to the path loss component and the mean
target location. But in the regime of small channel SNR, i.e.
when γc → 0, it can be verified that the optimal inter-node
distance is given by, dopt ≈ ζ(α−1)

ζ(α−2)Dt, which is the same as
in the case of no fading [1]. Thus, it is seen that the optimal
inter-node distance derived for no fading scenario is a good
approximation to the optimal inter-node distance with fading,
in the region of high γ0 and relatively small γc.

Although, the above derivations are based on the exponen-
tial target distribution, in fact it can be shown that the optimal
spacing derived above holds for any target distribution as far
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Fig. 3. Bhattacharya Error Bound and the Exact Fusion Error
Probability Vs Local Observation SNR γ0; Dt = 1, γ̄2

d = 1,
γc = 0dB, α = 3.5, n = 20

as its fist and second order statistics are available. If E{r2
t }

and E{r2
t } are first and second order statistics of any target

distribution, it can be shown that the average false alarm prob-
ability at the k-th node can be approximated by (for γ0 À 1),

P̄fk
≈ Ert {Pfk

(rt)} ≈ 1
2γ0

[
r2
k − 2rkE{rt}+ E{r2

t }
]
.

and the corresponding Bhattacharya error bound becomes,

Peb =
n∏

k=1

ζ(α)

2nγ̄2
d

k
α

(
kαζ(α)

nγ̄2
d

+ γc

[
3

4
− 1

γ0

(
k
2
d
2 − 2kdE{rt}+ E{r2

t }
)])−1

.

Following a similar procedure, it can be shown that the op-
timal spacing dopt for large γ0 region given in (16) for expo-
nential distribution, can be generalized to any target distribu-
tion with finite first moment E{rt}, as

lim
γ0→∞

dopt =

∑n
k=1

k
(λk+ 3

4 γc)∑n
k=1

k2

(λk+ 3
4 γc)

E{rt}. (17)

Hence, the optimal spacing only depends on the first moment
of the target distribution.

Figure 2 shows the Bhattacharya error bound (14) with the
normalized inter-node distance for different γ0 values under
Rayleigh fading. It is seen that as γ0 increases, for a fixed
γc, the optimal inter-node distance d0 does not depend on the
value of γ0. It can be verified that that the optimal inter-node
distance found in (16) for large γ0, closely matches with the
exact optimal inter-node distance observed in Fig. 2.

In Fig. 3, the Bhattacharya error bound and the exact er-
ror probability Vs γ0 was plotted with the deviations of in-
ternode distance d from its optimal value as found in (16), for
fixed γc. The exact error probability was obtained by averag-
ing (10) over 1000 independent fading samples. Although the
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Bhattacharya error bound is not a tight bound for the exact er-
ror probability, it seen that with dopt and its deviations, both
measures show similar characteristics. In particular, the de-
viation of the inter-node distance from its optimal value may
cause a significant performance loss even for moderately high
γ0 values.

From Fig. 4, it is seen that for moderate values of γc

the maximum variation of normalized optimal inter-node dis-
tance over γc is relatively small.

4. 2-D SENSOR NETWORK MODEL WITH A
RANDOMLY LOCATED TARGET

Next, we consider a 2-D sensor network grid as shown in Fig.
5. The (k, j)-th node of the grid is assumed to be located
at (rk, rj) for k, j = 0, · · · ,M (excep (0,0) point) where rk

and rj are X and Y coordinates of the (k, j)-th node with
respect to the origin, where the fusion center is assumed to
be located. Also let us assume that the X and Y coordi-
nates of node locations are equi-spaced such that rk = kd
and rj = jd for k, j = 0, · · · ,M excluding the (0, 0) point.
The total number of sensors in the network, n = M(M + 2).
We also assume that X and Y coordinates of the target have
independent marginal exponential distributions with a known
common mean Dt. Then assuming γ0 À 1, using (4) the
average false alarm probability at the (k, j)-th node can be
approximated as,

P̄fkj
= Ert{Pfk,j

(rt)} =
D2

t

2γ0

(
2 +

(
1− kd

Dt

)2

+

(
1− jd

Dt

)2)
.

Denote by γ2
kj the average received power level at the fusion

center form the (k, j)-th node. Then γ2
k,j can be written as,

γ2
k,j = γ2

d

(k2+j2)
α
2

where γ2
d is the average received power at

the fusion center from (1, 0) or (0, 1)-th node and α ≥ 2 is
the path loss exponent. The average received power at the
fusion center per node is given by γ̄2

d = γ2
d

n K1 where K1 =

d d

d

d

Sensor nodes

Fusion Center

Fig. 5. 2-D Sensor Network Model

∑
k

∑
j

k=j 6=0

1

(
√

k2+j2)α
and n = M(M + 2), as defined above.

Then,

γ2
k,j =

γ̄2
dn

K1(k2 + j2)α/2
. (18)

4.1. No Short-Term Fading

With no-short term fading, the fusion error probability (10)
for the 2-D network model becomes,

Pe = Q




√
γc

∑
k

∑
j

k=j 6=0

γ2
k,j(1− 2P̄fkj)

√
1
2

∑
k

∑
j

k=j 6=0

γ2
k,j


 (19)

By minimizing Pe in (19), the optimal spacing d, along both
X and Y coordinates can be shown to be, (the details are
omitted here due to space limitation) dopt = K2

K3
Dt, where

K2 =
∑M

k=0

∑M
j=0

j=k 6=0

(k+j)
(k2+j2)α/2 and K3 =

∑M
k=0

∑M
j=0

j=k 6=0

(k2+j2)
(k2+j2)α/2 .

It is observed that when there is no fading the optimal d is only
a function of path loss exponent and the mean target location,
as in the 1-D model [1].

4.2. With Short-Term Fading

Similar to 1-D case, in 2-D model with short-term fading the
performance measure is taken as Bhattacharya error bound
which can be shown to be

Peb =
K1

nγ̄2
d

∏

k,j,k=j 6=0

(k
2

+ j
2
)
α/2

(
K1(k

2 + j2)α/2

nγ̄2
d

+

γc

[
3

4
− 2D2

t

γ0
− D2

t

γ0

(
1− kd

Dt

)2

− D2
t

γ0

(
1− jd

Dt

)2
])−1

(20)
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Fig. 6. Bhattacharya Error Probability Bound with the Nor-
malized Inter-node Spacing Along Coordinates X and Y;
Dt = 1, γ̄2

d = 1, γc = 0dB, α = 3.5, n = 24

Following a similar procedure as in Section 3 for 1-D net-
work model, d that optimizes the Bhattacharya error bound in
(20) can be found by solving the following non-linear equa-
tion:

∑

k,j,k=j 6=0

(k + j)− (k2 + j2) d
Dt

µk,j
= 0 (21)

where
µk,j =

K1(k2+j2)α/2

nγ̄2
d

+γc

[
3
4 −

2D2
t

γ0
− D2

t
γ0

(
1− kd

Dt

)2 − D2
t

γ0

(
1− jd

Dt

)2
]

When γ0 is large, from (21), we have

dopt =

∑
k,j,k=j 6=0

k+j
(λk,j+

3
4 γc)

∑
k,j,k=j 6=0

k2+j2

(λk,j+
3
4 γc)

Dt, (22)

where λk,j = K1(k
2+j2)α/2

nγ̄2
d

. AS in the 1-D network model,
we see that dopt depends on the channel SNR, path loss com-
ponent and the characteristics of the target distribution, for
large γ0 values. However, in the low channel SNR region it
can be verified that, lim

γc→0
dopt = K2

K3
Dt, (which is the same as

without fading) where K2 and K3 are as defined in subsec-
tion 4.1.

Figure (6) shows the Bhattacharya bound Peb (20) with
the normalized inter-node distance for various γ0 values for a
fixed γc. Similar to the 1-D network model, the figure veri-
fies the analytical result obtained in (22) for the optimal d for
moderate to large γ0 values.

The exact fusion error probability and the Bhattacharya
bound as a function of γ0 for a fixed γc is shown in Fig. 7 for
deviations of inter-node distance along X and Y coordinates
from its optimal value. Similar to the 1-D network model, it
is seen that the with the derived optimal spacing, the exact fu-
sion error probability shows a similar behavior as that of the
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Fig. 7. Bhattacharya Error Bound Vs. Channel SNR (γc);
Dt = 1, γ̄2

d = 1, α = 3.5, n = 24, γc = 0dB

Bhattacharya bound. As observed in 1-D network model we
can see that the SNR penalty is severe when d > dopt com-
pared to when d < dopt (by the same factor). Of course, when
d is large, a few number of sensors are used to cover the same
area which causes the performance penalty seen in the figure.
Therefore the optimal dopt provides the correct trade-off be-
tween the error performance and the required node density, as
in the case of 1−D network model.

5. CONCLUSIONS

We considered the problem of optimal design of fixed wire-
less sensor networks for distributed target detection with de-
cision fusion in the presence of fading. The optimal fusion
receiver and its error probability performance were derived
assuming high local observation SNR at distributed nodes.
We considered both 1-D and 2-D sensor networks with equi-
spaced nodes, and the inter-node distance d was optimized to
detect an exponentially distributed target with a known mean.
In fact the analysis remains similar for general target distri-
bution models as far as the first and second order statistics
of the distribution are available. In the presence of fading,
the optimal d is obtained by optimizing the Bhattacharya er-
ror probability bound, where it was shown that the optimal d
is determined by the path loss exponent, mean target location
and the channel SNR. In [1], it was shown that with no-fading,
the optimal d is only a function of channel path loss exponent
and the mean target location. With fading, for relatively low
channel SNR, however, it was verified that the optimal inter-
node spacing can be approximated to be a function of only the
channel path loss exponent and the mean target location even
in the presence of fading (same as the optimal spacing with
no-fading). These properties of the optimal inter-node spac-
ing simplify the design of optimal WSN’s since the optimality
is essentially preserved under various network conditions.
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Appendix
Suppose Sn = X1 + · · · + Xn is the sum of n independent
random variables with E{Xk} = ηk and V ar(Xk) = ν2

k for
k = 1, · · · , n. Define K2 =

∑n
k=1 v2

k and L3 =
∑n

k=1 ρ3
k

where ρ3
k = E{|Xk − E{Xk}|3} is the third absolute cen-

tral moment of Xk. Then if lim
n→∞

L
K → 0, the central limit

theorem states that the sum Sn converges in distribution to a
Gaussian random variable with mean

∑n
k=1 ηk and the vari-

ance
∑n

k=1 ν2
k as n →∞ [10]. In the following we show that

the decision variable T ′(z) can be considered to be a Gaussian
random variable as claimed in (9), by verifying the applica-
bility of the above condition.

Let Xk = gkRe{h∗kzk} = g2
k|hk|2uk + gkRe{h∗kwk}

after substituting for zk. Then T ′(z) =
∑n

k=1 Xk, a sum of
independent random variables.

To apply the CLT for T ′(z), we prove the sufficient condi-
tion under H0 and a similar derivation follows under H1. For
high local observation SNR region, the mean, variance and
the third absolute moment of Xk under H0 can be shown as,

ηk = E{Xk} = g2
k|hk|2(2Pfk

− 1)

ν2
k = var(Xk) =

1
2
g2

k|hk|2σ2 + 4g4
k|hk|4Pfk

(1− Pfk
)

≈ 1
2
g2

k|hk|2σ2

ρ3
k =

4√
2π

ν3
k =

g3
k|hk|3√

π
(23)

respectively. We assume that the each node is operated with a
finite power such that g2

min < g2
k < g2

max for k = 1, · · · , n.
Then the two sums K2 and L3 can be bounded as,

K2 =
n∑

k=1

1
2
g2

k|hk|2 >
1
2
σ2g2

min

n∑

k=1

|hk|2

L3 =
n∑

k=1

g3
k|hk|3√

π
<

g2
max√

π

n∑

k=1

|hk|3 (24)

Note that we assume that the channels undergo Rayleigh fad-
ing, so that |hk|’s are realizations of Rayleigh random vari-
ables. Then we may approximate the two sums such that
lim

n→∞
1
n

∑n
k=1 |hk|2 ≈ E{|hk|2} and lim

n→∞
1
n

∑n
k=1 |hk|3 ≈

E{|hk|3}. Then

lim
n→∞

L

K
<

(
g2

max√
π

∑n
k=1 |hk|3

)1/3

(
1
2σ2g2

min

∑n
k=1 |hk|2

)1/2

≈

(
n

g2
maxE{|hk|3}√

π

)1/3

(
1
2nσ2g2

minE{|hk|2}
)1/2

≈ 0 (25)

which completes the proof.
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