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ABSTRACT

In an autonomous sensor network without a central fusion
center, it is desired that any node has the ability to make the
final decision once it has enough information about the Phe-
nomenon of Interest (PoI) within a certain confidence level.
In this paper, we propose a distributed sequential methodol-
ogy which updates the current node’s estimator based on its
own observation and noise corrupted decision from the pre-
vious node. We show that sequential processing is useful only
when the channel quality of inter-sensor communication links
satisfies a certain condition. We develop a distributed node
selection algorithm to select the order of processing nodes
based on information utilities and the communication cost.
In the proposed scheme, each node only needs to keep track
of its neighbor nodes leading to reduced complexity. Simula-
tion results show that a significant reduction in the required
number of processing nodes to achieve a desired performance
level is obtained compared to that with nearest node selection
method.

1. INTRODUCTION

In a typical wireless sensor network (WSN), each node com-
municates wirelessly with other nodes or the fusion center
in its radio communication range. A particular challenge in
WSN’s is the need for distributed estimation algorithms that
efficiently allocate limited energy resources at a node for com-
munication and sensing. In most sensor network applications
considered in literature it is assumed that the spatially sepa-
rated sensor nodes send their locally processed information to
a fusion center that makes the final decision about the state of
the nature [1,2]. There are, however, sensor network applica-
tions in which the system needs to have the ability to make a
final decision at any given distributed node. Doing this, only
the nodes that contribute to the final decision are in the de-
cision process while other nodes can remain idle preserving
their transmit energy. Since sensor networks are usually in-
tended to last for long periods of time, it is important for the
nodes to process and communicate local data only if neces-
sary.

The distributed sequential estimation problem was formu-
lated in [3–5]. According to [3, 4], a leader node sequentially
queries sensor nodes and updates its estimator (based on the
posterior distribution of the state of the PoI) until a desired

performance level is reached. In these schemes, the leader
node has to keep track of all the nodes which have been par-
ticipated in the decision process at each step. Several informa-
tion utility measures based on entropy and the geometry were
also proposed in [4] to select the next best node to be partic-
ipated in the decision process. In [5], the posterior distribu-
tion (belief) at the current node is transmitted to the next node
where it updates the state of belief based on current node’s be-
lief and the new measurement at the next node. In [6], a node
selection algorithm for target tracking based on the posterior
Cramer-Rao Lower Bound (CRLB) was presented. However,
neither of these considered the noise in inter-sensor communi-
cations. In [7], the sequential estimation of a non-random pa-
rameter over noisy correlated channels was considered. How-
ever, it did not consider the best ordering of the nodes in the
decision processing.

In this paper, on the other hand, we consider the distributed
sequential estimation of a random parameter in which the up-
dated estimate of a node is sent to the next node through a
noisy channel. The ordering of nodes for the estimation pro-
cess is selected based on a given criteria. We consider the next
node selection as a trade-off between an information utility
measure and the communication cost between nodes. In [8], a
distributed architecture is presented in solving inference prob-
lems in which nodes in the network assemble themselves into
a network junction tree where the presented algorithms mini-
mize the computation and communication cost required by in-
ference. Contrast to that in [8], in our distributed algorithms,
we formulate the cost function as a trade-off between infor-
mation gains and communication costs. Also, our formulation
combines the information in the current node and the previous
node in a sequential manner contrast to work in [8]. In fact,
we assume that each node has a set of neighbors that it can
communicate with an affordable communication cost. The
candidate next nodes at each node are allowed to be selected
only from its neighbors. In the proposed scheme, each node
has to keep track of only its neighbors to determine which
nodes have been participated in the decision process. The
information utility measures of the possible candidate nodes
are computed according to the current node’s information and
the knowledge of positions of neighbor nodes and target posi-
tions. From simulation results we see that when the proposed
node selection criteria is used, an improved performance with
a less number of nodes can be achieved compared to the near-
est node selection method.
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The remainder of this paper is organized as follows: Sec-
tion 2 formulates the distributed sequential estimation prob-
lem over noisy channels and derives the MMSE performance.
The distributed node selection schemes based on information
utility measures and the inter-node communication cost are
discussed in Section 3. Section 4 shows the performance re-
sults and concluding remarks are given in Section 5.

2. SENSOR NETWORK MODEL AND THE
SEQUENTIAL ESTIMATION ALGORITHM

We consider a spatially distributed, n-node sensor network
in which there is no designated fusion center. Denote by sk

the k-th node, for k = 1, · · · , n. Note that, when there is
no ambiguity, we use sk and k to denote the k-th processing
node interchangeably. The network is deployed to estimate a
target amplitude based on the following observation model at
node sk: w′k = θ

‖xk−xt‖α/2 + v′k, for k = 1, · · · , n, where
θ is the parameter to be estimated (target amplitude) that is
assumed to be Gaussian with zero mean and variance σ2

θ , xk

and xt denote the position of sensor node sk and the target,
respectively, vk is the measurement noise that is assumed to
be white Gaussian with zero mean and variance σ2

0 and α is
the path loss exponent that is determined by the propagation
environment. This model can be used, for example, in ap-
plications in which acoustic sensors are used to estimate the
amplitude of sound signals emitted by a target [4,9]. By rear-
ranging, we can re-write the observation at the node sk in the
equivalent form of

wk = θ + vk, for k = 1, · · · , n, (1)

where now vk is assumed to be independent but not identi-
cally distributed. In particular, vk is Gaussian with mean zero
and variance σ2

k ∝ ‖xk − xt‖α.
The first sensor has the observation z1 = w1 = θ + v1.

Assuming that the parameter θ is independent of noise v1, the
optimal Minimum Mean Squared Error (MMSE) estimate at
node s1 based on z1 is given by

θ̂1(w1) =
σ2

θ

σ2
θ + σ2

1

w1, (2)

and the corresponding MMSE, denoted by M1, of the estima-
tor (2) is

M1 =
σ2

1σ2
θ

σ2
1 + σ2

θ

=
(

1
σ2

1

+
1
σ2

θ

)−1

. (3)

(2) can also be expressed as θ̂1(w1) = M1
σ2
1

w1.
If the MMSE M1 does not meet the desired performance,

the estimator θ̂1 is transmitted to the next node over a noisy
channel. The criteria for selection of next node is discussed
later in this paper. For k > 1, the node sk estimates the pa-
rameter θ based on its own observation and the received esti-
mator from the node sk−1. The observation vector at node sk

is

zk =
[

wk

yk

]
=

[
θ + vk

θ̂k−1 + nk

]
, for k = 2, · · · , n,

where yk is the noise corrupted decision from node sk−1. The
channel noise nk, from node sk−1 to node sk is assumed to be
independent Gaussian with mean zero and variance σ2

c(k−1,k) ∝
‖xk−xk−1‖α for k = 2 · · · , n. The MMSE estimator at node
sk can thus be written as [10],

θ̂k(wk, yk) =
Mk

σ2
k

wk +
Mk(σ2

θ −Mk−1)

Mk−1(σ2
θ −Mk−1) + σ2

θσ2
c(k−1,k)

yk, (4)

where Mk is the MMSE at the node sk that can be shown to
be

Mk =
σ2

θ

σ2
θd2

k + 1
, (5)

where d2
k = 1

σ2
k

+ (σ2
θ−Mk−1)

2

σ2
θ

[
Mk−1(σ2

θ−Mk−1)+σ2
θσ2

c(k−1,k)

] and Mk−1

is the MMSE at the node sk−1 that is assumed to be available
at the node sk. Note that the MMSE at the node sk is deter-
mined only by statistics of observations and it is reasonable
to assume that they can be made available at neighbors [7].
From (4), it can be seen that the MMSE estimator at the node
sk is determined by its own observation, information from the
node sk−1 and the channel noise quality.

It is interesting to examine the dependence of Mk in (5) on
the channel quality of the inter-sensor communication links.
When channel quality is good

lim
σ2

c(k−1,k)→0
Mk =

Mk−1

1 + Mk−1

σ2
k

, for k = 2 = 1, · · · , n.

Therefore, it is seen that when σ2
c(k−1,k) → 0, Mk ≤ Mk−1

for all k. That is, by sending the decision at node sk−1 to the
node sk always improves the MMSE performance at node sk.
On the other hand, if the inter-sensor communication channel
quality is poor, we have

lim
σ2

c(k−1,k)→∞
Mk =

σ2
θσ2

k

σ2
θ + σ2

k

, for k = 2, · · · , n. (6)

That is, when the quality of inter-sensor communication link
is poor, the performance at the node sk does not depend on
the decision at node sk−1, but is entirely determined by the
observation quality at the node sk. It can be shown that if for
all k, σ2

c(k−1,k) satisfies the inequality

σ2
c(k−1,k) ≤

M2
k−1(σ

2
θ −Mk−1)

σ2
k(σ2

θ −Mk−1)−Mk−1σ2
θ

, (7)

then Mk ≤ Mk−1; i.e. sending the decision at node sk−1 to
the node sk improves the MMSE performance at the node sk.
This is further illustrated in Section 4 via simulation results.

If we assume that the node observations are i.i.d and the
inter-node communication is noiseless such that σ2

k = σ2
0 and

σ2
c(k−1,k) = 0 for k = 1, · · · , n, it can be shown that the

MMSE at the node sk (5) reduces to Mk = σ2
θσ2

0
σ2

v+kσ2
θ

, which is
a monotonically decreasing function of k. It is also interesting
to see that in this case, the minimum number of nodes nmin

required to achieve a required MMSE performance level εd is
given by, nmin = σ2

0

(
1
εd
− 1

σ2
θ

)
.
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Fig. 1. MMSE vs. number of sensor when observation noise
is i.i.d.

In the case of i.i.d. observation noise such that σ2
k = σ2

0

for all k, Fig. 1 shows the MMSE performance of the sequen-
tial estimation process with different channel noise qualities
on inter-sensor communication links. In Fig. 1, we have let
σ2

0 = 1 and σ2
θ = 1. In the special case when channel noise

is also i.i.d. such that σ2
c(k−1,k) = σ2

c for all k, from Fig. 1
it can be seen that Mk ≤ Mk−1 holds for all k. Moreover, as
expected from (6) the MMSE performance converges to 0.5
as σ2

c increases. It is expected that when both observations
and channel noise are i.i.d., the performance of the MMSE
estimator is independent of the order of the processing nodes.
Figure 1 also shows the performance of the MMSE estima-
tor when channel noise is not identical (still the observation
noise is i.i.d.). We have considered two cases: In the first,
σ2

c(k−1,k)’s are drawn randomly from a uniform distribution
in [0, 1] without any order. In the second case, these random
σ2

c(k−1,k)’s are arranged in an ascending order. From Fig. 1, it
can be seen that whenever the condition (7) is satisfied at node
sk, Mk ≤ Mk−1. In this case, to find the node where the min-
imum MMSE is achieved, the process should be continued for
all nodes. On the other hand, in case 2, where nodes are se-
lected with minimum distance from the current node, we can
observe that after a certain node, the MMSE is monotonically
increasing. Therefore, it is enough to continue the sequen-
tial estimation process only until this specific node, thereby,
saving the network power.

Figure 2 shows the MMSE performance of the sequential
distributed estimation process with non identical observations
and channel noise. Dashed line corresponds to channel noise
variance drawn from a uniform distribution without any order
while the solid line corresponds to channel noise variance in
ascending order with k. In both cases, the observation noise
variances are drawn from a uniform distribution on [0, 1]. As
can be observed from Fig. 2, when observations are not i.i.d.,
just selecting the nearest node as the next node does not al-
ways improve the performance. Therefore, when observa-
tions are not identical, it is required to have an information
driven approach to select the nodes with higher information
gain as well as lower communication cost.
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Fig. 2. MMSE vs number of sensors when observation noise
is non-i.i.d.

3. SENSOR NODE SELECTION

3.1. Distributed node selection: global approach

In a sequential estimation process, selecting nodes which pro-
vide best information gain with affordable communication
cost would lead to an improved performance by minimizing
the network resource consumption. Essentially, it is important
to determine the best ordering of nodes that would complete
the estimation process by reaching at the desired performance
level with a minimum number of processing nodes as a trade-
off between the information gain and the communication cost.
Let us denote by V = {1, 2, · · · , n} the set of nodes in the
network. Let Vj denote the set of nodes that have been par-
ticipated in the sequential estimation process up to step j. Let
sj ∈ V be the selected processing node at step j. Then the
next node sj+1 at step (j + 1) is chosen as,

sj+1 = argmax
sk∈Vc

j

R(sj , sk) (8)

where Vc
j denotes the set complement of Vj with respect to V

and the objective function R(sj , sk) is defined as,

R(sj , sk) = βRI(θ, wsk
, θ̂j)− (1− β)Rc(sj , sk), (9)

where RI(.) and Rc are the information utility function and a
measure of communications cost and β ∈ [0, 1] is a trade-off
parameter that balances the contributions from the two terms
in (9). The choice of β will depend on the required infor-
mation gain and the tolerable communications cost. There
are several possible information utility measures that can be
used to quantify the information gain provided by a sensor
measurement. For example, [4], [5] provided a detailed de-
scription of entropy- and geometry-based information util-
ity measures. In this paper, we consider the MMSE at the
node sj+1 when the current node is sj , denoted Mj+1|j , for
sj , sj+1 ∈ V , as the information utility measure. Then we
have

RI(θ, wsk
, θ̂j) = − σ2

θ

σ2
θd2

j,k + 1
(10)
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where d2
j,k = 1

σ2
k

+ (σ2
θ−Mj)

2

σ2
θ

[
Mj(σ2

θ−Mj)+σ2
θσ2

c(j,k)

] .

The communication cost function between current node
sj and the possible next node sk is taken as, Rc(sj , sk) =

1
dmax

(xsj
− xsk

)T (xsj
− xsk

) where dmax is the maximum
distance between any two sensors in the network. Then the
composite objective function (9) can be written as,

R(sj , sk) = βRI(θ, wsk
, θ̂j)

− (1− β)
dmax

(xsj
− xsk

)T (xsj
− xsk

), (11)

where RI(θ, wsk
, θ̂j) is as given in (10). To find the next best

processing node, the node sj has to compute the reward func-
tion (11) for all candidate sensors in Vc

j . Moreover, each node
sj has to keep track of the nodes that have already been par-
ticipated in the estimation process up to step j. Due to these,
implementing this scheme distributively would be difficult.
Thus, in the following, we propose a distributed algorithm for
sensor node selection with reduced computational complexity
that still improves the performance of the sequential estima-
tion process significantly.

3.2. Distributed node selection: local approach

Assume that the node sk in the network has a set of neighbors
Nk for k = 1, · · · , n where the neighbors are determined
based on a node’s effective communication range and the af-
fordable communication cost. We assume that each node has
the same effective communication range so that the criteria
for selection of neighbors is the same for all nodes. More-
over, if node sk is a neighbor of node si, for i 6= k, then node
si is also a neighbor of node sk as well. Let sj be the current
processing node at step j. The node sj selects the next node
based on the objective function (10) from the set of candidate
sensors Csj

j that is its neighbor nodes who have have not been
participated in the estimation process previously. Note that
each node sj ∈ V updates its set of candidate sensors Csj

j

based on the information received from its neighbors. Each
node has to keep track of the nodes participated in the estima-
tion process only in its neighborhood. The next node sj+1 at
step (j + 1) is chosen as,

sj+1 = argmax
sk∈C

sj
j

R(sj , sk). (12)

To find the next best node, the node sj has to compute the
reward function (11) only for all candidate nodes in Csj

j . The
proposed distributed sequential estimation process is summa-
rized in Algorithm 1.

Note that since node sj selects the next node from the
candidate set Csj

j , node sj only needs to perform |Csj

j | num-
ber of computations. Also, node sj needs to keep track of
the nodes which are not participated in the decision process
in its neighborhood only. Once the final decision is made, a
signal is broadcast implying the final decision is made. Then
all unprocessed nodes go to sleep mode, until the next event
occurs.

Algorithm 1 Sequential estimation process at step j at node
sj

while (j ≥)1 do
Compute estimate θ̂j

Compute MMSE Mj

if (Mj < Desired performance or Csj

j = ∅) then
Make final decision
Go to sleep mode

else
1. Select next node from Csj

j

2. Send estimate to the node selected
3. Broadcast signal to nodes in Csj

j implying node sj has been
participated in decision process
4. Go to sleep mode

end if
end while

Updating candidate set at k-th node

Denote Csk
j to be the candidate set of node sk at the step j. Al-

gorithm for updating the candidate set at node sk is explained
in Algorithm 2.

Algorithm 2 Updating candidate set at k-th node
NOTATION
sk: k-th node, sj : processing node at step j, Csj

j : candidate set of the
processing node sj at step j, Csk

j : candidate set of the node sk at step j

INITIALIZATION
Csk
0 = Nk

UPDATING
while (j ≥ 1) do
Csj

j = Csj

j−1

if sk = sj (i.e. node sk becomes the current processing node at step
j) then
Csk

j = Csj

j

else {sk ∈ Csj

j (i.e. node sk belongs to the candidate set of the current
processing node at step j)}
Csk

j = Csk
j−1 \ sj

else
Csk

j = Csk
j−1

end if
end while

Note that, node sj is not going to be a neighboring node
for any node in the network except those that are in Nj . Thus
it is not necessary for nodes that are not in Nj to keep track
of node sj . According to this scheme each node is required to
communicate with and keep track of only its neighbors. How-
ever, this process will be terminated when the current node
does not have any candidate neighboring nodes (i.e. Csj

j = ∅),
where ∅ is the null set, irrespective of whether the desired
performance level is reached or not, eventhough there might
be remaining nodes in other neighborhoods of the network.
However, as observed from simulations, this does not seem to
cause a significant performance loss.

3.3. Remark on the optimality of node selection schemes

In both schemes discussed above in subsections 3.1 and 3.2,
a global minimum is not guaranteed in general since in both
schemes current node selects the next best node from all un-
visited nodes in the network (in scheme discussed in 3.1), or
in neighborhood (in scheme discussed in 3.2). If the start-
ing node has the information regarding all the nodes in the
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Fig. 3. MMSE at the k-th node with exact target location: (a). No channel noise (b). With channel noise: σ2
c(k−1,k)’s are as

given in (14),n = 40, σ2
c = 0.001, α′ = 2, r0 = 1

network, the optimal node ordering which yields the global
minimum over all possible nodes can be computed via dy-
namic programming by formulating the problem as a shortest
path problem as described in [11] with a worst-case complex-
ity of order O(n3) where n is the number of nodes. When
there is a large number of nodes, this computation might be
complex. However, we observe (see Section 4) that when
there is no channel noise, the scheme discussed in subsec-
tion 3.1 coincides with the optimal scheme which yield the
global minimum (computed based on dynamic programming)
and the scheme proposed in subsection 3.2 is getting close to
the optimal scheme after processing relatively a small num-
ber of sensors. Even when there is channel noise, we can see
that both schemes perform close to the optimal scheme which
yields the global minimum.

4. PERFORMANCE ANALYSIS

We consider a 2D square sensor network of area A on X ×Y
plane. The locations of the node sk and the target are denoted
by xk = (xk, yk), for k = 1, · · · , n, and xt = (xt, yt), re-
spectively. In the following we analyze the performance of a
fixed 2D network when the target location is known exactly
as well as statistically.

4.1. Exact target location is known at each node

First, we assume that the node sj has knowledge of its own
position, target location and the positions of its neighborsNj .
Then the observation noise variance at the node sk according
to the model (1) can be expressed as,

σ2
k =

(
rkt

r0

)α

σ2
0 , (13)

where rkt =
√

(xk − xt)2 + (yk − yt)2 is the distance be-
tween the node sk and the target, α is the path loss index and
r0 and σ2

0 are constants. The noise variance of the channel

between nodes sk−1 and sk is given by,

σ2
c(k−1,k) =

(
rk−1,k

r′0

)α′

σ2
c , (14)

where rk−1,k =
√

(xk − xk−1)2 + (yk − yk−1)2 is the dis-
tance between the node sk and the node sk−1, α′ is the path
loss index and r′0 and σ2

c are constants.
Node sj computes the estimator and the MMSE according

to (4) and (5). If the desired MMSE threshold is not met, node
sj sends its information to the node sj+1, where the node
sj+1 is selected from the candidate set Csj

j according to (12).
Figure 3 shows the performance of MMSE at the k-th

node with no channel noise such that σ2
c(k−1,k) = σ2

c = 0
(in Fig. 3 (a)) and with channel noise with σ2

c(k−1,k) as given
in (14) (in Fig. 3 (b)). We assume that there is a total of 40
sensors deployed in a square region of area 10 × 10 square
units. The target is assumed to be at the origin and the initial
node is selected randomly and assumed same for both plots in
Fig. 3. Neighbors at each node are selected as the set of nodes
located within a disk of radius rc = 3 units. In Figures, we
refer scheme 1 and scheme 2 as the schemes presented in sub-
sections 3.1 and 3.2. We refer optimal scheme as the scheme
which results the global minimum over all nodes, computed
based on dynamic programming algorithm.

With no channel noise, it can be seen that node ordering
based on β = 1 in scheme 1 (based on global search) coin-
cides with the optimal scheme which results the global min-
imum. In that case, from Fig. 3 (a), it can be seen that the
proposed scheme 2 (based on local search) converges to the
scheme 1 as with a relatively small number of nodes in the
decision process with β = 1. For β = 0.8 and β = 0 (near-
est node selection scheme), it is seen that proposed scheme
1 and scheme 2 give similar performance. To achieve a re-
quired performance level, for example, to achieve a MMSE
of 0.05, scheme 1 with β = 1 requires 2 nodes, while scheme
2 with β = 1 requires 4 nodes. Both scheme 1 and scheme 2
require 8 and 12 nodes with β = 0.8 and β = 0, respectively
to achieve the same performance level.
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It is noted that the proposed scheme 2 is terminated at
node 25, 32 and 35 with β = 1, β = 0.8 and β = 0, respec-
tively, due to the reason explained in subsection 3.2. How-
ever, it is seen that when such a number of nodes are pro-
cessed node ordering does not affect the overall performance
level. This implies that when the sequential estimation pro-
cess is continued among a large number of sensors, the per-
formance converges to the same value irrespective of how the
nodes are selected, which of course is not desirable in many
resource constrained sensor networks.

On the other hand, when there is channel noise, it is seen
that continuing the sequential processing after some point does
not yield improved performance irrespective of which scheme
is used for node ordering. This essentially is due to the fact
observed in (7). However, in this case, from Fig. 3 (b), it
can be seen that the proposed schemes 1 and 2 with β = 1
gives closer performance to the optimal scheme which yields
the global minimum. The results in Fig. 3 are averaged over
10 trials with each based on 5 × 104 Monte-Carlo runs. The
standard deviation is very small compared with the means.

From the performance results, we can see that in the pro-
posed sequential estimation process, greedy-type algorithm
essentially results a near optimal solution in finding the best
ordering of nodes. In the proposed distributed algorithms
it was assumed that the parameter σ2

θ is available at sensor
nodes and the variance of the channel noise of the link be-
tween node sk and sk+1, σ2

c(k,k+1), can be computed based
on (14) having the knowledge of the distance rk,k+1. Figure
4 shows the robustness of the proposed algorithms to errors in
the knowledge of these parameters. Let σ̂2

θ = σ2
θ + εθ be the

available value of σ2
θ at each node where εθ is the error term

which is assumed to be distributed uniformly in the interval
[−δ, δ] with |δ| ≤ σ2

θ . The top plot in Fig. 4 shows the ro-
bustness of the proposed scheme 2 for error in the knowledge
of σ2

θ for different δ values assuming no channel noise. It can
be seen that the performance of the proposed node selection
scheme is robust against errors in the knowledge of σ2

θ . The
bottom plot of Fig. 4 shows the performance difference when
the channel noise variance is deviating from its actual value.
We obtain the best node ordering according to scheme 2 for
σ2

c = 0 and plot the performance curves when σ2
c is deviat-

ing from 0. It can be seen from the bottom plot of Fig. 4
that when σ2

c is more deviating from 0, after a certain num-
ber of processing nodes, the performance is degraded. How-
ever, it is noted that this happens after achieving the minimum
MMSE that can be achieved with σ2

c = 0. Since, processing
more nodes after achieving the minimum MMSE that can be
achieved with σ2

c = 0, is not desirable, it can be seen that the
proposed scheme is also robust for error in the knowledge of
channel noise variance as well.

4.2. Statistics of the target location is known at each node

In this section we assume that the the two coordinates of tar-
get location xt and yt (with (0, 0) point is at the center of the
square) are distributed as marginal Gaussian with mean zero
and the equal variance σ2

t = 5 units. Then it can be veri-
fied that r2

kt

σ2
t

has a non-central chi-squared distribution with

the pdf fX(x) = 1
2e−(x+λk)/2I0(

√
λkx) where λk = x2

k+y2
k

σ2
t
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Fig. 4. Robustness of the proposed sequential estimation pro-
cess for errors in parameters σ2

θ and channel noise variance

and Ia(x) is the modified bessel function of the first kind
given by Ia(x) := (x/2)a

∑∞
i=0

(x2/4)i

i!Γ(a+i+1) where Γ(z) =∫∞
0

tz−1e−tdt is the Gamma function. Using (13), the aver-
age MMSE at the k-th node is given by,

M̄k =
σ2

t σ2
0Qk−1

r2
0

Ex

{
x

x + Qk−1

}
(15)

=
σ2

θσ2
0Qk−1e−

λk
2

2r2
0

[
J0(

√
λkQk−1)Qk−1e

Qk−1
2 Ei

(
−Qk−1

2

)
(16)

+

∞∑

i=0

(
λk
4 )i

i!Γ(i + 1)

i+1∑

l=1

(l− 1)!(−Qk−1)
i+1−l

(
1

2
)
−l

]
, (17)

where Qk−1 = r2
0σ2

θBk−1

σ2
t σ2

0(Bk−1+σ2
θAk−1) , Ak−1 = (σ2

θ−M̄k−1)2,

Bk−1 = σ2
θ

[
M̄k−1(σ2

θ − M̄k−1) + σ2
θσ2

c(k−1,k)

]
and J0(.)

is the zero-th order Bessel function of first kind.
When the current node is sj , to determine the next node

sj+1 node sj has to compute the reward function (11) for its
candidate set Csj

j , where now the information utility function,
M̄k is as given in (17).

Figure 5 shows the MMSE performance of the 2D sen-
sor network in this case where network parameters are the
same as that in Fig. 3. It can be seen that the performance
of the proposed scheme 2 (local search) is getting closer to
the scheme 1 (global scheme) with β = 1 with perfect as
well as noisy inter-node communication. For other values of
β considered, the proposed scheme almost coincides with the
scheme 1.

It is also noted that (although figures are not included)
when σ2

t is increasing, that is the uncertainty of the target
location is high, the performance of the sequential estimation
process does not depend much on the ordering of nodes.

5. CONCLUSIONS

In this paper we have proposed a distributed scheme for se-
quential estimation of a Gaussian parameter with distributed
node selection. Each node makes a local estimate by combin-
ing its own observation with the decision from the previous
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Fig. 5. MMSE at the k-th node when the statistics of target location are available: (a). No channel noise (b). With channel
noise: σ2

c(k−1,k)’s are as given in (14), σ2
c = 0.005, α′ = 2, r0 = 1, σ2

0 = 0.1

node. The current node’s decision is sent to the next node
through a noisy channel. It was shown that such a sequential
estimation scheme is useful only if channel noise satisfies a
certain threshold condition. The criteria for the next node se-
lection is considered based on an information utility measure
and the inter-node communication cost. To perform the dis-
tributed sequential estimation process, each node has to keep
track of only its neighboring nodes. We derived the MMSE
performance for 2-D sensor network models when exact as
well as only the statistics of target position information are
available at each node. The proposed sequential estimation
can be performed distributively having only the information
regarding neighbor nodes at each node.
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