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Abstract—In this paper, stationary target detection in a hybrid
sensor network consisting of both static and mobile nodes is
considered with random node mobility models. Static nodes and
mobile nodes (initially) are assumed to be deployed independently
and randomly in the sensing field. Mobile nodes are exploited to
compensate for the lack of coverage provided by static nodes, and
subsequently a time varying coverage improvement is achieved.
We evaluate the detection performance of the hybrid network
analytically based on geometric probability. We consider two
sensing models: single-sensing detection and multiple-sensing
detection. We characterize the trade-off between the mobile
node density and the detection performance in terms of network
parameters, with an expense of a certain delay constraint. Results
presented in this paper give insights on selecting mobile node
density in designing hybrid networks consisting of both static
and mobile nodes in order to reach a desired performance
requirement. Validity of the derived analytical results is verified
via Monte-Carlo simulations.

I. INTRODUCTION

In this paper we consider the problem of detecting a
stationary target using a hybrid sensor network consisting
of both mobile and static nodes. We assume that the static
nodes and the initial locations of mobile nodes are both
independently and uniformly distributed in a two dimensional
plane such that initial node locations follow a 2-D Poisson
point process. Such a deployment model for the nodes can be
justified in situations where the network does not have any
prior information regarding the sensing field and the target
locations, or when it is more cost effective and practical to
deploy nodes randomly in contrast to systematic deployment.
We further assume that mobile nodes move randomly and
independently in the sensing region searching for targets.
Random and independent mobility models are desirable when
nodes do not have prior information on target existence and are
easily implementable since they require minimum coordination
among mobile nodes.

We consider two detection models: single-sensing and k-
sensing [1]. In single-sensing detection, the target is assumed
to be detected if at least one sensor detects it providing the
minimum guarantee of detection [1]. In k-sensing detection, on
the other hand, the target is assumed to be detected if at least k-
sensors detect it where k is a design parameter. In this model,
the target is detected with lower false alarm probability than
with single-sensing detection [1]. Mobile nodes are assumed
to move independently and randomly in the sensing region.
We consider two specific random mobility models: In the first
model we assume that each mobile node initially selects a
direction randomly and uniformly from [0, 2π) and then move

on a straight line in the selected direction [2]. In the second
model, the mobile nodes are assumed to follow 2-dimensional
random walks [3].

Under these detection and node mobility models, the detec-
tion performance of the hybrid sensor network is analyzed for
detecting a stationary target. Specifically, we derive analytical
results that help selecting parameter values in designing hybrid
sensor networks for target detection. For example, since de-
ploying mobile nodes in a network can be more expensive
than deploying static nodes, it is important to deploy the
minimum required number of mobile nodes in order to reach
a desired performance level within a desired delay constraint.
We characterize this minimum mobile node density required
in order to achieve a desired performance level within a given
delay constraint analytically.

The paper is organized as follows: In Section II, we present
related work. Section III explains the sensor network, target
and detection models. Section IV derives the detection perfor-
mance of stationary target detection with single-sensing and
k-sensing detection models and discusses its dependence on
mobile node density. Performance results are shown in Section
V and final concluding remarks are given in Section VI.

II. RELATED WORK

Distributed detection in wireless sensor networks with sta-
tionary sensor nodes has been extensively studied by many
authors in the literature. For example, in [4]–[8], decision
fusion for distributed detection was considered in different
contexts when the sensor nodes are located at fixed positions.

In practice, random sensor deployment for sensor networks
is desirable in many situations. For example, if a priori
knowledge of the sensing field is not available at the deploy-
ment stage, it is more desirable to position sensors randomly.
Moreover, random sensor deployment is justifiable when it is
more cost effective and practical to deploy nodes randomly
in contrast to systematic deployment. Stationary and mobile
target detection in random stationary sensor networks has been
studied by [1], [9], [10]. Since the performance of such a
stationary sensor network is limited by its initial configuration,
recently mobile sensor nodes are deployed in wireless sensor
network applications to provide dynamic on-demand system
performance. Use of node mobility at deployment stage to
provide a uniform coverage by node relocation was consid-
ered in [11], [12]. However, these studies do not provide a
performance improvement on-demand after deployment stage.
Liu et. al. in [2] showed that the coverage can be improved by
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allowing nodes to be mobile continuously in a mobile sensor
network over time compared to that with a static network.
However, deploying mobile sensor nodes is not as cost ef-
fective as deploying static nodes in a sensor network due to
energy constraints. Thus it is desirable to allow only a fraction
of total nodes to be mobile to improve the system performance
depending on application requirements. Motivated by these, in
this paper we address the problem of detecting an arbitrary
target located independently and randomly in a hybrid sensor
network consisting of both static and mobile nodes.

III. SYSTEM MODEL

We consider a hybrid sensor network made of N total
sensor nodes deployed in a region R. We assume that there
are Ns number of static nodes and Nm number of mobile
nodes. Denote (xsk, ysk) to be the location of the k-th static
node where xsk and ysk are assumed to be independently and
uniformly distributed in [−b/2, b/2] where b×b is the assumed
dimension of the sensor network. Note that we assume that
the total number of sensor nodes N and network dimension
b × b are large enough so that assumptions made in the rest
of the paper are valid. Denote λ = N

b2
to be spatial density of

the nodes and λm = Nm

N
and λs = Ns

N
to be the fractions

of mobile and static nodes respectively. Let V be the set
containing all node indices in the network and let Vm and
Vs be the sets containing mobile and static node indices,
respectively. We consider stationary target detection by the
hybrid sensor network, where the target location is assumed to
be an independently and uniformly distributed arbitrary point
P0 in the region R.

A. Node mobility models

In this paper, we consider two random mobility models:
In the first model (model 1), each mobile node moves inde-
pendently in a direction θ selected randomly and uniformly
where θ ∼ U [0, 2π), with an average speed of v̄ which is
assumed to be the same for all mobile nodes. Note that we
use X ∼ U [a1, a2] to denote that X is uniformly distributed in
the interval [a1, a2]. Then at any time t = nTs, a mobile node
has moved on a straight line a distance of nv̄Ts where Ts is the
length of each time step [2]. Second, in model 2, we consider
that k-th mobile node follows a 2-dimensional random walk
[3] of n steps at time nTs with each of a length µ = v̄Ts.
Random and independent mobility models are justifiable in
scenarios where nodes do not have any prior knowledge of
sensing field or target existence. Also random node mobility
models are desirable when minimum node coordination is
required. Model 1 assumed in the paper is the simplest mobil-
ity model which requires minimum control and coordination.
Random walk mobility model can be justifiable when mobile
nodes are characterized by uncontrolled dynamics, such as
random ON-OFF transitions at each time step [13]. These two
random models for a mobile node are illustrated in Fig. 1.

B. Detection model

We assume that each node has identical effective sensing
range r with the sensing area of πr2. Although we assume
homogeneous sensor nodes for simplicity, the results can easily
be extended for heterogeneous sensor nodes having different
sensing ranges.

We assume a binary detection model in which the point P0

is considered to be detected with probability 1 by the sensor sk

At time 0

At time 0

At time nTs

At time nTs

Model 1

Model 2

Fig. 1. Random mobility models of a mobile node

at time t = nTs if it lies in sensor-coverage area Ck(nTs) [11],
where Ck(nTs) is the coverage area of node sk at time nTs

for n = 0, 1, 2, · · · . Formally, we can express the probability
that the node sk detects the target at time interval [0, nTs) as:

Pdk
(nTs) =

{

1 if P0 ∈ Ck(nTs)
0 if otherwise

Note that for a static node, the coverage area Ck(nTs) is a
constant over time. That is, if the target is not detected by
a static node initially, it is not going to be detected forever.
However, with a mobile node, since the coverage is varied over
the time, there is a probability for the target to be detected as
time goes.

C. Preliminaries

1) Boolean model: Let P ≡ {αi, i ≥ 1} in R
k is a point

process and {Si, i ≥ 1} be a sequence of independently and
identically distributed random sets, independent of P . The
collection of sets C = {αi + Si, i ≥ 1} is called a coverage
process [14]. When C is driven by a stationary Poisson point
process (i.e. P is a stationary Poisson point process), the
coverage process C is called a Boolean model [14]. Since
we assume that static node locations and initial mobile node
locations are independently and identically distributed, the
sensor locations can be modeled as a two-dimensional Poisson
point process with intensity λ, when the total number of nodes
and the sensing region are large.

2) Notation: We use A(S) and P(S) to denote the area
and perimeter of the set S. Denote by P + S the set centered
at P with a shape of S.

IV. STATIONARY TARGET DETECTION PERFORMANCE

In the following, we consider two modes of detection:
Single-sesing detection and k-sensing detection [1]. In Single-
sensing detection, the target is considered as detected if it is
captured by at least one sensor. In k-sensing detection model,
the target is considered as detected if it is detected by at least
k sensors where k is a design parameter [1].
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S1(nTs)
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S2

r

Fig. 2. Realization of random shapes at time nTs

A. With random node mobility model 1

In this section, we analyze the detection performance with
the random node mobility model 1, where the mobile nodes
move in a straight line after selecting the direction inde-
pendently and uniformly from [0, 2π). Note that, with the
assumption of large network sizes and the speed of a mobile
node is small (e.g. for example, Robomote [15] mobile nodes
have speed of 0.5 ∼ 2m/s), the average time a mobile node
takes to leave the sensing region can be considered to be large.
Our analysis is mainly focused on the region before the nodes
leave the sensing region. The node locations at time nTs can
now be modeled as a Poisson point process with intensity λ
[16] and the corresponding coverage area S(nTs) is distributed
as

S(nTs) =

{

S1(nTs) with prob λm

S2 with prob 1 − λm
,

where S1(nTs) and S2 are as shown in Fig. 2. The coverage
area of k-th static sensor at time nTs is given by,

Cs
k(nTs) = Cs

k = A(S2) = πr2,

and the coverage area of the k-th mobile node at time t = nTs

is given by (corresponding to shape S1(nTs)),

Cm
k (nTs) = A(S1(nTs)) = πr2 + 2rnTsv̄.

Thus the sensor network at time nTs can be considered as a
Boolean model. Then the probability that the target is detected
is given by the following theorem.

Theorem 1: (Detection probability) The probabilities of de-
tection with single-sensing and the k-sensing models (k ≥ 1)
at time t = nTs are given by,

P 1
D(nTs) = 1 − e−λ(πr2+2λmrnv̄Ts) (1)

and

P k
D(nTs) = 1 −

k−1
∑

j=0

(λ(πr2 + 2λmrnv̄Ts))
je−λ(πr2+2λmrnv̄Ts)

j!

respectively.
Proof: In single sensing detection, the target is con-

sidered as detected, if at least one sensor captures it. If
C ≡ {αi + Si, i ≥ 1} is a Boolean model with shapes Si are
distributed as S, the number of sets (shapes) that intersects an
arbitrary point (or the number of sets that covers an arbitrary
point) in the Boolean model has a Poisson distribution with
mean λE{A(S)} [14]. At time t = nTs, the hybrid sensor
network consists of Nm number of mobile sensors having
coverage areas of C̄m(nTs) = πr2 + 2rnTsv̄ and Ns number

of static nodes having coverage areas of Cs = πr2. Denote
PP0(m, nTs) to be the probability that m number of sensors
cover the point P0 at time t = nTs, which is given by [14]

PP0(m, nTs) =

(

λC̄(nTs)
)m

e−λC̄(nTs)

m!
,

where C̄(nTs) = (λmC̄m(nTs)+ (1−λm)Cs) is the average
coverage area of the network at time nTs. Then the probability
that no sensor covers the point P0, PP0(0, nTs), at time nTs

is given by, PP0(0, nTs) = e−λC̄(nTs). The probability of the
single-sensing detection is thus given by,

P 1
D(nTs) = 1 − PP0(0, nTs) = 1 − e−λC̄(nTs)

= 1 − e−λ(πr2+2λmrnv̄Ts).

In k-sensing detection, the target is considered to be detected
if at least k sensors detect it. Probability that the point P0 is
covered by at least k sensors at time nTs is given by,

P
k
D(nTs) = 1 − Pr(P0 is covered by k − 1 or less sensors)

= 1 −

k−1
∑

j=0

PP0 (j, nTs)

= 1 −

k−1
∑

j=0

(λ(πr2 + 2λmrnv̄Ts))je−λ(πr2+2λmrnv̄Ts)

j!
.

Since allowing more nodes to be mobile is not desirable
in many applications due to energy constraints, it is required
to determine the minimum fraction of mobile nodes to be
deployed in order to achieve the desired performance during a
given time interval. The following theorem states the minimum
fraction of mobile nodes required to achieve a desired prob-
ability level within a desired time interval for single sensing
detection.

Theorem 2: (Minimum mobile node density required with
single sensing detection) Let ηD be the desired detection
probability to be achieved by the hybrid sensor network at
time tD. The minimum fraction of mobile nodes to be used
to achieve ηD at time tD with single-sensing detection model
is given by,

λmin
m =

{

− log(1−ηD)−λπr2

2⌊
tD
Ts

⌋λrv̄Ts

, if ηs ≤ ηD ≤ ηt

Infeasible, Otherwise,
(2)

where ηs = 1 − e−λπr2

and ηt = 1 − e−λ[πr2+2⌊
tD
Ts

⌋rv̄Ts].
Proof: If the tolerable detection delay is tD, and the

desired detection probability is ηD, the minimum λm is
characterized by,

min λm

such that P 1
D

(⌊

tD

Ts

⌋

Ts

)

≥ ηD ,

where P 1
D

(

⌊ tD

Ts
⌋Ts

)

is given by (1). This leads to

λm ≥ − log(1 − ηD) − λπr2

2⌊ tD

Ts
⌋λrv̄Ts

.

Note that (2) holds for a desired delay constraint, only if the
desired detection probability ηD satisfies the condition ηs ≤
ηD ≤ ηt where

ηs = 1 − e−λπr2

, (3)
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and

ηt = 1 − e−λ[πr2+2⌊
tD
Ts

⌋rv̄Ts], (4)

are the detection probabilities achieved by the network if all
nodes are stationary (λm = 0), and if all nodes are allowed to
move (λm = 1), respectively.

In the case of k-sensing detection, the minimum fraction
of mobile nodes can be found by finding the minimum λm
which satisfies the following inequality:

1 −

k−1
∑

j=0

(λ(πr2 + 2λmr⌊
tD
Ts

⌋v̄Ts))je
−λ(πr2+2λmr⌊

tD
Ts

⌋v̄Ts)

j!
≥ ηD ,

However, if the desired delay constraint is such that ⌊ tD

Ts
⌋ ≤

πr
2v̄Ts

, the minimum fraction of mobile nodes can be found

by finding the minimum λm which satisfies the following
inequality:

λm −
log(f1(k − 1) + λmf2(k − 1))

2λr⌊
tD
Ts

⌋v̄Ts

≥
− log(1 − ηD) − λπr2

2⌊
tD
Ts

⌋λrv̄Ts

where f1(k − 1) =
∑k−1

j=0
(λπr2)j

j! and f2(k − 1) =
2r⌊

tD
Ts

⌋v̄Ts

πr2

∑k−1
j=1

(λπr2)j

(j−1)! .

B. With random node mobility model 2 (random walk)

Now we consider that the mobile nodes follow 2-D random
walk mobility model at each time step nTs as shown in Fig.
1. In this paper we consider only the case r ≤ µ, since if the
step size is selected such that µ ≪ r, there are large overlaps
in the sensing areas at consecutive steps [3]. Thus it is more
desirable to select step size of the random walk such that µ ≥
r, which results in a larger coverage area at each step of the
random walk. Since each mobile node performs independent
and identical random walks at each time step, and the sensing
range of each mobile node is identical, it can be seen that,
{Cm

k (nTs)}k∈Vm
are a set of independently and identically

distributed random sets where Cm
k (nTs) is the area covered

by the k-th mobile node by time nTs. Denote C̄m
k (nTs) =

C̄m(nTs) to be the average coverage area of the k-th mobile
node at time nTs.

Let us assume that the sensing region can be viewed as a

virtual square lattice having a total of ≈ b2

µ2 square sites where

µ = v̄Ts is the lattice side length. The k-th mobile node is
assumed to be at the center of a site. If the mobile node starts
to move at time t = 0, the expected number of distinct sites
visited by time nTs, E{G(nTs)} can be approximated by [3],
[17],

E{G(nTs)} ≈ b2

µ2

(

1 −
(

cb2

µ2

)− πnTs

b2

µ2 log2
(

cb2

µ2

)

)

,

where c = 1.8456.... The average area covered by a mobile
node at time nTs, C̄m(nTs) is then given by the following
theorem.

Theorem 3: (Minimum average coverage area of a mobile
node) Assuming that µ ≥ r, the minimum average area
covered by any single mobile node at time nTs is given by,

C̄m
min(nTs) = πr2 + (E{G(nTs)} − 1)+2rµ

− (E{G(nTs)} − 2)+(1 − π

4
)r2, (5)

where (x)+ equals to x if x > 0, and equals to zero otherwise.
Proof:

Assuming µ ≥ r, when there is E{G(nTs)} number of
distinct sites visited at time nTs, there should be at least
E{G(nTs)} − 1 number of steps to ensure that each point
is connected to at least one lattice point (see Fig. 3). Then
the minimum coverage area results if these lattice points are
located such that each transition is orthogonal to the previous
transition (That is, then the maximum amount of overlapping
will occur with the minimum number of transitions). Figure 3
shows the realization of random walk when 4 distinct sites are
visited with minimum number of (3) transitions. Fig. 3(a) is
corresponding to r ≤ µ

2 , where there is no overlapping of the
sensing range while Fig. 3(b) corresponds to

µ
2 ≤ r < µ where

there is overlapping of sensing range, between two consecutive
steps. Based on geometric simplifications, in both cases as
shown in Fig. 3, the minimum coverage area can be shown
as,

C̄
m
min(nTs) = πr

2 + (E{G(nTs)} − 1)+2rv̄Ts

− (E{G(nTs)} − 2)+(1 −
π

4
)r2

,

which completes the proof.

Then lower bounds for the detection probability in single-
sensor and k-sensor detections can be shown as,

P 1
D(nTs) ≥ 1 − e−λC̄min(nTs), (6)

and

P
k
D(nTs) ≥ 1 −

k−1
∑

j=0

(

λC̄min(nTs)
)j

e−λC̄min(nTs)

j!
,

respectively, with C̄min(nTs) = λmC̄m
min(nTs)+(1−λm)πr2

where C̄m
min(nTs) is given by (5).

Let ηD be the desired detection probability lower bound to
be achieved by the hybrid sensor network at time tD. The
minimum fraction of mobile nodes λmin

m that should be used
in order to achieve this probability bound, within the desired
time is stated in the following theorem:

Theorem 4: (Minimum fraction of mobile nodes required
to achieve a desired probability at a given time) With single-
sensing detection, if the desired detection probability lower
bound, ηD, is to be achieved within a time interval tD, the
minimum fraction of mobile nodes that should be deployed in
the hybrid network with single-sensing detection is given by

λ
min
m =

− log(1 − ηD) − λπr2

λ
(

Ḡ1(⌊
tD
Ts

⌋Ts)2rv̄Ts − Ḡ2(⌊
tD
Ts

⌋Ts)(1 − π
4 )r2

) .

for µ ≥ r where Ḡ1(⌊ tD

Ts
⌋Ts) = (E{G(⌊ tD

Ts
⌋Ts)} − 1) and

Ḡ2(⌊ tD

Ts
⌋Ts) = (E{G(⌊ tD

Ts
⌋Ts)} − 2).

Proof: The proof follows directly from (6) and (5).

V. SIMULATION RESULTS

A. With node mobility model 1

We verify the analytical results obtained in this paper via
extensive Monte-Carlo simulations. The dimension of the
sensing area is assumed to be b = 1000m, such that area
is 1000 × 1000m2. Mobile node speed is set to v̄ = 1m/s.
Initially a total of N = 500 sensor nodes are deployed
independently and uniformly in the sensing field. A fraction of
500 total nodes, is directed to move according to the random
mobility model 1 as described in subsection III-A. Note that
with these assumed parameters, it can be shown that the
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Fig. 3. Minimum possible coverage area after completing 4 distinct steps
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Fig. 4. Detection probability with single-sensing detection Vs desired delay
constraint with mobility model 1: r = 20m

average time a mobile node takes to leave the sensing region
with the mobility model 1 is, 473.31655s.

Figure 4 shows the time varying detection probability of
the hybrid sensor network for single-sensing detection when
the fraction of mobile nodes deployed is varied for a given
sensing range for each node. In Fig. 4, we assume that
r = 20m. From Fig. 4, we can see the derived analytical
results almost exactly match with the simulation results. In
Fig. 4, the results are shown for the region before nodes leave
the sensing region. Although figures are not included it can be
shown that (details are given in [18]), as the time increases,
the detection probability saturates at a constant value. This
phenomenon essentially reflects the detection probability cor-
responding to the maximum area that can be covered with the
given fraction of mobile nodes before they leave the sensing
region. It is also seen from Fig. 4 that by adding a small
fraction of mobile nodes will boost the detection performance
significantly compared to the stationary configuration, and the
rate of performance improvement eventually decreases as λm

increases. Also when the desired delay constraint is relatively
large, a higher detection probability can be achieved with a
relatively small fraction of mobile nodes, since then the mobile
nodes have covered, on average a larger area of the sensing
field.

Figure 5 shows the detection probabilities for single-sensing
and 2-sensing detection models of the hybrid sensor network
when the fraction of mobile nodes is increasing, for a given
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analytical, single−sensing, r=30m 

simulated, single−sensing, r=30m 

analytical,single−sensing,  r=20m 
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simulated, 2−sensing, r=30m

analytical, 2−sensing, r=30m

analytical, 2−sensing, r=20m

simulated, 2−sensing, r=20m

Fig. 5. Detection probability Vs fraction of mobile nodes in the network for
single-sensing and 2-sensing detection models for mobility model 1; Desired
detection delay is tD = 60s.

desired delay constraint. In Fig. 5 we let the delay constraint
tD = 60s and plots are corresponding to varying sensing
ranges (for r = 20m and r = 30m). From Fig 5, the trade-off
between sensing range of each node and the fraction of mobile
nodes needed to achieve a desired probability at a desired
delay constraint is shown. It can also be seen that the detection
probability is nearly-linearly increasing, when the fraction of
mobile nodes is increasing, for a given sensing range around
the considered delay constraint (i.e. around relatively lower
delay constraints).

In Fig. 6, the minimum fraction of mobile nodes required
to achieve a desired performance level within a desired delay
constraint is shown for r = 20m and r = 30m with
single sensing detection. It is seen that when the desired
delay constraint is small, the minimum fraction of mobile
nodes is increasing to achieve a desired performance level.
Moreover, the impact of the mobile node density on the
detection performance is more significant when the sensing
range of the nodes is small, which is the most practical
scenario in many sensor networks. In other words, it can be
seen from Fig. 6 that when the sensing range is increasing, the
variation of the required fractions of mobile nodes to achieve
different detection thresholds, is less compared to that with
lower sensing ranges.
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Fig. 7. Detection probability lower bound with single-sensing detection Vs
fraction of mobile nodes in the network with random walk mobility model
after completing n = 20 steps: for µ =

√

2r and µ = 2r: r = 20m

B. With node mobility model 2

To see the performance of the derived detection probability
lower bound, we perform Monte-Carlo simulations to obtain
the exact detection probability with random walk mobility
model. Figure 7 shows the analytical detection probability
lower bound and the exact detection probability vs the fraction
of mobile nodes, with random walk mobility model after
completing n = 20 steps. In Fig. 7, we let the step sizes of
the random walk to be µ =

√
2r and µ = 2r where r is set to

r = 20m. From Fig. 7, it can be seen that the derived lower
bound is a good match for the exact detection probability.
Moreover, when the step size of the random walk is selected
relatively larger compared to the sensing radius of the node,
it can be seen that the derived lower bound becomes a very
good approximation for the exact detection probability. For
a given sensing range, selecting a larger step size compared
to the sensing range is more desirable in performing 2-D
random walk, since then the overlapping of sensing coverage
at consecutive steps is reduced.

VI. CONCLUSION

In this paper, we considered the problem of target detection
in a hybrid sensor network consisting of both static and mobile
nodes and derived analytical expressions that are important
in designing such sensor networks. Static node locations and

initial locations of mobile nodes are assumed to be indepen-
dently and identically distributed in the sensing region. Nodes
are assumed to move randomly and independently searching
for targets. Detection probabilities for single-sensing and k-
sensing detection models were derived for the hybrid sensor
network. Since deploying mobile nodes is not as cost effective
as deploying static nodes, we characterized the minimum
fraction of mobile nodes to be combined with static nodes in
order to meet the desired system performance within a desired
delay constraint after initial deployment. The analytical results
derived in this paper help to select design parameters in hybrid
sensor networks for on-demand application requirements.

ACKNOWLEDGEMENT

This research was supported in part by the National science
Foundation under the grant CCF-0830545.

REFERENCES

[1] L. Lazos, R. Poovendran, and J. A. Ritcey, “Probabilistic detection of
mobile targets in heterogeneous sensor networks,” in 6th Int. Symp. on
Information Processing in Sensor Networks, (IPSN), 2007, pp. 519–528.

[2] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility
improves coverage of sensor networks,” in Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking and computing,
2005, pp. 300–308.

[3] L. Lima and J. Barros, “Random walks on sensor networks,” in 5th
Int. Symp. Modeling and Optimization in Mobile, Ad hoc and wireless
networks, Apr. 2007.

[4] J. N. Tsistsiklis, “Decentralized detection,” in Advances in Statistical
Signal Processing, Signal Detection, H. V. Poor and J. B. Thomas, Eds.
JAI Press, 1993, pp. 297–344.

[5] T. Wimalajeewa and S. K. Jayaweera, “Optimal power scheduling for
correlated data fusion in wireless sensor networks via constrained PSO,”
IEEE Trans. Wireless commun., vol. 7, no. 9, pp. 3608–3618, Sept. 2008.

[6] S. K. Jayaweera, “Large system decentralized detection performance
under communication constraints,” IEEE Commun. Lett., vol. 9, pp. 769–
771, Sep. 2005.

[7] ——, “Bayesian fusion performance and system optimization in dis-
tributed stochastic Gaussian signal detection under communication con-
straints,” IEEE Trans. Signal Processing., vol. 55, no. 4, pp. 1238–1250,
April. 2007.

[8] J. F. Chamberland and V. V. Veeravalli, “Asymptotic results for decen-
tralized detection in power constrained wireless sensor networks,” IEEE
J. Select. Areas Commun., vol. 22, no. 6, pp. 1007–1015, Aug. 2004.

[9] Q. Cao, T. Yan, J. Stankovic, and T. Abdelzaher, “Analysis of target
detection performance for wireless sensor networks,” in Int. Conf. on
Distributed Computing in Sensor Systems (DCOSS), June-July 2005,
pp. 276–292.

[10] R. Niu and P. K. Varshney, “Performance analysis of distributed de-
tection in a random sensor field,” IEEE Trans. on Signal Processing,
vol. 56, no. 1, pp. 339 – 349, Jan. 2008.

[11] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization
based on virtual forces,” Proc. INFOCOM, pp. 1293–1303, 2003.

[12] G. Wang, G. Cao, and T. L. Porta, “Movement assisted sensor deploy-
ment,” IEEE Trans. Mobile Computing, vol. 5, pp. 640–652, 2006.

[13] S. D. Servetto and G. Barrenechea, “Constrained random walks on
random graphs: routing algorithms for large scale wireless sensor
networks,” in Proc. First ACM Inter. Workshop on Wireless Sensor
Networks and Applications (WSNA-02), New York, Sept. 2002.

[14] P. Hall, Introduction to the Theory of Coverage Processes. John Wiley
and Sons, 1988.

[15] G. T. Sibley, M. H. Rahimi, and G. S. Sukhatme, “Robomote: A tiny
mobile robot platform for large-scale ad-hoc sensor networks,” in Proc.
IEEE Int. Conf. on Robotics and Automation, Washington, DC, May
2002, pp. 1143–1148.

[16] R. Serfozo, Introduction to Stochastic Networks. Springer, 1999.
[17] S. Caser and H. J. Hilhorst, “Topology of the support of the two-

dimensional lattice random walk,” Phys. Rev, Lett., vol. 77, no. 6, pp.
992–995, Aug. 1996.

[18] T. Wimalajeewa and S. K. Jayaweera, “Impact of mobile node density
on detection performance measures in a hybrid sensor network,” IEEE
Trans. Wireless commun., 2009, submitted.

6


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Links to Other Manuscripts by the Authors
	------------------------------
	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
	------------------------------

