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Abstract—In this paper, we propose a new mobility assisted
tracking (MAT) algorithm for tracking a single target in a hybrid
sensor network consisting of both static and mobile nodes. The
network is assumed to be partitioned into clusters and cluster
heads are formed from a set of high capacity static nodes. One
cluster head is selected to perform the tracking task using particle
filters at a given time based on the observations received from the
nodes belonging to the corresponding cluster. We exploit the node
mobility in the hybrid sensor network to dynamically maintain
a certain coverage level at the predicted target location at each
time. In the proposed MAT algorithm mobile nodes are directed
to move towards the predicted target position at each time step
if the predicted target position is not covered to the desired
coverage level by static nodes. Simulation results show that with
the proposed MAT algorithm, an improved performance closer to
the PCRLB is achieved with a relatively small number of mobile
nodes in the network compared to the scenario when all nodes
are static. The proposed scheme is also robust against static node
as well as cluster head failures.

I. INTRODUCTION

Use of particle filtering for target tracking was addressed by
many authors in recent research with static sensor networks
[1]–[3]. For example, in [2] target tracking based on binary
observations in a static sensor network was considered, where
the tracking is performed at a central fusion center. In [3],
tracking algorithm based on particle filters incorporating im-
perfect communication between sensor nodes and the fusion
center is proposed. When the target tracking is performed
at a centralized fusion center, each node in the network
should forward its raw or locally processed observations
to the central unit, perhaps via long-range communication,
which indeed consumes a large transmit power at nodes.
Since many practical sensor networks are operated with sensor
nodes which have limited battery power, it is desirable that
the tracking is performed distributively utilizing the limited
resources efficiently. Distributed implementation of particle
filters is proposed in some recent work [4], [5]. In those
distributed particle filter approaches, all nodes in the network
are active at every time and participate in the tracking task.
However, all the nodes in the network might not have rich
information regarding the target state as the target moves. Thus
it is of interest to obtain observations from sensors which have
useful information allowing the rest of the nodes to be idle
saving energy.

On the other hand, most of the existing work on target
tracking consider only static sensor networks. However, sta-
tionary sensor networks may not suit for some applications.
For example, in situations where it might be necessary to
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deploy a large number of static nodes to monitor a large
region with a desired performance level. Target tracking in
mobile sensor networks is addressed recently in [6]–[9]. In
[6], [7], the tracking task was performed based on Kalman
filters assuming linear dynamic models and information driven
approaches for mobility management are presented. Target
tracking with particle filters in a mobile sensor network based
on a centralized approach was considered in [8], [9].

In this paper, our focus is on developing a target tracking
algorithm based on distributed particle filtering in a hybrid
sensor network consisting of both static and mobile nodes,
and use of node mobility to compensate for the lack of
coverage provided by static nodes dynamically as the target
moves. To the best of our knowledge, a tracking algorithm
in a hybrid sensor network exploiting the node mobility
dynamically to compensate for the lack of coverage by static
nodes, is not addressed in the literature. In the proposed
mobility assisted tracking (MAT) scheme, the network is
partitioned into clusters and only one cluster head is active
at a given time. Since nodes have to communicate with only
their cluster heads, they do not necessarily need to have long
communication ranges. The active cluster head is selected
based on the predicted target locations. When the active cluster
head is selected, the associate sensor nodes are activated and
asked to send their local measurements to the corresponding
cluster head. In the proposed MAT algorithm, the main idea
is to maintain a certain coverage level for the predicted target
location at each time step. By coverage level, we mean that
each predicted target location at time 𝑘, is covered by exactly
or approximately by a certain number (say 𝛽) of sensor nodes.
The predicted target location is 𝛽 covered essentially means
that there is at least 𝛽 number of nodes located within a
certain distance (which is a design parameter and is discussed
in Section IV in detail) from the predicted target location.
The terms 𝑒𝑥𝑎𝑐𝑡 and 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 coverage are explained
in a later section of the paper. If the predicted position at
time 𝑘 is already covered by 𝛽-number of static nodes, then
mobile nodes are not needed to move during time 𝑘 to 𝑘+1.
Otherwise, to maintain the 𝛽-coverage (exact or approximate)
mobile nodes are directed to move taking the energy and speed
constraints into account.

The paper is organized as follows. Section II presents the
system model and problem formulation. In Section III, the
cluster based distributed target tracking by particle filtering
is explained. Proposed node mobility management scheme is
discussed in Section IV. Performance results are shown in V
and concluding remarks are given in VI



II. PROBLEM FORMULATION AND SYSTEM MODEL

A. Sensor network model

We consider a hybrid sensor network consisting of 𝑛𝑠

number of static nodes and 𝑛𝑚 number of mobile nodes.
Denote 𝑛 = 𝑛𝑠 + 𝑛𝑚 to be the total number of nodes. In
general we assume that 𝑛𝑚 << 𝑛𝑠, since deploying a large
number of mobile nodes is not as cost effective as deploying
static nodes. Let 𝒱 be the set containing all node indices in
the network and 𝒱𝑚 and 𝒱𝑠 be the sets containing mobile and
static node indices, respectively.

B. State dynamics model

We consider the problem of tracking a single target which
is moving in 2-dimensional 𝑋 × 𝑌 plane. Denote x𝑘 =
[𝑥1𝑘 𝑥2𝑘 ˙𝑥1𝑘 ˙𝑥2𝑘]

𝑇 to be the target state vector at time 𝑘
where first two elements represent the target position and the
latter two elements of x𝑘 represent the speed of the target in 𝑋
and 𝑌 directions, respectively. We assume following discrete
time linear dynamical model for the target state:

x𝑘 = F𝑘x𝑘−1 + u𝑘, (1)

for 𝑘 = 1, 2, ⋅ ⋅ ⋅ , with the initial known distribution, 𝑝(x0) for
x0 where F𝑘 is a 4×4 matrix that models the state kinematics
and is defined as, [10]

F𝑘 =

⎛
⎜⎝

1 0 𝑇𝑠 0
0 1 0 𝑇𝑠

0 0 1 0
0 0 0 1

⎞
⎟⎠

where 𝑇𝑠 is the time difference between two consecutive
measurements (or sampling period). The noise vector u𝑘 is
assumed to be zero mean Gaussian with covariance matrix 𝑄
where 𝑄 is given by [10],

𝑄 = 𝜎2
𝑢

⎛
⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎠ ,

which models the acceleration terms in 𝑋 and 𝑌 directions.
𝜎2𝑢 is a scalar which controls the intensity of the process noise.
We assume that the dynamic model (1) performs a Markov
transition and is represented by the conditional transition
probability density 𝑝(x𝑘∣x𝑘−1).

C. Observation model

We assume that the signal emitted by the target is attenuated
with the distance from the target according to the following
model:

𝑧𝑗,𝑘 =
𝐴0

∣r𝑗,𝑘 − x̃𝑘∣𝛼/2 + 𝜈𝑗,𝑘, 𝑓𝑜𝑟 𝑗 ∈ 𝒱 (2)

where 𝑧𝑗,𝑘 is the 𝑗-th node’s observation at time 𝑘, x̃𝑘 =
[x𝑘(1) x𝑘(2)]

𝑇 = [𝑥1𝑘 𝑥2𝑘]
𝑇 , r𝑗,𝑘 = (𝑟𝑗,𝑘, 𝑠𝑗,𝑘) is the

position of the 𝑗-th node at time 𝑘, 𝐴0 is the amplitude of the
signal emitted by the target and 𝜈𝑗,𝑘 is the observation noise
which is assumed to be zero mean Gaussian with variance 𝜎 2

𝜈
and independent across sensor nodes, and 𝛼 is the path-loss
attenuation index, which is assumed to be 2 throughout. Note
that for static node locations, we use r𝑗,𝑘 = r𝑗 = (𝑟𝑗 , 𝑠𝑗)
by dropping the time index since static node locations do not
change over time.

D. Node mobility model
When directed at time 𝑘, mobile node 𝑗 moves with a speed

of 𝑣𝑗,𝑘 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] in a direction 𝜃𝑗,𝑘 ∈ [0, 2𝜋). The node
location (𝑟𝑗,𝑘+1, 𝑠𝑗,𝑘+1) of the 𝑗-th mobile node at time 𝑘+1
is given by 𝑟𝑗,𝑘+1 = 𝑟𝑗,𝑘+𝑇𝑠𝑣𝑗,𝑘 cos 𝜃𝑗,𝑘 and 𝑠𝑗,𝑘+1 = 𝑠𝑗,𝑘+
𝑇𝑠𝑣𝑗,𝑘 sin 𝜃𝑗,𝑘 for 𝑗 ∈ 𝒱𝑚.

III. DISTRIBUTED CLUSTER BASED TARGET TRACKING
BY PARTICLE FILTERS

In the following we propose a cluster-based MAT algorithm
for mobile target tracking in the hybrid sensor network. We
assume that there are few static nodes with high processing
capabilities which act as cluster heads. The cluster head
formation can be performed at the deployment stage, for
example, based on Voronoi partitions. Although a cluster has a
fixed number of static nodes, depending on the mobile nodes’
mobility, the number of mobile nodes belonging to a particular
cluster may change over time. In the proposed tracking algo-
rithm, we assume that each cluster head keeps track on the
mobile nodes entering and leaving the corresponding cluster
at each time.

Let 𝐶 be the total number of clusters (or cluster heads) in
the network and 𝑛𝑐,𝑘 be the number of total nodes belongs
to the cluster 𝑐 at time 𝑘, and 𝒱 𝑘

𝑐 be the set containing
𝑛𝑐,𝑘 number of these nodes, for 𝑐 = 1, ⋅ ⋅ ⋅ , 𝐶. The active
cluster head at a given time is selected as the closest one
to the predicted target position at that time. In the cluster
based approach, each node belonging to the cluster 𝑐, sends
its observation to the cluster head of the 𝑐-th cluster, 𝐶𝐻𝑐

for 𝑐 = 1, 2, ⋅ ⋅ ⋅ , 𝐶. Since nodes have to communicate only
with their cluster heads, a significant reduction of transmit
power can be achieved compared to that with the centralized
approach. On the other hand, the cluster head performing the
tracking task is changing over time according to the predicted
target locations. Thus one cluster head does not have to be
active all the time. We assume that the observations are sent
to the cluster head over AWGN channel. The received signal
at the cluster head 𝐶𝐻𝑐 from the 𝑗-th node at time 𝑘 is,

𝑦𝑗,𝑘 = 𝑧𝑗,𝑘 + 𝜖𝑗,𝑘, for 𝑗 ∈ 𝒱𝑘
𝑐 , (3)

where 𝜖𝑗,𝑘 is the received noise which is assumed to be
Gaussian with mean zero and the variance 𝜎2

𝜖 . Denote y𝑐,1:𝑘 =
[𝑦1,1:𝑘, 𝑦2,1:𝑘, ⋅ ⋅ ⋅ , 𝑦𝑛𝑐,𝑘,1:𝑘] the observation vector at 𝐶𝐻𝑐 up
to time 𝑘. Since the observation vector at the cluster head
𝐶𝐻𝑐 is non-linear function of the state to be estimated, and
non-Gaussian if the local observations at nodes are quantized,
we propose to use sampling importance re-sampling (SIR)
particle filter [11] at the active cluster head. Compared to other
variations of particle filters, SIR filter is more convenient to
implement [11]. According to SIR filter, the particles are gen-
erated from the state transition probability: x𝑖

𝑘 ∼ 𝑝(x𝑘∣x𝑖
𝑘−1)

where x𝑖
𝑘 is the 𝑖-th particle at time 𝑘, and the corresponding

weights are updated according to 𝑤 𝑖
𝑘 ∝ 𝑝(y𝑐,𝑘∣x𝑖

𝑘) where y𝑐,𝑘

is the observation vector at time 𝑘 at 𝐶𝐻𝑐.
From (2) and (3), the conditional pdf 𝑝(y𝑐,𝑘∣x𝑘) for the 𝑐-th

cluster head is given by, 𝑝(y𝑐,𝑘∣x𝑘) = 𝒩 (ã𝑐,𝑘, 𝑅̃𝑐,𝑘) where
ã𝑐,𝑘 = [𝑎1,𝑘, 𝑎2,𝑘, ⋅ ⋅ ⋅ , 𝑎𝑛𝑐,𝑘,𝑘]

𝑇 is an 𝑛𝑐,𝑘-length vector with
𝑎𝑗,𝑘 = 𝐴0

∣r𝑗,𝑘−x̃𝑘∣𝛼/2 , 𝑓𝑜𝑟 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛𝑐,𝑘, and 𝑅̃𝑐,𝑘 = (𝜎2𝜈+

𝜎2𝜖 )I𝑐,𝑘 where I𝑐,𝑘 is the 𝑛𝑐,𝑘 × 𝑛𝑐,𝑘 identity matrix.
Then the weight update of the SIR filter at 𝐶𝐻𝑐 at time 𝑘

can be performed as, 𝑤𝑖
𝑐,𝑘 ∝ 𝑝(y𝑐,𝑘∣x𝑖

𝑘) = 𝒩 (ã𝑐,𝑘(x
𝑖
𝑘), 𝑅̃𝑐,𝑘).
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Denote x̂𝑐,𝑘∣𝑘 and 𝑈𝑐,𝑘∣𝑘 to be the state estimator and the
error covariance matrix at the 𝑐-th cluster head at time 𝑘.
Then the estimator and the error covariance matrix at the
cluster head 𝐶𝐻𝑐 are given by, x̂𝑐,𝑘∣𝑘 ≈ ∑𝑆

𝑖=1 𝑤
𝑖
𝑐,𝑘x

𝑖
𝑘 and

𝑈𝑐,𝑘∣𝑘 ≈ ∑𝑆
𝑖=1 𝑤

𝑖
𝑐,𝑘(x

𝑖
𝑘 − x̂𝑐,𝑘∣𝑘)(x𝑖

𝑘 − x̂𝑐,𝑘∣𝑘)𝑇 , respectively.
The predicted estimator and the error covariance matrices are
given by x̂𝑐,𝑘+1∣𝑘 = Fx̂𝑐,𝑘∣𝑘 and 𝑈𝑐,𝑘+1∣𝑘 = F𝑈𝑐,𝑘∣𝑘F𝑇 +𝑄.

Once the estimator is computed at time 𝑘 at 𝐶𝐻𝑐, the
cluster head that would perform the tracking task at time 𝑘+1
is selected based on the predicted position estimate ˆ̃x𝑐,𝑘+1∣𝑘
where ˆ̃x𝑐,𝑘+1∣𝑘 represents the first two elements of x̂𝑐,𝑘+1∣𝑘.
Denote r𝑐 to be the location of the 𝑐-th cluster head for
𝑐 = 1, ⋅ ⋅ ⋅ , 𝐶. Then, the cluster head that should perform the
tracking task at time 𝑘+ 1, is 𝐶𝐻 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝐶𝐻𝑖,𝑖∈ℐ𝑐

∣ˆ̃x𝑐,𝑘+1∣𝑘 − r𝑖∣,
where ℐ𝑐 is the set of indices of the neighboring cluster heads
of the cluster head 𝐶𝐻𝑐 including itself. Let 𝐶𝐻 = 𝐶𝐻𝑑.
If the selected 𝐶𝐻 , 𝐶𝐻𝑑 ∕= 𝐶𝐻𝑐, then, 𝐶𝐻𝑐 transmits its
estimator to 𝐶𝐻𝑑. Then for the particle filtering, 𝐶𝐻𝑑 samples
particles from 𝑝(x𝑘+1∣x𝑘 = x̂𝑐,𝑘∣𝑘) and weight updating is
performed based on the observation likelihood at 𝐶𝐻 𝑑 at time
𝑘 + 1.

IV. NODE MOBILITY MANAGEMENT

In the proposed MAT algorithm, the idea is to maintain a
continuous 𝛽-coverage (exact or approximate) on the predicted
trace of the moving target’s trajectory at each time 𝑘. We call
a point r0 is 𝛽-covered if there is at least 𝛽-number of sensors
located within the disk denoted by 𝐷(r0, 𝑟𝐷) centered at r0
with a radius of 𝑟𝐷 where 𝑟𝐷 is a design parameter.

Note that with the assumed observation model (2), the signal
strength emitted by the target decays as the distance from the
target is increasing. Thus the sensor nodes located closer to the
target position at a given time make rich observations while
those located far away from the current target location make
poor observations. To better track the target at every time step,
it is important to maintain a certain number of nodes very close
to the target location at each time such that they receive rich
observations. Let 𝑟𝐷 be the distance from the target where we
call the nodes within this distance receive rich observations.
𝑟𝐷 can be selected such that the signal strength received at any
node located within the disk 𝐷(r0, 𝑟𝐷) from a target when
the target is located at r0, exceeds a certain threshold. One
straight-forward way of maintaining a 𝛽-coverage with a static
network is to deploy a large number of nodes in the desired
region such that each point in the region is covered by 𝛽-
number of nodes. However, when it is necessary to cover a
large region, to achieve this a large number of static nodes may
be required. On the other hand, after the initial deployment if
the nodes become inactive (due to node power failure or node
breakage, etc..) the required 𝛽-coverage at each point cannot
be achieved.

Denote the predicted target location at time 𝑘 by P𝑘+1∣𝑘.
When P𝑘+1∣𝑘 is covered by at least 𝛽-number of static
nodes, (i.e. there is a 𝛽 number of static nodes in the disk
𝐷(P𝑘+1∣𝑘, 𝑟𝐷) as shown in Fig. 1) we say exact 𝛽-coverage
is achieved at P𝑘+1∣𝑘. If P𝑘+1∣𝑘 is not covered by 𝛽-number
of static nodes, the required number of mobile nodes are
directed to move the minimum distance needed to provide a
𝛽-coverage. At time 𝑘, if all the required number of mobile
nodes can reach the desired destination to provide 𝛽-coverage
(i.e. they can move such that after 𝑇𝑠 time they can be within
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d2

d3

d4

Predicted
target location

Mobile nodes

maxvTs
maxvTs

Dr

k|1kP
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2m

3m

4m

k|1kP

Fig. 1. Illustration of exact and approximate 𝛽 coverage

the disk 𝐷(P𝑘+1∣𝑘, 𝑟𝐷)), we call the position P𝑘+1∣𝑘 achieves
exact 𝛽-coverage (as mobile node𝑚3 in Fig. 1). At sometimes,
due to speed limitations of mobile nodes, some mobile nodes
may not be able to reach the disk 𝐷(P𝑘+1∣𝑘, 𝑟𝐷) even if
they move with their maximum speed to provide 𝛽-coverage
(as mobile node 𝑚2 in Fig. 1). However, in this case, since
they move the maximum distance they can move towards the
predicted target location so that the signal strength received at
their destination is higher than that of the original location. If
this happens, we call an approximate 𝛽-coverage is achieved
at the predicted target location. We further assume that the
current cluster head communicates with neighboring cluster
heads to get location information of near-by mobile nodes to
the predicted target position (outside its own cluster) if the
current cluster head does not have sufficient number of mobile
nodes to provide the required 𝛽-coverage.

The proposed node mobility management scheme has 4
basic steps:

∙ The active cluster head checks the number of static nodes
𝑛𝑠,𝐷 within the disk 𝐷(ˆ̃x𝑐,𝑘+1∣𝑘, 𝑟𝐷) where ˆ̃x𝑐,𝑘+1∣𝑘 is
the predicted position of the target at cluster head 𝐶𝐻𝑐,
as before. If 𝑛𝑠,𝐷 ≥ 𝛽, mobile nodes in the corresponding
cluster remain stationary.

∙ If 𝑛𝑠,𝐷 < 𝛽, the difference (𝛽 − 𝑛𝑠,𝐷) is determined.
∙ Determine (𝛽 − 𝑛𝑠,𝐷) number of mobile nodes which

should be directed to move. If the current cluster does
not have (𝛽−𝑛𝑠,𝐷) number of mobile nodes, the cluster
head communicates with neighboring clusters (which
are located close to the predicted target location) to
determine the required number of mobile nodes needed
from neighboring clusters.

∙ Determine the speed and direction of these selected
mobile nodes.

Let 𝐶𝐻𝑑 be the candidate cluster head for time 𝑘+1 which
is selected at time 𝑘 and 𝐶𝐻𝑐 be the active cluster head which
performs the tracking task at time 𝑘. Once 𝐶𝐻𝑐 determines
the predicted location ˆ̃x𝑐,𝑘+1∣𝑘, it is transmitted to 𝐶𝐻𝑑 (if
it is different from 𝐶𝐻𝑐). Note that if ˆ̃x𝑐,𝑘+1∣𝑘 ∈ 𝐶𝐻𝑐,
then 𝐶𝐻𝑑 = 𝐶𝐻𝑐. The cluster head 𝐶𝐻𝑑 is responsible
for managing mobile node mobility to maintain 𝛽-coverage
for the predicted location, before start making measurements.
Let 𝑛𝑘𝑚,𝑑 be the total number of mobile nodes belonging to
𝐶𝐻𝑑 at time 𝑘 and 𝒱𝑘

𝑚,𝑑 be the set containing corresponding
mobile node indices. If 𝑛𝑠,𝐷 < 𝛽, the cluster head 𝐶𝐻𝑑
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selects (𝛽 − 𝑛𝑠,𝐷) number of mobile nodes which are closest
to ˆ̃x𝑐,𝑘+1∣𝑘. If (𝛽 − 𝑛𝑠,𝐷) > 𝑛𝑘𝑚,𝑑, 𝐶𝐻𝑑 selects closest
𝑛𝑘𝑚,𝑑− (𝛽−𝑛𝑠,𝐷) number of mobile nodes from neighboring
clusters (located closer to the predicted target location) by
communicating locally with neighboring cluster heads. Denote
𝒱𝑘
𝑚,𝑑 be the set containing indices of (𝛽 − 𝑛𝑠,𝐷) number

of mobile nodes which are closest to ˆ̃x𝑐,𝑘+1∣𝑘. Note that
𝒱𝑘
𝑚,𝑑 ⊆ 𝒱𝑘

𝑚,𝑑 only if 𝑛𝑘𝑚,𝑑 ≥ (𝛽 − 𝑛𝑠,𝐷). According to
the assumption, a mobile node 𝑗 can move in a direction
𝜃𝑗,𝑘 ∈ [0, 2𝜋) with a speed of 𝑣𝑗,𝑘 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] from time
𝑘 to 𝑘+1. Now the objective is to determine the best 𝜃𝑗,𝑘 and
𝑣𝑗,𝑘 for 𝑗 ∈ 𝒱𝑘

𝑚,𝑑 such that corresponding mobile nodes move
the minimum distance to provide a 𝛽-coverage for ˆ̃x𝑐,𝑘+1∣𝑘 at
time 𝑘+1. The best 𝜃𝑗,𝑘 and 𝑣𝑗,𝑘 for the 𝑗-th mobile node for
𝑗 ∈ 𝒱𝑘

𝑚,𝑑 are given as follows: If (∣r𝑗,𝑘 − ˆ̃x𝑐,𝑘+1∣𝑘∣− 𝑟𝐷) > 0

and (∣r𝑗,𝑘 − ˆ̃x𝑐,𝑘+1∣𝑘∣ − 𝑟𝛽) ≤ 𝑣𝑚𝑎𝑥𝑇𝑠,

𝑣𝑗,𝑘 = max

{
1

𝑇𝑠
∣r𝑗,𝑘 − ˆ̃x𝑐,𝑘+1∣𝑘∣, 𝑣𝑚𝑖𝑛

}
(4)

𝜃𝑗,𝑘 = 𝑎𝑡𝑎𝑛2

(
𝑠𝑗,𝑘 − 𝑥̂𝑐,2(𝑘+1∣𝑘)

𝑟𝑗,𝑘 − 𝑥̂𝑐,1(𝑘+1∣𝑘)

)
(5)

If (∣r𝑗,𝑘− ˆ̃x𝑐,𝑘+1∣𝑘∣− 𝑟𝐷) > 0 and (∣r𝑗,𝑘− ˆ̃x𝑐,𝑘+1∣𝑘∣− 𝑟𝐷) >
𝑣𝑚𝑎𝑥𝑇𝑠,

𝑣𝑗,𝑘 = 𝑣𝑚𝑎𝑥 (6)

𝜃𝑗,𝑘 = 𝑎𝑡𝑎𝑛2

(
𝑠𝑗,𝑘 − 𝑥̂𝑐,2(𝑘+1∣𝑘)

𝑟𝑗,𝑘 − 𝑥̂𝑐,1(𝑘+1∣𝑘)

)
(7)

If (∣r𝑗,𝑘− ˆ̃x𝑐,𝑘+1∣𝑘∣−𝑟𝐷) < 0, then 𝑣𝑗,𝑘 = 0 where 𝑎𝑡𝑎𝑛2(𝑥)
is the four quadrant inverse tangent of 𝑥, and 𝑥 𝑐,1(𝑘+1∣𝑘) and
𝑥̂𝑐,2(𝑘+1∣𝑘) are the 𝑋 and 𝑌 coordinates of the predicted
target location ˆ̃x𝑐,𝑘+1∣𝑘. Details are omitted here due to space
limitations.

The pseudocode for the proposed node mobility algorithm
at time 𝑘 is given in Algorithm 1.

Algorithm 1 Node mobility management algorithm for MAT
INPUT: Predicted target location: ˆ̃x𝑐,𝑘+1∣𝑘 , number of static nodes for 𝐶𝐻𝑑: 𝑛𝑘

𝑠,𝑑,
number of mobile nodes for 𝐶𝐻𝑑 at time 𝑘: 𝑛𝑘

𝑚,𝑑

OUTPUT: Optimal speed 𝑣𝑗,𝑘 and the direction 𝜃𝑗,𝑘 of 𝑗-th mobile node for 𝑗 ∈
𝒱𝑘

𝑚,𝑑

PROCEDURE:

1: Find number of static nodes inside the disk (ˆ̃x𝑐,𝑘+1∣𝑘, 𝑟𝐷), 𝑛𝑠,𝐷 ,
2: Check → 𝑛𝑠,𝐷 ≥ 𝛽 [i.e. ˆ̃x𝑐,𝑘+1∣𝑘 is 𝛽-covered by static nodes]
3: if yes (i.e. 𝑛𝑠,𝐷 ≥ 𝛽) then
4: r𝑗,𝑘+1 = r𝑗,𝑘 for 𝑗 ∈ 𝒱𝑘

𝑚,𝑑 ⇒ no mobile node needs to move
5: else {no (i.e. 𝑛𝑠,𝐷 < 𝛽 )}
6: Check → 𝑛𝑘

𝑚,𝑑 ≥ (𝛽 − 𝑛𝑠,𝐷) (i.e. to check whether 𝐶𝐻𝑑 has sufficient
mobile nodes)

7: if yes then
8: Find 𝒱𝑘

𝑚,𝑑 from 𝒱𝑘
𝑚,𝑑

9: else {no}
10: Communicate with local 𝐶𝐻s to find mobile node locations in neighboring

clusters to form the set 𝒱𝑘
𝑚,𝑑 as described in Section IV.

11: end if
12: end if
13: for 𝑗 = 1 : 𝑠𝑖𝑧𝑒(𝒱𝑘

𝑚,𝑑) do
14: 𝑓(𝑗) = ∣r𝑗,𝑘 − ˆ̃x𝑐,𝑘+1∣𝑘∣
15: if 𝑓(𝑗) − 𝑟𝐷 ≤ 0 then
16: r𝑗,𝑘+1 = r𝑗,𝑘
17: else {𝑓(𝑗) − 𝑟𝐷 > 0 & 𝑓(𝑗) − 𝑟𝐷 > 𝑇𝑠𝑣𝑚𝑎𝑥}
18: Compute 𝑣𝑗,𝑘 and 𝜃𝑗,𝑘 from (6) and (7)
19: else {𝑓(𝑗) − 𝑟𝐷 > 0 & 𝑓(𝑗) − 𝑟𝐷 < 𝑇𝑠𝑣𝑚𝑎𝑥}
20: compute 𝑣𝑗,𝑘 and 𝜃𝑗,𝑘 from (4) and (5)
21: end if

22: end for
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Fig. 2. Estimated trace of the target trajectory with proposed MAT algorithm;
𝑛𝑠 = 36, 𝑛𝑚 = 12, 𝐶 = 4, 𝑣𝑚𝑎𝑥 = 10𝑚𝑠−1, 𝑟𝐷 = 5𝑚

V. PERFORMANCE ANALYSIS

For the performance analysis we assume a sensor network
deployed in a square region with area of 200𝑚× 200𝑚. The
network is assumed to be consisting of 4 cluster heads and
the clustering is performed based on Voronoi partitions. We
assume that there are 36 number of static nodes (including
cluster heads) are deployed in a grid. The initial target state
is assumed to be Gaussian with mean 𝝁0 and covariance
matrix Σ0. We assume 𝝁0 = [−80 − 80 1 1]𝑇 and
Σ0 = 𝑑𝑖𝑎𝑔([10 10 0.1 0.1]𝑇 ). Sampling time is assumed
to be 𝑇𝑠 = 1𝑠. The intensity of the state process noise
𝜎2𝑢 = 0.4. Observation noise variances at individual nodes,
and cluster heads, 𝜎2

𝜈 and 𝜎2𝜖 are set to 0.1. The target
amplitude 𝐴0 = 100. The tracking is performed for 60𝑠
and the number of particles in the particle filter is set to
𝑆 = 1000. The performance measure is taken as the root mean
square error (RMSE) of the target position estimate given
by, 𝑅𝑀𝑆𝐸𝑘 =

√
((𝑥𝑘 − 𝑥̂𝑘)2 + (𝑦𝑘 − 𝑦𝑘)2). The RMSE is

compared with the square root of the Posterior Cramér-Rao
lower bounds (PCRLB) components of the position error. We
omit the analysis of PCRLB here due to space limitations.
Figures 2 and 3 show the performance of the proposed MAT
scheme when there are 12 mobile nodes in the network. In both
figures we assume that 𝑟𝐷 = 5𝑚 and 𝑣𝑚𝑎𝑥 = 10𝑚𝑠−1. In Fig.
2 estimated and true trajectories are shown with the assumed
parameters and for different 𝛽. It can be seen that by allowing
3 nodes per cluster to be mobile, the target trajectory can be
tracked with high accuracy compared to that with the scenario
where all nodes are static. For the static network performance,
we assume that all mobile nodes make measurements at their
initial locations. The results in Figs 2 and 3 are averaged
over 50 Monte Carlo trials. In Fig. 2, we also compare the
SIR-PF based results with the results obtained via extended
Kalman filter (EKF) in the case of when all nodes are static.
We observed 20 lost tracks out of 50 in the case of EKF and 0
for SIR-PF with all static nodes. Thus in our problem, SIR-PF
performs well compared to EKF.

The RMSE and PCRLB analysis for proposed MAT scheme
for 𝑣𝑚𝑎𝑥 = 10𝑚𝑠−1 and 𝑟𝐷 = 5𝑚 is shown in Fig. 3.
The results are shown for 𝛽 = 1 and 𝛽 = 2. It can be
seen that when the objective is to maintain at least 𝛽 = 2
number of nodes within the disk 𝐷( ˆ̃x𝑐,𝑘+1∣𝑘, 𝑟𝐷 = 5𝑚), the
target trajectory can be tracked with lower RMSE. Also in
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𝛽 is changing; 𝑛𝑠 = 36, 𝑛𝑚 = 12, 𝐶 = 4, 𝑣𝑚𝑎𝑥 = 10𝑚𝑠−1, 𝑣𝑚𝑖𝑛 = 0,
𝑟𝐷 = 5𝑚
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that case, it can be seen that the RMSE performance gets very
closed to the derived Posterior Cramer-Rao lower bound. For
𝛽 = 1, that is to maintain at least 1 node within the disk
𝐷(ˆ̃x𝑐,𝑘+1∣𝑘, 𝑟𝐷 = 5𝑚) at each 𝑘, a considerable performance
gain can be achieved compared to that with the static network.
Note that there is always a trade-off between the value 𝛽
and the energy consumption of mobile nodes, since when 𝛽
is getting larger the number of mobile nodes to be moved
is also increasing although it provides a high performance
gain. On the other hand, it is of interest to investigate the
performance metrics, when the maximum speed of a mobile
node is varying. In the next experiment, we investigate the
effect of the maximum node speed for the proposed MAT
algorithm when 𝑟𝐷 is fixed. Figure 4 depicts the performance
metrics when the maximum speed of a mobile node is varying.
The results in Fig. 4 are corresponding to 𝑣𝑚𝑎𝑥 = 5𝑚/𝑠
and 𝑣𝑚𝑎𝑥 = 10𝑚/𝑠, and 𝛽 = 2. It can be seen that for
low values of 𝑣𝑚𝑎𝑥 the performance gain is quite decreasing
compared to higher values of 𝑣𝑚𝑎𝑥. This is due to the fact
that for lower 𝑣𝑚𝑎𝑥 values the maximum distance that a
mobile node can move from one time period is lower, thus
almost it might provide an approximate 𝛽-coverage rather
than exact 𝛽-coverage. Also, with lower 𝑣𝑚𝑎𝑥, a considerable
performance gain is achieved compared to all-static network,
for a given 𝑟𝐷. However, as mentioned earlier, there is always
a trade-off among the parameters 𝑣𝑚𝑎𝑥, 𝛽, 𝑟𝐷 and the required

performance gain.
Although figures are not included due to space limitations,

it can be seen that when the number of mobile nodes is large,
the tracking performance with a given 𝛽 (𝛽 = 2) does not
have much effect on the maximum speed of mobile nodes.
This is due to the fact that when there is a relatively large
number of nodes, it is more likely that there is a sufficient
number of nodes around the required position and these nodes
can reach the required location by moving small distances.
Also it is observed that for a given number of static nodes,
when the number of mobile nodes is increasing, the average
total distance that a mobile nodes has to move to provide the
required 𝛽-coverage dynamically, is significantly reduced. This
is because, for large 𝑛𝑚, it has more flexibility to find mobile
nodes in the close proximity of the predicted target position
which would provide the desired 𝛽 coverage by moving a
small distance at any given time.

VI. CONCLUSIONS

This paper proposed a novel cluster based mobility assisted
target tracking algorithm exploiting node mobility in a hybrid
sensor network consisting of both static and mobile nodes.
In the proposed MAT algorithm, node mobility is exploited
to maintain a desired coverage level on the trace of the
target at each time dynamically as the target moves. It can
be seen that when the mobile nodes are directed to move to
achieve relatively a higher coverage level, RMSE performance
of the target position estimate is getting much more closer
to PCRLB even with a relatively small number of mobile
nodes. Also, since mobile nodes are directed to move only
to compensate for the lack of coverage resulted by static
nodes, continuous mobility is not required saving mobile node
locomotion energy. The proposed scheme is robust against
cluster head or node failures in the network.
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