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Abstract—In this paper, the problem of sequential estimation in
a wireless sensor network (WSN) is formulated in a cooperative
game theoretic framework. This framework allows addressing
the issue of fair resource allocation for sequential estimation
task at the Fusion center (FC) in a WSN as a solution of a
cooperative game. We propose a simple game theoretic solution
to the problem of power allocation for sensor nodes that are
subjected to power constraints. Simulation results show that the
proposed solution has the same performance trend (in terms of
the estimator quality at the FC) as when all nodes transmit at
their maximum powers, while our proposed solution leads to an
overall improvement of the network lifetime.

I. INTRODUCTION

Collaborative information processing has a key role to play
in efficient handling of large volumes of data collected by
mobile sensor nodes in a sensor network. Node collaboration
requires inter sensor communications. Payoff and cost of
collaboration can be modeled, respectively, as the improved
quality of processed outputs and power or bandwidth. Thus
there needs to be a trade-off between performance and cost of
collaborative information processing.

While collaborative information processing for resource-
constrained sensor networks has been explored over the last
several years [1], [2], still there is a lack of a formal analytical
framework for designing collaborative information processing
that allows such tradeoffs systematically. In this paper, we
show that cooperative game theoretic concepts can be applied
in approaching such collaborative signal processing problems
in distributed sensor networks. In contrast to non-cooperative
game theory, where individual decision makers compete with
each other to achieve their goals of maximizing individual
payoffs, cooperative game theory allows competing players
(or nodes) to form coalitions so as to efficiently achieve their
individual goals.

Since sensor networks are prone to premature failure due
to limited battery lives of the nodes, power management
has tremendous importance in successful operation of WSNs.
The optimal power scheduling for distributed estimation in
power/energy-constrained WSNs were discussed in [3], [4].
Power management in wireless sensor networks using a non-
cooperative game theoretic approach was addressed in [5],
[6]. While there is much literature on sequential estimation
in WSNs [7], [8], very few attempts have been made to
exploit the rich collection of cooperative game theory in

power/energy-constrained WSNs tasked with estimating a
Phenomenon of Interest (PoI). For example, in [9], a novel
concept of incompletely cooperative game theory was used to
simultaneously achieve energy conservation and throughput
for WSNs. On the other hand, [10], [11] used cooperative
game theory for channel/bandwidth allocation problem. In this
paper, we use tools from cooperative game theory to develop
a formal framework for solving the problem of sequential
estimation under fair allocation of power among collaborating
sensor nodes. Specifically, in this paper, we use Nash bargain-
ing (NB) [12] based solution concepts to achieve a justifiable
fair power allocation among nodes with power constraints.

The remainder of this paper is organized as follows: Section
II presents the assumed sensor network model for the sequen-
tial estimation problem. Section III introduces the bargaining
problem and summarizes the Nash bargaining solution (NBS).
In Sections IV and V, we introduce two fair power allocation
algorithms based on the NBS. Section VI evaluates the per-
formance of the proposed algorithms via simulations. Finally,
Section VII concludes the paper by summarizing our results.

II. SENSOR NETWORK MODEL FOR SEQUENTIAL
ESTIMATION

We consider a sensor network consisting of a Fusion
Center (FC) and N nodes tasked with estimating a non-
random parameter θ sequentially. We consider the FC itself
as a node with its own estimate of the parameter θ and is
denoted as node-{0}. The set of other nodes are denoted as
N = {1, 2, · · · , N}. Only a quasi-static network is considered
here, in which node locations as well as fading coefficients
can be assumed fixed for a certain period of time, whereas
from block to block they could be varying arbitrarily. Local
estimator at node i is denoted by θ̂i, for i = 0, 1, 2, · · · , N .
All local estimators are assumed to be unbiased and their
respective variances denoted by Vi. Under the quasi-static
assumption, we may assume that at the beginning of each
block, the FC has access to the quality of estimates at other
nodes as given by Vi’s for i ∈ N . It is assumed that the
FC updates its estimator sequentially by combining its own
observation with the noise-corrupted estimators of the other
selected nodes received over noisy communication links. We
consider the case when the FC does not want the distributed
nodes to transmit at their maximum powers, while achieving a
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target estimator quality using a few number of nodes, and/or
less total consumed power possible. For simplicity, AWGN
channel with quasi-static fading is considered. Signal received
at the FC from node jεN can be expressed as

xj =
√

αj θ̂j + wj , (1)

where wj is the zero-mean receiver noise with variance
ν2

j

P |hj |2 ,

αj = Pj

P is the ratio of the transmit power Pj of node j to
the maximum allowed transmit power P , and hj is the fading
coefficient between the communication link from node j to
the FC. For N nodes, the data vector available at the FC can
be written as

X0 =




1√
α1

...√
αN


 θ +




θ̃0√
α1θ̃1

...√
αN θ̃N


 +




0
w1

...
wN


 , (2)

so that X0 = a0θ + Θ̃0 +w0, where θ̃i = θ̂i− θ is zero-mean
with variance Vi for all i, a0 = [1,

√
α1, · · · ,

√
αN ]T , Θ̃0 =

[θ̃0,
√

α1θ̃1, · · · ,
√

αN θ̃N ]T and w0 = [0, w1, · · · , wN ]T . Let
us denote by Σ0 = Σ0

θ + Σ0
w the covariance matrix of X0,

where Σ0
θ and Σ0

w are the covariance matrices of Θ̃0 and w0

respectively. Thus, the optimal BLUE estimator formed at the

FC is given by θ̂1
0 =

aT
0 [Σ0]−1X0

aT
0 [Σ0]−1a0

with the updated estimator

variance V 1
0 =

(
aT
0

[
Σ0

]−1 a0

)−1

.

III. BASICS OF NASH BARGAINING SOLUTION

In this section, we briefly introduce the concept of Nash
bargaining solution (NBS) [12] and then apply it to achieve a
fair allocation of power among nodes in our sensor network.

The bargaining problem in a cooperative game can be
described as follows [12]: Let N = {1, 2, · · · , N} be the
set of players, and let S be a closed and convex subset of
RN representing the set of feasible payoff allocations that
the players can get if they all cooperate. Let ui

min be the
minimum expected payoff for the i-th player, below which it
will not cooperate. Suppose {ui ∈ S|ui ≥ ui

min, ∀i ∈ N} is
a nonempty bounded set. Define umin = (u1

min, . . . , uN
min);

then the pair (S,umin) is called the N -person bargaining
problem. NBS provides a unique and fair Pareto optimal point
under the conditions given in [12] (we omit them due to space
limitation).

Theorem 1: (Existence and Uniqueness of NBS): There is
a unique function ψ(S,umin) that satisfies all the axioms in
[12], and it satisfies

ψ(S,umin) ∈ arg max
ū∈S,ūi≥ui

min,∀i

N∏

i=1

(
ūi − ui

min

)βi
, (3)

where βi is the bargaining weight associated with the payoff
of player i. Intuitively, it means how much importance is given
to a particular player in the bargaining process.

The cooperative game for the sequential estimation problem
can be described as follows: Each player (sensor) has ui

as its objective function, where ui is non-negative, bounded
from above and has a nonempty, closed and convex support.
The goal is to maximize all ui’s simultaneously. ui

min is

the minimal payoff that player i would obtain if it had not
cooperated with other players.

IV. NBS-BASED SOLUTION USING ALGORITHM 1

For simplicity of exposition, in this section, we consider
the case when all local estimators are uncorrelated and
communication is over orthogonal channels. Let us assume
that ν2

i = σ2 for i ∈ N . Hence the covariance matrix
at the FC can be written for node i and j, as Σ0 =
diag

(
V0, αiVi + σ2

P |hi|2 , αjVj + σ2

P |hj |2
)

.
In this paper, the utility of a node i is defined as the inverse

of the quality of its local estimator: ui = 1
Vi

. Hence, the
optimization goal is to determine nodes i and j’s transmission
powers to the FC, such that the following objective function
can be maximized:

U = u0 − u0
min =

αi

αiVi + σ2

P |hi|2
+

αj

αjVj + σ2

P |hj |2
,(4)

where u0 is the utility corresponding to the updated estimator
at the FC when node i and j share their estimators with
node 0, and u0

min is the minimum possible payoff of node-0
that it would expect from the bargaining process. Thus, the
optimization problem is

min
αi,αj

−U s.t.
{ −αi ≤ 0,−αj ≤ 0

αi + αj − 1 ≤ 0

}
. (5)

Note that, we have defined the power constraint to be αi +
αj ≤ 1. The assumption is reasonable because we do not
want node i and j to transmit at their maximum powers. Thus,
we would like to allocate the total power P between nodes i
and j in a fair way (in this case, using NBS) for sequentially
estimating the parameter θ provided that no node transmits
at its maximum power. To that end, we propose the following
NBS based Algorithm 1 to solve the power allocation problem.
The proposed sequential estimation process is summarized in
Algorithm 1 and described in detail in Fig. 1.

Fig. 1. Sequential estimation process using Algorithm 1.

Since U is concave in αi, αj and optimization constraints
are linear, the Karush-Kuhn-Tucker (KKT) [13] conditions are
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Algorithm 1 NBS based Power Allocation
1. FC picks any two nodes i, j ∈ N , i 6= j randomly or in
a predetermined order.
2. Calculate αi and αj from (6). Assign powers Pi and Pj

to nodes i and j respectively. Update the estimator variance
at FC V up

0 and remove i and j from the set N .
3. Consider nodes i and j as a single node with combined
variance obtained by using αi and αj , and assign i = i∪ j.
FC picks a new node j from the set N and calculate new
αi and αj . Assign power Pj to new node j and update the
estimator variance at FC V up

0 .
4. Repeat the same procedures from step 3 until V UP

o ≤ ε
or N = ∅, where ε is the desired quality of estimate at the
FC.

both necessary and sufficient. Solving for αi and αj from (5),
we get the solution:

αi =
Vj |hj |+ σ2

P

(
1
|hj |−

1
|hi|

)

Vi|hi|+Vj |hj | ,

αj =
Vi|hi|+ σ2

P

(
1
|hi|−

1
|hj |

)

Vi|hi|+Vj |hj | .





(6)

For |hi|2 = |hj |2, αi = Vj

Vi+Vj
and αj = Vi

Vi+Vj
. Hence, node

with more accurate estimation are allowed to transmit at a
higher power than that with less accurate estimation, which
intuitively makes sense. Since FC has the knowledge of the
quality of estimates at nodes i and j, all the calculations can be
done at the FC and it can send control signals to nodes i and
j to transmit at powers Pi = αiP and Pj = αjP respectively.

V. NBS-BASED SOLUTION USING ALGORITHM 2

It is to be noted that for the NBS-based Algorithm 1
above, an explicit analytical solution in the case of correlated
observations could not be obtained. This motivated us to
propose an NBS-based Algorithm 2 to solve the problem
of power allocation for collaborating nodes with correlated
observations. We assume that all local estimators are correlated
such that Cij = Cov{θ̂i, θ̂j} = ρ, ∀i, j, where Cij is the
covariance between the random variables θ̂i and θ̂j . The
covariance matrix at the FC and at node i can be written

respectively as: Σ0 =

(
V0

√
αiρ√

αiρ αiVi + σ2

P |hi|2

)
, and Σi =

(
Vi

√
α0ρ√

α0ρ α0V0 + σ2

P |hi|2

)
for i ∈ N . Hence we have

u0 − u0
min = (1

√
αi)[Σ0]−1(1

√
αi)T − 1

V0
, (7)

and ui − ui
min = (1

√
α0)[Σi]−1(1

√
α0)T − 1

Vi
. (8)

As a result, the optimization problem becomes:

min
α0,αi

−
∏

j=0,i

(
uj − uj

min

)
s.t.

{ −α0 ≤ 0,−αi ≤ 0
α0 + αi − 1 ≤ 0

}
(9)

Since the optimization problem is again convex in α0, αi

and constraints are linear, the KKT conditions are again both

necessary and sufficient. Solving for αi from (9), the only
non-zero solutions that satisfy all the KKT conditions can be
obtained as:

αi =
[
1 +Q∓√1 +Q

Q
]+

, (10)

where [.]+ means only the non-negative bounded values are
considered, Q = (V0−Vi)(V0Vi−ρ2)

Vi

(
V0

σ2

P |hi|2
+V0Vi−ρ2

) with V0 > 0, Vi > 0

and 0 ≤ ρ ≤ 1. It is to be noted that the FC only helps to
calculate αi and it discards the value α0, as it only transmits
control signals. Since all the calculations are done at the FC,
the only parameters the FC needs to know are Vi and σ2

P |hi|2 .
The details of the sequential estimation process using NBS-
based Algorithm 2 is described in Fig. 2.

Fig. 2. Sequential estimation process using Algorithm 2.

Algorithm 2 NBS based Power Allocation
1. FC (node-0) picks any node i ∈ N , randomly or in a
predetermined order.
2. Calculate αi from (10). Assign power Pi to node i.
Update the estimator variance at FC V up

0 and remove node
i from the set N .
3. Repeat the same procedures until V up

o ≤ ε or N = ∅.

VI. SIMULATION RESULTS

In this section, we investigate the performance obtained by
our proposed algorithms. Parameters used for simulations are:
number of distributed nodes N = 50, estimator variances
Vi ∼ U [1, 20], and σ2

P = 0.5. We assume that all channel gains
follow Rayleigh distributions with all channel coefficients
normalized so that E

{
h2

}
= 1. All simulation results are

obtained by averaging over 500 fading realizations.
Figure 3 shows the updated estimator variance V up

0 at the
FC as a function of number of nodes. As it can be seen from
Fig. 3, V up

0 monotonically decreases for both algorithms as
more nodes are incorporated into the estimation process. The
monotonic decrease in variance at the FC center is almost as
good as the case when all the nodes transmit at their maximum
powers (MPA) with each of the proposed algorithms. By MPA
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Fig. 3. Updated variance at the FC vs. number of nodes with ρ = 0.

(Maximum Power Allocation), we mean to follow all the the
steps in each of the proposed algorithms except for setting
αi = 1, ∀i. As it can be seen from Fig. 3, Algorithm 1
outperforms Algorithm 2 in terms of the rate of improvement
of the estimator quality at the FC. This is because of the
formation of Nash product (NP) of the optimization problems
in (5) and (9). NP in (5) was obtained by setting β0 = 1 and
βi = βj = 0. Hence, the emphasis is only on maximizing the
payoff of node 0 (FC). On the other hand, in (9), we have
set β0 = 1 and βi = 1. As a result, the optimization problem
tries to maximize the payoffs of both nodes 0 and i. Since the
payoff of a node is defined as the inverse of the quality of
estimate, better rate of improvement of the estimator quality
is achieved by maximizing the payoff.
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Fig. 4. Network lifetime improvement using Algorithm 1 and 2.

Figure 4 shows network lifetime improvement at the end
of each time period or estimation block using the proposed
algorithms. Note that, we define the lifetime of a sensor
network as the time after which at least one or a certain
fraction of sensor nodes run out of their batteries, resulting in a
hole within the network. Since FC is equipped with sufficient
energy, we are only concerned about the distributed nodes.
We assume that each distributed node is provided with limited
energy at the beginning of the estimation process. At the end
of the j-th time block, the network lifetime can be defined as
T j

N = mini

(
Ej−1

i −P j
i tp

P

)
, where Ej−1

i is the energy available

at the sensor node i at the end of (j−1)-th time period, P j
i is

the power to be spent by the node i during the j-th estimation
block and tp is the time each node spends transmitting to the
FC. For our simulation, we have used E0

i = 10 Joules, tp = 1

sec and P = 1 watt. As it can be seen from Fig. 4, Algorithm
2 is slightly better than the Algorithm 1 as far as network
lifetime improvement is concerned. This is again because of
the formation of the optimization problems for Algorithms 1
and 2: the obtained value of maxi αi for Algorithm 1 can be
higher than that for the Algorithm 2 most of the time, which
reduces the lifetime of WSN using Algorithm 1 compared to
that with Algorithm 2.

VII. CONCLUSION

In this paper, a cooperative game-theoretic framework has
been proposed to achieve a fair allocation of transmit power
for collaborating nodes in a Fusion Center (FC) based wireless
sensor network tasked with sequential estimation of a non-
random parameter. In particular, we proposed two algorithms
based on the concept of Nash bargaining solution (NBS) to
arrive at a fair allocation of power for the nodes. Simulation
results show that the proposed algorithms sequentially achieve
the desired quality of estimate at the FC, and increase the
overall network lifetime.
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