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Abstract

Performance gain achieved by adding mobile nodes to a stationary sensor network for target detection, depends
on factors such as the number of mobile nodes deployed, mobility patterns, speed and energy constraints of mobile
nodes and the nature of the target locations (deterministic or random). In this paper, we address the problem of
distributed detection of a randomly located target by a hybrid sensor network. Specifically, we develop two decision
fusion architectures for detection where in the first one, impact of node mobility is taken into account for decisions
updating at the fusion center while in the second model the impact of node mobility is taken at the node level
decision updating. The cost of deploying mobile nodes is analyzed in terms of the minimum fraction of mobile
nodes required to achieve the desired performance level within a desired delay constraint. Moreover, we consider

managing node mobility under given constraints.

I. INTRODUCTION

The problem of distributed detection and decision fusion in stationary wireless sensor networks has been
extensively studied by many authors in different contexts [1]-{6]. However, stationary sensor networks
may not suit for some applications, for example, in situations where it might be necessary to deploy a huge
number of static nodes with limited coverage to monitor alarge region within a desired performance level.
In such situations, if relatively a small number of nodes are allowed to move, the system performance can
be improved over time due to improvement in sensing coverage [7]. Deploying mobile nodes in a sensor

network, however, may not be as cost effective as deploying static nodes. Also, nodes will have to spend
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node energy for mobility in addition to sensing and communication. Thus it is desirable to alow only a
fraction of the nodes of the network to be mobile according to the requirement.

In this paper, we consider the problem of detecting a randomly located stationary target in a hybrid
sensor network made of both mobile and static nodes. At the initial deployment stage, static and mobile
nodes may scatter in the region of interest in random fashion, if the network does not have prior information
about Phenomenon of Interest (Pol). Mobile nodes may be required to perform on-demand for different
applications after the initial deployment. Due to energy constraints, we assume that the mobile nodes
are kept stationary until a target is detected with certain confidence level, or useful statistics regarding
the target locations are available. Note that since mobile nodes are required to perform on-demand for
different functionalities, it is not possible to locate them in a certain area for a specific task. We assume
that, at each time step, a mobile node can move to a limited number of locations from its current position,
where these candidate locations are determined by physical factors related to mobile sensors and the
environment. At each time step, mobile nodes move in a direction chosen based on the proposed mobility
management schedule to maximize the detection probability during a desired delay constraint. At each
time step, each node makes a local binary decision based on its observations and transmits it to the
fusion center. The fusion center combines local decisions from all static and mobile nodes to reach at a
final decision at the corresponding time instance. Specifically we develop two decision fusion models to
make the final decision where in the first model, the impact of the node mobility is taken into account to
update the decision at the fusion center, while in the second model, the impact of node mobility is taken
at the node-level decisions. Since allowing more nodes to be mobile increases the cost, we characterize
analytically, the required minimum fraction of mobile nodes to be directed to move in order to achieve a
desired performance level within a desired delay constraint. We investigate the performance gain achieved
by the hybrid sensor network when the network parameters are changing and discuss the scenarios where
the node mobility is essentially improves the network performance.

The organization of the paper is as follows: Important related work is discussed in Section I1. Section
Il explains the sensor network and the observation models, and presents the problem formulation. In
Section 1V, we develop a decision fusion model in which the fusion center updates the decisions over
time while nodes make binary decisions based on the observations collected during one time step when
the target location is random. Also, mobility management schedule is proposed to maximize the detection
probability at the fusion center within a desired delay constraint. In this discussion, the effect of the node
mobility is taken into account at the fusion center decision updating. In Section V a decision fusion model
is developed in which the effect of the node mobility is taken into account at the node-level decisions. In
Section VI, we develop an analytical procedure to find the minimum number of mobile nodes that should

be incorporated with static nodes to achieve a desired performance level within a desired delay constraint.



Performance results are given in Section VIl and the concluding remarks are given in Section VIII.

[l. RELATED WORK

Distributed detection and decision fusion is analyzed by many authors in different contexts, for example,
[1]-{6], [8]{10], to name a few. However, many of these existing analysis on target detection have
considered stationary sensor networks, where sensor nodes are deployed with fixed positions or in a
random fashion. Since the performance of such a stationary sensor network is limited by network size,
sensing ranges, etc.., recently mobile sensor nodes in wireless sensor network applications have been
suggested to enhance the system performance [7].

Use of node mobility in mobile sensor networks for relocation after initial random placement was
previously suggested in [11], [12]. However, in their models, nodes only make a one-time movement
to achieve a better (uniform) coverage. Using mobile nodes as data collection points (sinks) in sensor
networks was studied by [13]-{15]. Liu et. a. in [7] showed that the coverage can be improved by a
mobile sensor network with continuous mobility over the time compared to that with a static network.
Surveillance coverage of mobile sensor networks under Brownian motion random node mobility model
was addressed in [16]. Managing mobile node mobility in target tracking applications in mobile sensor
networks is addressed in [17].

Since deploying mobile nodes for continuous performance (coverage, detection and tracking) improve-
ment might not be as cost effective as deploying static nodes, it is useful to consider networks consisting
of both static and mobile nodes where the mobile nodes are alowed to move only if necessary. The
target tracking performance of an integrated mobile-static sensor network was addressed in [18]. In [18],
the mobile nodes are used to aid the data propagation when the communication ranges of static nodes
are limited. The target detection in a hybrid sensor network is addressed by [19], [20] where they have
proposed a two phase detection model for target detection assuming known target locations. Although we
address a similar problem, our work is different from [19], [20] in severa contexts. (i). In this paper we
explicitly present two decision fusion models for target detection when the target location is random. (ii).
We consider constrained mobility for mobile nodes where each node can move only in a pre-determined
set of candidate directions from their current locations. (iii). We evaluate the cost of deploying mobile
nodes in terms of the minimum fraction of mobile nodes that should be directed to move to achieve
a desired performance level within a desired delay constraint, analytically. Moreover, [19], [20] did not
allow for the possibility of imperfect communication links between nodes and the fusion center.

I1l. PROBLEM FORMULATION AND SYSTEM MODEL

We consider a hybrid sensor network made of N number of total sensors. We assume that there is NV,

number of static nodes and a maximum of NV,, number of mobile nodes initially deployed in a square
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region with dimensions b x b. Note that when mobile nodes are not in the mobile configuration, they
make measurements at their stationary configuration. Denote \,, = % and \, = NW to be the fractions
of mobile and static nodes, respectively. Denote (x4, ysx) to be the location of the k-th static node which
is assumed to be fixed after initial deployment. Let V be the set of al node indices in the network and
let V,, and V; to be the sets containing mobile and static node indices, respectively.

A. Problem formulation

In this paper, we assume that the network is kept stationary until a target is detected at a certain
confidence level. We also assume that the network does not have any information regarding sensing field
at the time of deployment. Information regarding possible target locations may be available to the network
after initial deployment and, the target can be appeared in a particular target location during a certain
period of time. Because of these factors, it is not possible to deploy mobile sensors to cover possible target
locations at the time of deployment, and on the other hand, mobile nodes may be required to perform

on-demand for different purposes. The key contributions in this paper are three-fold.

1) Develop decision fusion architectures for the target detection by hybrid sensor network when the
target location is random. Specifically, we propose two decision fusion architectures where in the
first one, the effect of the node mobility is taken into account for the decision updating at the fusion
center and nodes make binary decisions based on the observations during one step movement. In
the second model, nodes take the effect of the node mobility into account for node-level decision
updating.

2) Manage node mobility to improve (maximize) the system performance within a desired delay
constraint after a target is initially detected by the stationary configuration at certain confidence
level.

3) The cost of mobile nodes is evaluated in terms of the minimum number of mobile nodes required

to achieve a desired performance level within a desired delay constraint.

B. Node mobility model

We assume limited mobility of mobile nodes where at each time step each mobile node can only move
in one of the pre-determined set of locations (or directions) as shown in Fig. 1 (for example), and the
maximum total distance it can move in any direction is bounded. This mobility model is justifiable in
cases where a node can move to a limited number of locations from its current position due to terrain
constraints. Let the velocity of mobile node & at time ¢ be v (t) = (vk(t),0k(t)) = (vk,Ok(t)) Where
vi(t) = v is the speed of the node & that is assumed to be constant and 6,(¢) is the direction of node &

at time t. Denote [* is the maximum distance that the k-th mobile node can move with the available

max

4



(%, (t i*‘l\)isfk,(t)+ 1))

@ Current location at time t

(e Possible candidate
locations at time t+1

Fig. 1. Candidate locations for a mobile node at time ¢

resources. At each time step 7,, mobile node &£ moves with an average speed of v, in a direction 6,
selected from a set @ = {6,602, ... 6K}, Selection of 6, at each time step 7, is considered in later
sections. Let (x(t), yx(t)) denote the location of the k-th mobile node at time ¢. Under this mobility
model, the location (x(t), yx(t)) of the k-th mobile node at time ;7 <t < (j + 1)7 is given by

xp(t) = xx(§Ts) + (t — jTs)vg cos Ox(§T5)
yk(t) = yk:(jTS) + (t - jTS)Uk? sin ek(jTS)v

forkeV,,andj=0,1,2,---, where 6,(jT;) € O is the selected direction at time ;7 and (z;(0) and
yx(0)) are X and Y coordinates of the initial location of the k-th mobile node.

C. Observation model

At each time step both mobile and static nodes make observations on the presence/absent of the target
and make a binary decision on whether the target is present or absent. We consider the observation models
for mobile and static nodes as given below at time 0 < ¢ < nT, under hypotheses H; (target present) and
H, (target absent):

Hy Zk(t) = mk(t) + uk(t)7 for0<t< nTS,

Ho : zi(t) = ug(t); for 0 <t < nTj, (1)

for k € V, where {my(t), t € (0,nT]} isthe signa strength received from the target at time ¢, {u(t), t €

[0,nT}]} is the measurement noise process at the k-th node which is assumed to be white Gaussian with



mean zero and the auto-covariance function C,, (¢1,t2) = 026(t1—12), t1,t2 € [0, nT,] where §(.) denotes
the Dirac delta function.

The received sensing signal my(t) represents the attenuated (over distance) signal emitted by the target.
Depending on the sensing modalities, (such as acoustic, seismic, IR, etc..), different models for received
signal strength can be used. For this discussion, we assume the following model for the signa m(t),
which assumes that the signal emitted by the target decays as the distance from the target to the sensing
node increases [2], [21]:

Ao
mk(t):W, for 0 <t <nT,, ke V, (2
i (t)
where A, is the signal strength emitted by the target, r.(t) = /(vx(t) — 20)2 + (yx(t) — yo)? is the
distance between the k-th mobile node and the target at time ¢ for 0 < t < nT%, (zo,yo) is the location of

the stationary target and « is the path loss index that is assumed to be 2 throughout. Note that, for static
nodes (2) reduces to

A
mk(t) = ra—/O27 ke V87 (3)
k

where ry, = /(25 — 20)% + (ysk — yo)2. However, the results presented in this paper can be generalized
to other sensing modalities as well.

V. DETECTION PERFORMANCE WITH DECISION FUSION ARCHITECTURE 1: FUSION CENTER

UPDATING DECISIONS OVER TIME

In this section we consider the performance dynamics of the hybrid sensor network when the exact
target location is unknown. At the stationary configuration, we assume that the network monitors the Field
of Interest (Fol) continuously, and mobile nodes are directed to move when a possible target is detected
with relatively lower confidence level by the stationary configuration. More precisely let PP and P? be
the overall (system) detection and false alarm probabilities at time ¢ = 0. If P2 > ¢ and PP < e, for
particular ¢; and e,, we say that a target is detected at time zero with a low confidence level. The target
location coordinates, =, and y, are assumed to be random variables with known statistics. Moreover, in
this work we assume that once appeared, the target remains active for a known period of time.

After initially detected by alower confidence level, we assume that mobile and static nodes make binary
decisions at each time instant n7; for n = 1,2, - - - based on the observations collected during the current
time interval. Formally, the k-th node performs the following hypothesis testing problem at time ¢ = nT';:

Hi o ozi(t) = mi(t) + ug(t); for (n — 1)Ts < t < nTy,
Ho : zk(t) = ug(t); for (n—1)Ts <t < nTj 4)



(n-1n) 25.(n-1n) Zu,, (N-1,1) s, (1-1n)

5z \(n\jLn)) o‘,‘(?s (n—Ln)) 57 o, n-1m)

5 \zs¢(n-1n
Noisy channels

A((n-D)T, :

5. (T,)

Fig. 2. Decision Fusion Architecture for the Hybrid Sensor Network with Fusion Center updating Decisions over Time

Each node transmits its local decision to the fusion center over a noisy communication channel. The
fusion center combines these local decisions from mobile and static nodes and the previous information
at the fusion center to make a final decision. The corresponding decision fusion architecture is shown in
Fig. 2 where the symbols used in Fig. 2 are defined in subsections IV-A and 1V-C. As shown in Fig.
2, a each time instant nT,, each node performs a local detection based on the observations collected at
the current time interval (n — 1)7 < ¢t < nT,. The corresponding local decisions are transmitted to the
fusion center over a noisy communication channel at each time step t = nT,. The fusion center updates
the final decision based on the noisy corrupted decisions received from both static and mobile nodes at
time nT;, and the previous information at the fusion center at time (n — 1)7 to reach a final decision.
In this architecture, the impact of the mobility of mobile nodes is taken into account at the fusion center

while the mobile nodes make a local decision based on observations collected at one-step movement.

A. Detection performance at k-th mobile node

Denote z,(t;n — 1,n) = (Zk(t))?:Tfn_nn- Note that according to the signal model (2) assumed in the
paper, the signal strength received by a sensor node is decreasing as the distance between the node location
and the target location is increasing. If a ssmple constant threshold testing is performed on the received
signal strength [2] (or on energy [20]) at a sensor node to determine the target is present/absent, it can
be seen that more false alarms will occur at the nodes located relatively far away from the target location
if the threshold is chosen too small, or miss probability will be higher at sensors located closer to the
target location, if the threshold is too large. [2] has provided an approach of selecting an optimal threshold
such that the performance at the fusion center is maximized for a static sensor network. However, in this
paper since mobile nodes are directed to move when required, maintaining a constant threshold test on
signa strength (or energy) to determine the presence/absence of a target would not essentialy reflect the

performance gain achieved by node mobility. Thus it is required to have a dynamically varying threshold
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at sensor nodes to exploit the impact of node mobility in an effective way. Thus, in this paper we consider
that k-th mobile node to perform likelihood ratio testing on its observations. Explicitly we assume that
each node performs a; (< Pp)-level Neyman-Pearson (N-P) optimum test to detect the presence/absence
of the target at each time nT;, since the ultimate goal in this paper is to manage node mobility to result
optimal detection probability.

According to the detection problem at the k-th mobile node as given by (4), the log likelihood ratio
based on the observations collected during time interval ((n — 1)T, nTy|, Ly(zx(t;n —1,n)), conditioned
on the target location (zy, yo), a the k-th mobile node can be shown to be [22],

Ly (ze(t;n — 1,n)[ (w0, 0))

dP
= log d—P(l) (2k(t;in —1,m))

1 nTs

= 72 ) my(t; 2o, yo) 21 (t)dt
u n—1)Ts
1 nTs

T‘_Q (n—1)T. mi(t, Lo, yO)dta

Zin—1,n)  Ef(n—1n)

for £ € V,, where Z.(I,n) = fl;STS my(t; o, yo)2zx(t)dt and E*(l,n) = l;STS mi(t; xg, yo)dt for n =
1,2, and my(t; zo,y0) = Ag — as defined in (2). Computation of £;(/,n) for a given

V(@) (6)=20)2+ (v (1) —yo)
target location is given in subsection V-A. Then the log likelihood ratio Lj(z(t;n — 1,n)) is given by,

Lk(zk(t;fb(—l_,q))) o
) Ew{zkn ) Epn n}

o2 202
IR 1 -,

where my,(t) = By {mn(t; 20, 0)} @d E7*(n — 1,n) = E,, o {E(n — 1,n)}. Computation of my(t)
is associated with the specific probabilistic model for the target location distribution. For the evaluation
used in this paper, the closed-form expression for m—(t) with assumed target location distribution model
is given in Section VII. Assuming no point masses in the pdf of L (zx(t;n—1,n)), the optimal decision
rule at the k-th mobile node at time ¢t = nT; for the hypothesis problem (4) is given by (according to the

N-P-criteria [22])

oM (nT,) = if Li(zi(t;n—1,n)) n(n) (7
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Fig. 3. Detector structure at the k-th mobile node for the decision making based on the observations during time interval ((n — 1)Tz, nT%]

where n*(n) > 0 is uniquely determined such that, the false alarm probability (f.a.p.) at the k-th node at
time nT}, P}’;(nTs) = «q for k € V,,. Note that we assume that each node performs same «;-level N-P
test at each time nT;. The decision rule (7) can be further simplified to,

S (nT,) = if Zx(n—1,n) "(n) (8
0 <

where z,(n — 1,n) = f(ﬁfnn 2 (t)my.(t)dt is the new decision statistic and 7;"(n) = o2n*(n) +

E™(n — 1,n) is the new threshold, at the k-th mobile node for & € V,,.
Proposition 1: For «;-level N-P test, the threshold 7;*(n) and the detection probability at the k-th

1
2

mobile node at time nT are given by,

7' (n) = 0,Q () B (n — 1,n) (%)
and
DM _ —1 _ Ek(xo,yo;n—l,n)
Pdk (nTs) - IEzo,yo {Q <Q (al) O'H\/m ) } (10)
respectively, where Ey (o, yo; n—1,1) = [(17) ;. m(t; w0, yo)k(t)dt and B (n—1,n) = [T w3 (t)dt.

The Q(.) function is defined as Q(z) = = [~ e dt.
The proof of the Proposition 1 is given in Appendix A. The block diagram of the detector at the k-th

mobile node is shown in Fig. 3.

B. Detection performance at k-th static node

Proposition 2: For static nodes, the optimal threshold and the detection probability for the «;-level
N-P test are given by,

ka(n) - ka = UILQ_I(al)mk\/i (11)
and
Py (nT)) = By, {Q <Q1(a1) - M) } | 12
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See Appendix B for the proof of the Proposition 2. Note that the detection threshold 7 for a static node

is a constant over the time.

C. Performance evaluation at fusion center with noisy communication

To evaluate the performance of the hybrid sensor network, let us assume that the nodes send their local
decisions to the fusion center over binary symmetric channels (BSC) which can be used to model noisy
channels [2], [23]. Denote wy(nT) to be the received signa at the fusion center from the k-th node at
timet = nT, forn = 0,1,2,---. Note that at ¢ = 0, the decision center has agreed that a target is
detected at a lower confidence level if P9 > ¢; and P2 < e,. Thus at time ¢t = 0, the fusion center has
the decision, under #,, w(0) = 1 with probability PP and w(0) = 0 with probability 1 — PJ. Similarly,
under Hy, w(0) = 1 with probability P and w(0) = 0 with probability 1 — P2. For n > 1, we assume
that the k£-th node transmits its local decision over a BSC with a cross-over probability p,, and that the
channels of N nodes are independent of each other. The received signals at the fusion center under the
two hypotheses at time nT, for n = 1,2, --- are given by

(nT) 1 with pegy (nT)
W nls) =
0 with 1—pg(nTs) forkeV,

_ 1 with g, (nT) (13)
0 with 1—p3 (nT,) fork eV,
under H,; and
1 th (nT
wi(nTy) = o i, (nT)
0 with 1—pp(nTy) forkeVy,
_ 1 with s, (nT) (14)

0 with 1—pj (nTs) for ke

under H, where for n = 1,2,---, pp (nT) = Pg’:(nTs)(l —pr) + (1 — p(}:(nTs))pk, py, (nTy) =
P; (nTo)(1 = pp) + (1 = Pj (nT5))pi, 1 (nTy) = ar(l = pi) + (1 — a)py and 3, (nT;) = ai(1 -
k) + (1 — ap)pg.

For the fusion center to perform optimal fusion rule, it should have the knowledge of detection and
false alarm probabilities of local nodes at each time step. Although local false alarm probabilities can be
easily made available at the fusion center since they are the same at each node and do not change with
time, the analogy is not convenient with local detection probabilities. Thus in this paper, we assume that
the fusion center makes a final decision at time ¢t = nT using the counting rule based on the received

signals from all nodes at time nT’, and the previous available at the fusion center at time (n—1)7. Denote
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the decision statistic at the fusion center to be A(n7), where

A(nTs):< ((n—1)T. ZwknT —i—ZwknT)

where A((n—1)7s) = w(0) forn =1, and A((n—1)Ts) = w(0)+ Z Z wk(jT)—i-Z Z wi(jT%)
for n = 2,3,--- which can be updated recursively over time. The flnaJ deC|S|on a the fuson center is
then given by,

Sp(nT,) = if A(nTy) p(nT,) (15)

0 <
where p(nT}) is the threshold of the counting decision rule at the fusion center at time n7’. The decision
threshold p(nT}) is selected such that the overall system false alarm probability at the fusion center is less
than a desired level, say a,. Note that, for general non-identical BSCs, A(nT5) is asum of independent but
non-identical binary random variables. Using the Lindeberg-Feller central limit theorem for independent
random variables under certain regularity conditions (see Appendix D) [24], it can be shown that A(nT5)

is distributed under two hypotheses as,

Under H; : A(nTy) ~ N (,uAl,ajz\l)
and

Under Ho : A(nTy) ~ N (pay, 03, ) -

where pin, (nTs) = Ph+ 377, Z pra (GT5) + 325, Zudk(JT)

a3, (nTs) = Pp(1—-Pp)+>77, Z i (GT5) (1= udk(JT))+ZJ ! Z:Udk(]T)(l 115, (3T5)), pray (nTy) =
PO+ZJ 1 Zufk(JT)Jij 1 Zﬂfk(JT) and UAO( 1) = Po(l_PO)+Z] 1 Zﬂfk(]T)(l
Wi (5Ts)) + Z] ) Z ,ufk(jT (1 — ,ufk(jT )). Then the detection probability at thefuson center can be
shown to be

Po(nT) = PrAWT,) 2 pnT) ) = Q (P BT, (19

where p<nTs) = Qil(OQ)O-Ao (nTs) + KA (nTs)

D. Mobility management for mobile nodes

In this section, we find the best movement schedule for each mobile node in order to maximize the
detection probability at the fusion center within adesired delay constraint (or before the target disappeared).
We assume that each mobile node moves with the same speed such that v, = v for k£ € V,,. Note that,

each mobile node can move a distance of v7; during each time period of T in a direction selected from
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theset © = {0*,60% --- 05 }. Let Cx(nT,) be the candidate locations of mobile node & at time nT,. Note
that, if there are no terrain constraints such that nodes can move heading to the possible target locations
on straight line, a certain number of steps can be made along a straight line as time goes, and there is
only one direction. The following discussion is applicable, if mobile nodes are not in a position to direct
towards the possible target locations on a straight line from their original locations due environmental
and terrain constraints. Denote T, to be the desired delay constraint which is equal or less than the
average time that the target remains active after appearing. The requirement is to maximize the detection
probability at the fusion center, Pp(npTs), where np = L%J, with the best movement plan for each
mobile node. Equivalently, we need to find the best direction that k-th mobile node should move at time
jTs, for ke V,, and j =0,1,2--- ,np, to obtain the maximum (over al possible movements) detection
probability at time n,7,. Denote ®, = {0:(T.),0,(2T.), - - - ,0,(npT,)} be the best set of movement

directions at each time step for node k. Now the problem can be formulated as,

Find the set {@1, Q,, - ,éNm}
such that

Pp(npTs) is maximized a7

If the fusion center were to compute the movement plan beforehand for each mobile node, in generdl,
the optimization has to search over as many as N,, x |®| x np variables leading to a search space of
size 2V»1®I"p where |@| is the cardinality of the set ©. Although this brute-force approach will result in
the optimal solution, it is computationally expensive. Thus, in the following we propose a near-optimal
approach for each mobile node to select its best movement direction at each time step based on its own
performance measure: i.e. each node movesin a direction at each time step which would lead to maximum
individual performance at time npT .

Note that the detection probability at the fusion center at time nT is given by (16). The required
optimization problem isto find optimal movement plan for each mobilenode k foreach j =0,1,2,--- ., np
such that Pp(npTy) is maximized. Maximizing Pp(nTy) in (16) is equivalent to minimizing the argument
in the Q-function. Note that in the following analysis we assume PP = PP = 0 for simplicity but the
similar resultswill hold for general values of PP and P2. Denote f(u,) be the argument of the Q-function
in (16) where,

p— by (nTs)e
Vsl (T )e — Ll (0T pa(nT,)
where e is the Nn-length vector containing all ones,

“d(nTs) = [Pga Mﬁ(]Ts)a e ,M?Nm (st)a :ufll(st)v e nuleS (]Ts)vj =1 7n]T is the Nn'length vec-

f(pa(nTy)) = (18)
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tor containing all the elements in the sum p5, (nT}) S0 that 1ia, (nT,) = +pl(nT,)e. Then as given by
[20], since Pg,ugz(st),ufll(st) € (0,1) for k € V,,,l € Vs and j = 1--- n, using the first order

Taylor series expansion around central point, f(uq(nT)) can be approximated as,

f(pa(nT) ~ —%Mnmﬂ%w (19)

where H denotes the second and higher order terms in the Taylor series expansion. It is seen from (19)
that if H and the sum py, (npTs) = [% > 2 (kezvmug”; (4T%) + k;/guflk (jTS)H were to be independent
of each other, then f(u.(nTs)) will be monotonically decreasing with increasing 1. (nT). It was shown
in [20] that, with high probability, f(wq(nT5s)) isindeed decreasing when the sum piy, (nT5) isincreasing.
Thus, with high probability, maximizing the detection probability at the fusion center at time n7' is
equivalent to maximizing the sum 5, (n7s). Since each mobile and static node performs their detection
problems independent of each other, maximizing Z;f‘fl g (7T5) over al possible movement plans for
k € V,, will maximize the sum ., (nT) at time nT.
Note that > "”, yu (775) for the k-th mobile node is given by

np

D_HaGT) = Y (PRGTY = pe) + (1= Py (T.)pr)

j=1
np

= pe+(1—2p) ) Pr(iTy). (20)

j=1
Hence maximizing > 72, ug: (575) at k-th mobile node is equivalent to maximizing 372, Pg:(st) where
P (4T;) is given by (10).

Now the optimization problem is equivalent to finding the optimal set ©,, = {0,.(T3), 0:(2T3), - - - , 0x(npT,)}
which maximizes the sum of detection probabilities up to time n pT; at the k-th mobile node as given in
(10). Denote P;'(0,np) = 372, P7(jT,) to be the sum of detection probabilities at k-th mobile node up
to time npT, where Pg’;(st) as given by (10) is the detection probability related to the decision made
by k-th mobile node based on observations during time interva ((j — 1)7%, jT5). In the following, we
convert the required problem into an time expansion graph, such that the required problem becomes a
shortest path problem and the solution for the optimization problem can be obtained, for example via
forward dynamic programming.

Let ©(5T,) = {01 (T,), 0%(4T,), - , 0% (4T,)} bethe state space at time (stage) ;7 for the k-th mobile
node which represents the set of directions that the k-th mobile node can move at time ;7. We assume
that each mobile node has the same candidate set of directions that it can move at a given time step

(However this assumption can be generalized to have different candidate sets for different mobile nodes).
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O(n,T,)
0'((ng ~1)T,)

time (no-1)Ts

Fig. 4. Shortest path representation for finding maximum detection probability at time npT, a k-th mobile node

For clarity, let us write the sum of detection probabilities Pg;(o, np) as,
np
Pi(0.np) = Pi((G =1).3), (21)
j=1

where Pgﬁ((j —1),4) is the average detection probability corresponding to the decision made based on
the observations during the interval ((j — 1)T5, jT,) which is given by (10). Now we construct a trellis
as shown in Fig. 4 where the states of the trellis at time (stage) ;7 represents the directions (states)
from the finite set @(j7%). In Fig. 4, the trellis diagram is preceded by s, and followed by s; which
are two dummy nodes. Denote P;"(67(j — 1),60;j) represents the detection probability for the decision
based on observations collected during transition from state 67(j — 1) € O((j — 1)7) to 89(j) € O(5T%).
This represents the detection probability for the decision based on the observations collected during the
time interval (575, (7 + 1)Ts) when the k-th mobile node selects the direction 6%(j) at time instant 57
given that the direction selected at time (7 — 1)7% is 6”(j — 1). Now, branch from s, to 67(0) € ©(0) is
assigned the metric —P;"(0,07(0)) where P;"(0,67(0)) represents the average detection probability for
the decision based on observations collected by the k-th mobile node if it selects the direction 67(0)
from its original location. Branch from state 67(; — 1) € O((; — 1)Ts) to 0(;5) € ©(jT;) is assigned
the metric —Pj;(@p(j —1),0%) for j = 1,2,--- ;np — 1. Then finding maximum value of the sum
Pp(0,np) = Y272 PiM((j — 1), 7) from time 0 to time np T, over &l possible directions is equivalent to
finding the shortest path between the node s, to s; as in the graph shown in Fig. 4, and the optimal O
is the set of states in the shortest path. Note that this shortest path can be computed by forward dynamic
programming with average complexity of order O(np|@©|?) per mobile node.

In solving the shortest path algorithm via dynamic programming for the origina optimization problem
in (17), the movement plan for each mobile node needs to be computed beforehand at time ¢ = 0 which
also requires the knowledge of the candidate set of locations at each time. In the following we show that

a sequential approach where the k-th mobile node determines its movement direction at time j7', based
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on only its current information and expected information at time (j + 1)7’ yields closer performance
compared to that with dynamic programming approach under certain conditions.

We consider the following approach where mobile nodes select best direction to move at time ;7
sequentially. The idea is to select the best location for the k-th mobile node at time step ;7' such that
the observations collected during time interval [j75, (j + 1)7s] would lead to best detection performance
over al possible directions. According to the signal model (2), when a mobile node is getting closer to
the target, the SNR at the node is increased, subsequently increasing the detection probability at the k-th
mobile node. Hence, the direction at time ¢t = 57 is chosen as in the following:

0,(§Ts) = aregné)ax {Pg’:((j + 1)Ts,0,)},
i€
for j=0,1,2,--- ,np,
(22)

where Pg’;((j +1)Ty, 0;) is the average detection probability at the k-th mobile node at time step (j+ 1)7’s
if the direction 6; € © is selected at time j T, np is the step index at which Pp(npTy) > &p for the first
time. The average detection probability at k-th mobile node at time 57 is as given by (10). From the
simulation results, we see that, when the candidate set of directions that any mobile node can move at
a given time is the same, and a node moves at the same speed in all directions, the performance of this

scheme coincides with the near-optimal scheme which is computed based on shortest path algorithm.

V. DETECTION PERFORMANCE WITH DECISION FUSION ARCHITECTURE 2: NODES UPDATING

DECISIONS OVER TIME

In this section, develop an alternate formulation for decision fusion in the hybrid sensor network when
the nodes are updating decisions over time, where the impact of the node mobility is taken into account
at the node level decisions. As in Section 1V, let P} and PY be the overall (system) detection and fase
alarm probabilities at time ¢t = 0. If PP > ¢; and PP < e, for particular ¢; and ¢,, we say that a target
is detected at time zero with a lower confidence level. After a target is detected with a lower confidence
level, mobile and static nodes perform the following hypothesis testing problem, at time ¢ = nT',, based

on the observations collected until time nT:

Hi o zi(t) = my(t) +ue(t); 0 <t <nTj,

Ho . Zk(t) = uk(t), 0 S t S nTS. (23)

Note that in this section we consider that each node performs hypothesis testing (23) based on the
observations collected during the interval [0, nT], contrast to Section V. The decision fusion architecture

inthiscaseisshownin Fig. 5. Asshownin Fig. 5, at each timeinstant nT’,, each distributed node performs
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Noisy channels
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Fig. 5. Decision Fusion Architecture for the Hybrid Sensor Network with Nodes Updating Decisions over Time

alocal detection based on the observations collected at the current time interval (n —1)7 <t < nT, and
previous observations up to time (n — 1)7; which can be computed recursively for n = 1,2,---. These
local decisions are transmitted to the fusion center over a noisy communication channel at each time step
t = nT,. The fusion center combines these noise corrupted decisions and the initial decision at timet = 0

to reach at a final decision on whether the target is present or absent.

A. Detection performance at k-th mobile node

Similar to Section 1V, we assume that each node performs «;-level N-P detector to decide whether the
target is present or absent based on the observations collected during time interval (0, n7]. The decision

statistic and the threshold for the N-P detector corresponding to (8) now can be shown as,

1 >
o (nTs) = if z,(0,n) w(n) (24)
0 <

where z,(0,n) = [ zgmy(£)dt = 2,(0,n—1)+ [ (’i‘l)Ts zwmi(t)dt is the decision statistic which can be
computed recursively at each time step and 7 (n) = o2ny"(n)+ 4 E(0, n) is the corresponding threshold,
for k € V,, where E"(0,n) = E,, ,,{E™(0,n)} as defined in subsection IV-A.

Proposition 3: With decision fusion model 2, for a;-level N-P test, the threshold and the detection

probability at the k-th mobile node, at time nT, are given by ,

7' (n) = 0,Q ™ (a1)\/ B (0, n) (25)
and
m . 1 _ Ek(xmyO; 0,n)
pdk (nTs) - Exo,yo {Q (Q (041) O'QL\/W ) } . (26)
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- 5 20, Tun/ DG — 1
EIT(Oa n) = 2—140 al”Ctan N ak Sm (28)
j=1 Ap(j—1) Ap(j = 1)+ bi(j — 1)(be(j — 1) + 20, T5)
Note that £;*(0,n) at the k-th mobile node is E;*(0,n) ] ) jjT‘l)T t)dt which is essentially the

instant total signal energy received during the period 0 < t < nT, for a glven target location. Then we
have,

3T 3T A2
BrG-1d) = [ mbde= [ e
(G-1)T, G-nr, k()

_ /(j (@G - ) el - G- DT cos (T

J—1)Ts
+ (WG — 1) + vt — (j — 1Ty) sin ek(st))Q)il dt

242 2a5Tor/Br( — 1) ) -

T VARG (Aku —D) G- DG — 1) + 2w T)

where o(j — 1) = ay(j ~ DT) — a0, (G — 1) = uul(i = DT — g, ar = v}, bilj — 1) =
20 (2 (5 — 1) cos 0p(5T) + yo (5 — 1) sin 0 (5T2)), cx(j — 1) = 22(j — 1) + yk 2(j — 1) and Ap(j—1) =
dapep(7 — 1) — b2(5 — 1). Note that (27) holds only if Ax(j7 — 1) > 0 which is shown to be true in the
following.

Ap(i—=1) = 4R -1+ - 1)
— 40 (a4 (G — 1) cos 0k (5T5) + w(f — 1) sin 0 (§ 7))
= 4o} (27, — 1) sin 6, (§Ts) — y (5 — 1) cos Qk(st))2

> 0.

Then E}*(0,n) is given by (28).

B. Detection performance at the k-th static node

Similarly, for the k-th static node, the a;-level N-P threshold and the detection probability at time nT
are given by the following proposition.

Proposition 4: For static nodes, the optimal threshold and the detection probability for the «;-level NP
test are given by,

5 (n) = 0,Q ay)mp/nT, (29)
and
pj’k (TLTS) — Ewo,yo {Q (Ql(@l) . mk(%fo)ﬂ) } ' (30)
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C. Decision fusion performance with noisy communication

Similar to subsection IV-C, we evaluate the decision fusion performance at the fusion center at time
nT, with BSC channels. Now, since the effect of the mobility is taken at the node level, the decision
statistic at the fusion center is taken as, A(nT,), where

A(nTy) = w(0) + Y wi(nTy) + > wi(nTy),

where w(0) = 1 with probability PJ and w(0) = 0 with probability 1 — P} under H; and w(0) = 1 with
probability Pp and w(0) = 0 with probability 1 — P2 under H, asin section IV-C. wy,(nT;) forn =1, - - -
is same as given by (13) and (14) under two hypotheses where now 4.} (nTs) = Py (nTs)(1 —pi) + (1 —
By (nT))pes 15, (n7) = P, (WT)(1 = pi) + (1= Pg (nT2))pes 1 (nT2) = 01 (1 = pe) + (1 — a1y and
pi, (nTs) = a1 (1 —pi) + (1 — a1)py. With Pi*(nT) and P; (nT) are given by (26) and (30), respectively.
The detection probability corresponding to the decision rule based on mgjority rule is given by (following

a similar approach as in subsection IV-C),

Po(nTy) = Pr(A(nT}) > p(nTy)|Hy) = Q<ﬁ ("T;)A_(: 751)("%) ) (31)
where i, (n7.) = P+ 5= i (n)+ ¥, (nT) andl o2, (nT.) = PY(1 = PR)+ 5w (n.)(1 -

kEVm

g (nTy)) + Zudk(nT)(l py, (nTy)) and p(nT) Q' (az)ox, + 1z, |sthethr&ehold of the detector
which ensures that the false adarm probability is less than or equal to as, and g (nT) = PR +
Z My (nTo)+ Z i, (nT;) and o (nTy) = Pﬁl(l—P%)Jrkg;mufk(nTs)(l—ufk(nTs))+k§Sufk(nTs)(1—
ufk(nT))

D. Mobility management for mobile nodes

Similar to the scenario in Section 1V, we need to find the best movement schedule for each mobile
node in order to maximize the detection probability at the fusion center within a desired delay constraint
or before the target disappears. The ideais to find the optimal movement schedule for each mobile node %
such that the detection probability at the fusion center within adesired delay constraint, is maximized. Asin
subsection 1V-D, denote 7}, to be the desired delay constraint and ©, = {6,(T.), 6,(2T%),- - - , 0x(npTs)}
be the optima set of movement directions at each time step for node k. following a similar approach
as in subsection 1V-D, it can be shown that with high probability, maximizing the detection probability
at the fusion center at time nT (31) is equivalent to maximizing the sum py, (nTs) = > pg (nTs) +
> g, (nT). Since mobile and static nodes perform their detection problems mdepender];t6 1())? each other,
]Fﬁg;imizi ng each pp (nT;) for k € V,, over al possible movement plans will maximize the sum 4, (nT5)
a time nT,. Similar to subsection IV-D, it can be shown that maximizing p7 (n7) at k-th mobile node

is equivalent to maximizing P7"(nT) a the k-th mobile node, given by (26).
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Note that if the exact target location is known, then maximizing (26) at the £-th mobile node is equivalent
to maximizing the total energy collected during the interval (0,n], E;*(0,n) as given in (28). Then the
approach given in subsection IV-D, can be directly used to find the optima movement directions at each
time step, where now the metrics of branches of the trellisin Fig. 4 are replaced by —E*(67(j — 1), 0%5)
which represents the energy collected during transition from state 67(; — 1) € ©((j — 1)T,) to #9(j) €
O(iT,).

VI. MINIMUM SET OF MOBILE NODES

Since alowing nodes to be mobile is expensive in terms of energy, it is important to determine the
minimum number of mobile nodes (from the set V,,,) that should be directed to move to achieve a certain
detection probability within a given delay constraint or before the target disappears. In the following,
we consider the problem of finding the smallest set of mobile nodes in order to maintain the maximum
detection probability achieved by time T, is greater than some threshold value. For the discussion given
below, we assume the case where exact target location is known with the decision fusion model as given
by Section V in which nodes are updating decisions over time.

Let the required detection probability threshold at time 7', be £p. The problem is to find the minimum
set of mobile nodes, that should be used in the network to reach a desired performance level within a

desired delay constraint. Formally, we can write the optimization problem as,

min |Sy,|
such that S,, C V,,
and Pp(npTs) > &p (32
where, as before, np = LTT—SJ. Assuming that £, > % the inequality (32) can be further smplified as

given below (For simplicity, we assume perfect communication channels such that p, = 0 for al k& € V):

Pp(npTy) > &p

_ p(npTy) — A, (npTs)
= (M) s, (@)
p(npT) — px, (npTs)

= L 34
o1 (o)) <B (34)

= p(npTy) — i, (npTs) < Bog, (npTs) (35)

= (p(npTy) = nz, (npTy))* = 803 (no L) (36)

where uz (npTs) = > Pl(npTs)+ . Pj (npTs)and U%I(HDTs) = > Pr(npTs)(1-F;(npTs))+

kESm KEV\Sim kESm |
ke%g P; (npT)(1— P; (npTy)) and B = Q~*(£p). Note that here Py (npT,) and P (npT) are given

19



_ 2p+ﬁ Z Pén ’I’LDT <Z Pz;;n ’I’LDT ) +62 Z Pt;nQ ’I’LDT +2 Z Pt;n ’I’LDT Z ij(nDTs)

kESm keS kESm kESm E€EV\Sm

2
> (2p+6%) Y. Pi(npT) B Y. Pi’(npT.) - ( ) Psk<nDrg>) -7 (38)

EEV\Spm EEV\Spm EEV\Spm

by (26) and (30) without the outer expectation with respect to target locations (since we assume exact
target locations for this analysis). Note that hereafter we use p(np7s) and p interchangeably when there
is no ambiguity. Since mobile nodes which are not moving also make observations at their stationary
configuration, we will have the set of static nodes as V'\ S,,, when the set of mobile nodesis S,,,. Note that
(35) is obtained from (34) since o5, (npT;) > 0. If we constrain £, > 5 which is a reasonable assumption,
the argument of the Q- function in (33) should be negative. Also since o5, (npTs) > 0fornp =1,2,--- .,
to satisfy @ (%) >&p > % the following condition should hold: 5(npT;) — uz, (npTs) < 0.
Note that,

pnpTy) — iz, (npT) = Q@ (an)y/ PR(L — P) + Nau(1 — o)
— (Py+ ) PpnpT)+ > Pj(npTy) (37)
kESm kEEV\Sm
To make sure the condition p(npTy) — uz, (npTs) < 0 is satisfied, from (37), it can be seen that
Sy Pr(npTy) > Q7 Haz)y/PR(1 = PY) + Nay (1 — ay) — P = Cy at the worst case. This says that

if fo:l Pit(npT;) < Cp for some np and p > % the required performance can not be achieved during

the required time delay even if all nodes are mobile such that S,,, = V. In the following we consider only
the case where fozl Pg:(nDTS) > Cy ensuring p(npTy) — pi, (npTs) < 0. Thus (36) is obtained from
(35). The inequality (36) can be further simplified as in (38). The problem is to find the minimum size
set S, such that, inequality (38) is satisfied. To find this, in general we need to search over a maximum
of 2V possibilities.

In the following we will show how to obtain the solution with reduced complexity under certain
conditions. Note that as discussed in subsection V-D, the maximum P;'(npT) for each k € V,, a time
npT, can be computed. Without loss of generdity, let us arrange P;"(npT;)" s in descending order for
k € Y, such that PJ(npT;) > P(npTs) > -+, > P (npT,). Then the set denoted by S* consists
of the indices of first £ mobile nodes. Now define two functions f; (k) and f»(k) such that,

k
fi(k) = (25 + 3% Z Py (npT,) (39)
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and
k 2 k
folk) = (Z P;;(nDTS)> +52) P (npTy)
i=1 j=1

k
+ 2) Pr(npT.) Y Pi(npTy) (40)

JEV\SE,
for k=0,1,2,---, N, with f;(0) = f5(0) = 0.
Denote V¥ = V' \ S* to be the set containing all static node indices and the mobile node indices from
k+1toN,, fork=1,--- N,,. Clearly, V° =V and V¥~ = V,. Define K,(np, k) to be,

K. (np,k) = (26+8%))_ Pj (npTs) - B> P *(npTy)
JevE JEVE

2
- ( > P (nDTs)) ~ 5 (41)
JEVE
Theorem 1. If Pj'(npT,)'sare arranged in descending order and f;(k), f>(k) and K (np, k) are defined
asin (39), (40) and (41), respectively, then we can find a unique K, such that,

fg(k) — fl(l{?) Z KS(’RD, k), fOI‘ k Z K() (42)
and
fg(k) — fl(k) < KS(HD, ]{?), for k < K(). (43)

Then K, is the minimum number of mobile nodes that should be used to meet the desired criteria where
the minimum set SXo = {1,2,--- | Ky}.
Proof. See Appendix C. [ |

VII. PERFORMANCE RESULTS

In this section, we evaluate the performance of the proposed target detection schemes using a hybrid
sensor network. We assume there is a total of 30 sensors deployed in a square region of area 100 x 100m?
where the center is at (0, 0). We assume that mobile node speed is constant for all directions and the same
for al nodes. The time step 7, = 1s and each mobile node's speed is v = 1m/s. We define the nominal
SNR at each node to be v, = AZ%/02. We also assume that the communication between nodes and the
fusion center is over i.i.d. BSC's such that p, = p for al & € V. At each time step, we assume that a
mobile node can move a distance of 7T, in directions corresponding to due-east, north-east, due-north,
north-west, due-west, south-west, due-south and south-east or remain at the current location. X and Y
coordinates of the target location are assumed to be binary with the following distribution:

T, with G
To = (44)
r, with 1—gq,
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Fig. 6. Detection Probability at the fusion center with desired detection delay under perfect communication: 7, = 1s, o = 1m/s,
Y0 =10dB, p =0, ¢z = gy = 0.5, a1 = 0.22, a2 = 0.1, €, = 0.6, e2 = 0.4 (8). with decision fusion model 1, (b). with decision fusion
model 2

and

Yo With ¢
Yo = ' ! (45)
Yy with 1—g,

This type of target location model is justifiable in situations when there is a finite number of possible

surveillance locations that the target can appear probabilistically, based on the prior knowledge or new

information received after initial deployment. Note that with this target location model, m(t) is given by,

RO 4o 4oty + 4o (- q,)
‘ Vo) —m? t ) s T o) n )
AO (1 - Qm)Qy + AO (1 - Qx)(l _(4@)

V@) — @) + (e(t) — ya)? V@) — @) + (ge(t) — 90)?

In Fig.6, the time varying detection performance is shown with the node mobility algorithms presented in
the paper. In following figures we assume that mobile nodes perform sequential node mobility management
as discussed in sections IV-D and V-D since it can be seen that the performance with mobility algorithm
based on sequential approach is much closer to that with evaluated based on forward dynamic programming
algorithm (see Fig. 10 for comparison). In Fig. 6, we have let v, = 10dB, f.ap. (false darm probability)
at local nodes a; = 0.22, f.a.p. a the fusion center a, = 0.1, initial detection and false alarm probabilities
€1 =0.6, =04, ¢, = ¢, = 0.5, and z, = =25, 2, = 25,y, = —25, y, = 25. The detection performance
is shown when the fraction of mobile nodes is varying for p = 0. Fig. 6(a) corresponds to the decision
fusion architecture 1 (Section 1V) while Fig. 6(b) corresponds to decision fusion model 2 in Section

V. It can be seen from Fig. 6 that with scheme 1, adding a small number of nodes boosts the detection
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Fig. 7. ROC curves for two decision fusion models when the delay constraint is 20s: 7; = 1s, © = 1m/s, 70 = 10dB, p = 0,
Qe = qy = 0.5, a1 = 0.22, Ay, = 1/6, €1 = 0.6, e2 = 0.4

performance significantly compared to the performance with al static network. With the scheme 1, astime
goes, since mobile nodes getting closer to possible target locations, according to the given probability
distribution for target locations, a mobile node can make a binary decision based on the information
collected at current time interval with a higher confidence level, when compared to a stationary sensor.
On the other hand, stationary sensors make binary decisions based on its observations collected during
current time interval, and the quality of these decisions remains the same over time since nodes are
stationary. Then, according to the decision fusion model 1 described in Section 1V, fusion center receives
binary decisions over the time with higher confidence level when there are mobile sensors, resulting an
improved performance compared to a all-stationary network.

As can be seen in Fig. 6(b), with decision fusion model 2, in which the nodes update decisions over
time, the performance is improved significantly by adding a relatively large number of nodes compared
to that with the model 1 under same network conditions. According to the decision fusion model 2, static
nodes also collect energy over the time and decisions are getting more accurate as the time goes. For
moderate and higher nomina SNR values, a static node may collect sufficient energy at its stationary
locations compared to that is collected by a mobile node while moving towards possible target locations,
since for large and moderate ~y,, even sensors located far away from the target location will receive signals
with considerable strength. However, with the decision fusion model 2, when the fraction of mobile nodes,
A IS iNncreasing the performance gain over a stationary network becomes significant.

Figure 7 shows the variation of overall detection probability with the system false alarm probability o
(ROC: receiver operating characteristics) with two decision fusion models for \,, = 1/3 with different

delay constraints. Other relevant parameters have the same values as in Fig. 6. As can be seen from Fig.
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7, the fusion model 1 outperforms the model 2 especially when the delay constraint is relatively large. It
also can be seen that for a given delay constraint and for moderate values of system f.a.p. a», the model 1
outperforms model 2. However, both schemes show similar performance when «- is getting large which
intuitively makes sense.

Figure 8 shows the deviation of the detection performance due to the averaging strategy used in
developing local decisions in this paper. The curvesin Fig. 8 correspond to the performance deviation by
applying the decision fusion architecture 1 if the target happens to appear at (z,,y,) when v, and a, are
varying. From Fig. 8, it can be seen that for relatively large -, the deviation in detection performance
is amost negligible. For moderate values of ~, it is seen that the deviation in detection performance is
not very small, but not too large as well. Note that when the local nodes perform non-coherent detection
(unknown target locations), a higher SNR is required to achieve the same performance level compared to
that with a coherent detector (known target location) [22]. From the simulation results, it is seen that this
deviation is mostly acceptable for a wide range of network parameters.

It is noted that the initial detection performance may affect the distance that the mobile nodes should
move in order to achieve a certain desired performance. Figure 9 shows the dependence of the initia
detection performance on average moving distance of a mobile node in order to achieve a desired
performance. In Fig. 9, we have let the system f.ap. ay = 0.1, \,, = 1/6, ¢, = ¢, = 0.5, locd
node f.ap. a; = 0.22. As can be seen from Fig. 9, the initial detection helps to reduce average moving
distance of a mobile node specialy when the desired detection probability takes moderate values.

In Fig. 10, we compare the detection performance when the node mobility management is performed

via dynamic programming approach and the sequential approach. In Fig. 10 we assume that the target
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is located at the origin and results correspond to decision fusion model 2. It can be seen from Fig. 10
that when each mobile node uses same speed and same set of direction at each time step, the detection
performance with sequential approach fairly matches with that of with the dynamic programming approach.
Fig. 10 also depicts that when the desired system f.a.p. a» is small, adding mobility greatly improves the
detection performance.

In Fig. 11, the minimum fraction of mobile nodes required to achieve a given desired probability at the
fusion center is shown when the desired delay constraint 7, = 20s and «; and a, are varying. Clearly
Fig. 11 shows the trade off between the required number of mobile nodes and the local decision qualities
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when achieving a desired overall system performance level. Thus the Theorem 1 in Section VI isimportant

in determining the required fraction of nodes to be mobile depending on the requirement.

VIIl. CONCLUSION

In this paper, we proposed two decision fusion models for target detection using a hybrid sensor network
in which the node mobility is taken into account at node-level and at the fusion center and analyzed the
impact of node mobility to the overall performance under both schemes. The mobile nodes in the network
are kept stationary until a target is detected with alow confidence level or statistical information on target
locations are available and are directed to move to maximize the detection probability during a desired
delay constraint once a target is detected within a certain confidence level. We proposed a node mobility
management scheme in order to maximize the detection probability within a desired delay constraint.
Since deploying mobile nodes in a sensor network is not as cost effective as deploying static nodes,
we evaluate the cost of alowing nodes to be mobile in terms of the minimum number of mobile nodes
required to achieve a desired performance level within desired delay constraint.

APPENDIX A

Proof. (Proposition 1) Average false alarm probability corresponding to the decision rule (8) at the
k-th mobile node is given by,

Pii(nTy) = Pr(z(n—1,n) > 7" (n)|Ho), (47)
where z,(n = Jolr, #k(t)m(t)dt. Under Hy we can show that z(n — 1,n) is distributed as,

(n—1)T.

zZr(n — 1,n)|Ho ~ N (0,02 E] (n — 1,n))
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where Ef*(n — 1,n) = f(ﬁfnn ma(t)dt. Then the false alarm probability (47) becomes,

Dm o T;ﬁn(n)
Fi (nf) = @ (au EM(n— 1,n)> ' (48)

If the allowable false alarm probability at the k-th mobile node is a4, the threshold 7 (n) is given by,

"(n) = 0,Q (a)\/E(n — 1,n). (49
The detection probability at the k£-th mobile node at time nT’s based on the decision rule (8) is given by,

PJ:(nTS) = Pr(zy(n—1,n) > 7" (n)|Hy), (50)

Under H,, conditioned on (xg, yo), zx(n — 1,n) is distributed as,

Zr(n — 1,n)|(Hy, zo, Yo)

nTs nTs
_ / (£ 30, o)k ()t + / 0 (s (1)t
(

n—1)Ts (n=1)Ts

~ N <Ek(xo,yo;n —1,n),02E7(n — 1,n))

where Ek(xo, yo;n—1,n) = f(:ﬁ)n my(t; zo, yo) My (t)dt. Thus the pdf of z;(n—1,n) under H; is given
by,

pzk(zk”Hl = Emo,yo{p(zk|H1,$0,yo)}
= Euouo {N(Brlao,yoin—1,m), 2B (n — 1,m)) }

Note that we use z,, = z,(n — 1,n) for simplicity, when there is no ambiguity.
Then the detection probability (50) at the k-th mobile node is given by,

P(Z:(TLTS) = / ka(Zk|H1)d2k
T (n)

/ Exg,yg {N(Ek ((L’o,yo; n— a )7 uEk )} dzk

T (n)

Ezo,40 { k(z0,y0;n — 1,n), 0 E,Z”)dzk}
T (n)

- 9] T Ek (L’(),y(), ].,TL)
= zo Yo Uu n 1 n))1/2

o 1 (I,’(),yo,n—]. TL)
= Baow {Q <Q  ou(E m(n -1, n))1/2>}'
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APPENDIX B

Proof: (Proposition 2) When nodes are static, we have my(t) = my for (n — )Ty < t < nTs.
Then from subsection IV-A we have, Ef* = EP*(n — 1,1)|my(t)y=m, = miT, where m2 = E,, . {m?},
E7 = En — 1,n)|m)=m, = Tsm;, and E’k(xo,yo;n — 1,n) = my(xo, yo)myT. Then the decision
statistic in the decision rule (8) reduces to,

nTs

Zr(n—1,n) = m_k/ 2 (t)dt (52)

(n—1)Ts
and the threshold is given by 7(n) = 7 = o2} + 2m?T, where 7} is found such that P} = ;. The
false alarm probability associated with the decision rule (8) for the k-th static node reduces to
Pty = Q)
o/ Ty

To achieve P; (nT,) = o, the threshold 7; can be computed as, 7i = Q@ '(a1)o.mi/T;. Then the
corresponding detection probability (10) for the k-th static node reduces to,

B mk(fﬂoayo)\/Ts> } 7

Ou

Py(nT) = Eapp {Q (Q1<a1> 52

for k € V,, where we use the relations E* = m2T,, EJ' = T.n? and Ej(zo,yo;n — 1,n) =

my (o, yo)miTs for static nodes in obtaining (52). [ |

APPENDIX C

Proof of theorem 1

When k& = 0, all mobile nodes are in stationary mode. Then we have,

Ky (np,0) = (2ﬁ+52)ZP§j(nDTs)—522P§j2(nDTs)
JEV JEV
2
- (ZPai (nDTs)> — (53)
JjeV

If Ks(np,0) <0,wehave fo(k)—fi(k) > Ks(np, k) for k = 0 since f2(0)— f1(0) = 0 from the definition
of fi(.) and fy(.). Also from the claim 1 (given below), we can see that then f,(k) — f1(k) > K(np, k)
for al k£ > 0. Then we have K, = 0, where no need for any node to be mobile to achieve the desired
performance level within a desired delay constraint. Now, if K (np,0) > 0, in the following we prove
that, we can find a unique 1 > K, < N,, such that fy(k) — fi(k) > Ks(np,k) for & > K, and
fa(k) — fi(k) < Ks(np,k) for k < K,. The uniqueness of such K, is followed from clam 1. If
fa(k) — fi(k) < Ks(np, k) foral k =1,2,--- N, it implies that the required performance level can
not be achieved within the desired delay constraint even if all mobile nodes are directed to move.

To prove the uniqueness of K, we prove the following.
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k+1
fo(k+1)— fi(k+1) > Ks(np,k+1) + (P5:+1 - Ptfm) /@2(13(;2“ +Pj., —1)+2 (Z P+ Z Py - }4}

JEVE

Claim 1: If fo(k)— fi(k) > Ks(np, k) then fo(k+1)— fi(k+1) > Ks(np,k+1)fork=1,---, Ny,.
Also, if fo(k) — fi(k) < Ky(np, k) we have fo(k — 1) — fi(k — 1) < Ky(np, k —1).

Proof: First we prove that if fo(k) — fi1(k) > Ks(np, k) then fo(k+1)— fi(k+1) > Ky (np,k+1).
Note that, when necessary, we use P; (npTs) and Pg:(nDTs) to denote the detection probability at the
k-th mobile node at time n T, at its stationary configuration and mobile configuration, respectively. We
have,

k+1 2
f2(k+1) f1 k+1 (ZP nDT )

k+1 k+1
+ 87 PPP(npT.)+2) Fi'(npT) ) Pj (npTs)
j=1 j=1 jeVk
k+1
— (26+ 8% Py (npTy)

=1

falk) = f1(k) + (1 + B*)PT, *(npTy)

2Py (npTy) (Zpd (npTs) + Y Pj (npTs) )

jevk+1

_|_

— 2P (npTy) Z P (npTs) — (25 + B*) Py, (npTy) (55)
J=1

Now adding and subtracting K(np, k) to the right hand side of (55), we will get,

fa(k+1) = fi(k + 1) = [f2(k) — f1(k) — Ks(np, k)]
+ Kinp,k)+1+p)Pr 2

drt1
+ 2P, (ZP% > Pd)
JEVk+1
k
_ 2Pdk+12p;n (25 + 2 Py, (56)

=
where we dropped argument npT} such that Pj (npTs) = P; and Pg:(nDTS) = Py for smplicity.
Substituting for Ks(np, k) from ( 41) and using the fact that fo(k)— f1(k) > Ks(np, k), after simplification
(56) reduces to (54).

Note that we use Py (npTs) to denote the detection probability at the k-th mobile node at time n T
at its stationary configuration, as mentioned before. In (54) Since mobility towards the target improves
the detection probability at the k-th mobile node, we have Pg;+1(nDTs) — ij+l(nDTs) > 0. Using this
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fact, and with the assumption that Pg:(nDTs), P; (npT;) > % for k € V (which holds true in practice for

sufficient npT,) the second term of the right hand side of the inequality (54) is positive. Then we have,
folk+1) = filk+1) > K(np, k+1) (57)

as required. Following a similar approach, we can prove that fo(k — 1) — fi(k — 1) < Ks(np,k — 1) if
f2(k) — fi(k) < Ky(np, k). [ |

APPENDIX D
Regularity conditions to apply L-F central limit theorem in subsections IV-C and V-C

Lindeberg-Feller Central Limit Theorem (L-F CLT): Suppose S,, = X; + --- + X,,, isa sum of m
independent random variables with E{X} = 7, and Var{X,} = v?. The L-F CLT states that under
certain regularity conditions the sum S,, converges in distribution to a Gaussian random variable with
mean 7| 7, and the variance 37| v asm — oo [24]. For the applicability of LF-CLT, it was shown
in [25] two sufficient conditions should be satisfied:

o VP> By

o E{|X; — E{X}}|’} < B,
for k=1,---,m where B; and B, are positive values.

To apply the LF-CLT in subsection IV-C, first we prove that the sufficient conditions are satisfied under
H; (in the following we assume PP = PP = 0 for simplicity). Note that we can write A(nT5) as,

A(nT,) = (Z > wi(GT) + ) ZW(J’E))

j=1 k€Vm J=1 keVs

— Zx;j; + X5, (58)
ik

where X = wi(jTy) for k € V,, and X: = wg(jTs) for k € V. Under #H,4, it can be seen from (13)
that X7, is aBinary random variable with mean y7 (575) and variance i (75)(1 — g (575)). Similarly,

X3, is a Binary random variable with mean p; (j7s) and the variance p, (j7%)(1 — p, (77%)). Then

assuming perfect communication channels (such that p, = 0) we have,
= PrUT)(1 = PR(iTy)) (59)
and
E{IXJ, —E{X}'} = PrGT)( - PRGT)) (PGT) + (- PRGT)?)
= PR(T)A = PRGT.)) (1= 2PR (T = Pi(iT)))
> Pyr(iTo)(1 = P (5T5)) (60)
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where last inequdity results because 1 — 2P7"(j75)(1 — P;'(jT,)) < 1. Note that from (10), if the
local false alarm probability a; is set such that 0 < oy < 1, PJ(j7;) is positive and finite for any
Jj.k. Let By = min{ P (/) (1 — P (iT.))} and By = max{ Py (jT.)(1 — P§l(jT))}. Then we have
Var(X7,) > B and E{| X7} —E{X[}}|°} < By* for j =1,--- ,n, k € V,,. Similarly we can show that
we can find two positive values B and Bj such that Var(X75,) > B} and E{| X7} —E{X7}}|} < Bs for
j=1,---,n, k €V, Following a similar procedure, it can be shown that the two regularity conditions
are satisfied under H,, as well.
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