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We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane ar-
rays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed
algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state
variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model param-
eters. The supervising component of the algorithm then generates the final estimates of the state variables by
forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are com-
puted and updated iteratively, according to the a posteriori-likelihood principle. The performance of the esti-
mator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data ob-
tained from two cameras operating in the mid- and long-wave infrared regime. © 2006 Optical Society of
America
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. INTRODUCTION
oday’s infrared (IR) imaging systems predominantly em-
loy focal-plane arrays (FPAs) of various technologies as
heir cores. Although FPAs have numerous advantages,
uch as compactness, production cost effectiveness, and
igh sensitivity, their discrete spatial structure brings
bout the notorious nonuniformity (NU) noise, also
ermed fixed-pattern noise (FPN), which affects the qual-
ty of the acquired imagery significantly from the radio-

etric and visual perspectives alike. NU noise is the pat-
ern observed in the imagery when a spatially uniform
nput, such as a blackbody source, is imaged. This noise
esults from the spatial dissimilarities in the responses of
he individual elements of the array, which is attributed
o dissimilarities in the photodetectors’ responsivities as
ell as pixel-to-pixel variations in the characteristics of

he readout circuitry. Moreover, the level of NU noise var-
es depending on factors such as the surrounding tem-
erature, the technology of the photodetector, and the
eadout architecture. Additionally, NU noise varies slowly
ver time, and, depending on the technology used, this
rift can take from minutes to hours.1 Therefore, a one-
ime laboratory (or factory) calibration of the FPA does
ot provide an effective solution to the NU problem; NU
orrection (NUC) must be performed repeatedly as drift
ccurs.

To date, several techniques have been proposed as suit-
ble solutions to compensate for the NU in IR FPAs. The
rst group of them, known as calibration methods,2–5 re-
1084-7529/06/061282-10/$15.00 © 2
uires a known, spatially uniform reference scene in or-
er to calibrate the responses of the elements of the FPA.
ost of these techniques require the usage of flat scenes

t two or more temperatures from a blackbody. This cat-
gory of NUC techniques is often very precise and yields
adiometrically accurate readouts. However, owing to the
omplexity of their setup, which requires the use of a
lackbody source, electromechanical parts, and shutters
nd halting the operation of the camera during the period
hen calibration is conducted, they may not be practical

n many imaging systems. These include systems that
ave weight or size constraints (e.g., airborne systems,
ortable systems) as well as systems that are designed to
e functional at all times (e.g., surveillance systems).
The second group of NUC techniques are scene based,

nd they rely on signal processing to remove the NU
oise. These include motion-based algorithms6–10 and sta-
istical algorithms.1,11–17 Regardless of the specific algo-
ithm employed, scene-based techniques require only the
equence of frames that is being imaged during the nor-
al operation of the camera, and their performance is

imited by the amount of information contained in the
ideo sequence such as spatiotemporal diversity of the
emperature in the scene1,11–17 and the presence of global
otion in the sequence.6–10

Of particular relevance to the technique developed in
his paper is the algorithm developed by Torres and
ayat,12 which employs a Gauss–Markov model for the
U parameters as a means to capture the drift in the
006 Optical Society of America
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PN. Their technique utilizes such dynamic model to es-
imate the gain and bias of each detector in the array
rom a video sequence by using a Kalman filter (KF). The
F assumes a known linear state-space dynamic model
ased on the known correlation in the gain and bias from
ne block of video sequence to the next. In practice, how-
ver, the parameters of the dynamic system may not be
nown exactly, or they may be known with some uncer-
ainty. Therefore, system identification may be necessary
o obtain the parameters of the dynamic system.

In this paper, a multimodel adaptive estimation
MMAE) approach is proposed and tested to estimate the
ain and bias of each detector that allows for uncertain-
ies in the level of drift in these NU parameters. The al-
orithm adopts a parallel-processing technique based on
alman filtering, as described by Sims et al.18 In particu-

ar, a bank of KFs is used to estimate the system states
viz., gain and bias), and the output residual errors of
ach estimate are used as hypotheses to test and assign a
osteriori conditional probabilities to each model and KF.
he algorithm updates these weights (as new blocks of
ideo sequence arrive) for each KF and forms a linear
omposite estimate according to the weights.

This paper is organized as follows. In Section 2 the sys-
em model is presented, and the multimodel estimator is
eveloped. In Section 3, the technique is tested using IR
equences corrupted by simulated NU noise. In Section 4,
he technique is tested on real IR data using two cameras.
he main conclusions are presented in Section 5.

. ADAPTIVE MULTIMODEL ESTIMATION
F THE GAIN AND BIAS
e begin by reviewing germane aspects of the state-space

ynamic model developed by Torres and Hayat,12 which
ays the foundation for the proposed adaptive Kalman-
ltering technique. We then adopt the dynamic model and
he form of the KF to develop the multimodel recursions
or the adaptive estimation of the gain and bias.

. State-Space Model
he detector’s response is usually modeled as a first-order
elationship between the input irradiance and the detec-
or’s output. For the �i , j�th detector in the FPA, the nth
ime sample of the input irradiance, Tij�n�, is related to
ts corresponding output value Yij�n� through the
quation11,19

Yij�n� = AijTij�n� + Bij + Vij�n�, �1�

here Aij is the gain of the �i , j�th pixel and Bij is its bias.
he term Vij is the additive readout (temporal) noise as-
ociated with the �i , j�th detector. The main assumption in
q. (1) is that no drift occurs in the gain and the bias
ithin the time window used to collect the data. To sim-
lify the notation, we will drop the pixel superscripts ij
ith the understanding that all operations are performed
n a pixel-by-pixel basis.

Torres and Hayat12 extended the model in Eq. (1) to
onsider drift in the gain and bias. In particular, they con-
idered disjoint sequences of fixed-length vectors of detec-
or readout values, called blocks of frames, and assumed
hat drift in the gain and bias occurs only when a block of
rames arrives; i.e., the drift in the gain and the bias oc-
urs only between blocks of observations. To do so, they
mployed a Gauss–Markov state-space dynamic model to
haracterize the drift in the gain and the bias. Math-
matically, this model is given by12

Xk = �Xk−1 + Wk, �2�

here Xk is the two-dimensional state vector comprising
he gain Ak and the bias Bk at the kth block. The square
iagonal matrix � relates the transition between the
tates from one block to the next. The diagonal elements
f � are the parameters � and � that represent, respec-
ively, the amount of drift in the gain and bias. The vector

k is the driving noise vector of the Gauss–Markov
odel. The details on the selection of the mean and vari-

nce of Wk
�1� and Wk

�2�, the components of Wk, are discussed
lsewhere.12

To complete the state-space dynamic model, we define
he output vector, Yk, consisting of the readouts over each
lock of frames. This will constitute the observation equa-
ion for the state-space dynamic model, which is done by
riting a vector form of Eq. (1) for each block of frames

and for each detector) in conjunction with the block-
ependent biases and gains. More precisely,

Yk = HkXk + Vk, �3�

here Hk= �Tk 1� is the observation matrix, Tk is a col-
mn vector of length lk (lk is the number of frames in the
th block) of the irradiance values in the kth block, and 1
s the all-ones vector of length lk. The term Vk is the vec-
or of independent, additive temporal noise elements in
he kth block.

It is further assumed that the input irradiance values
k in the kth block of frames are an independent se-
uence of uniformly distributed random variables in the
ange �Tmin,Tmax�. In particular, the range is common to
ll the detectors in each block of frames.12 This is essen-
ially one manifestation of the constant-statistics assump-
ion proposed by Narendra,11 which provides the statisti-
al references according to which the gains and the biases
re calibrated. In practice, this assumption is met when
he block of frames exhibits sufficient irradiance diversity
n the spatial domain. This can occur, for example,
hrough motion in the camera whereby detectors are al-
owed to sense similar sets of irradiance values over the
ntire block of frames.

With the above state-space dynamic model, a KF was
eveloped to estimate the gain and bias,12 which is de-
cribed by the following iterations:

Pk
− = �Pk−1�T + Q, �4�

Ck = H̄Pk
−H̄T + R + �T

2 ��A0

2 + Ā0�Ilk,lk
, �5�

Kk = Pk
−H̄TCk

−1, �6�

Pk = �I2,2 − KkH̄�Pk
−, �7�

X̂k
− = �X̂k−1 + M, �8�

X̂k = X̂k
− + Kk�Yk − H̄X̂k

−�, �9�

ith the initial conditions
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X̂0 = E�X0� = �Ā0

B̄0
�, P0 =��A0

2 0

0 �B0

2 � . �10�

In the above, X̂k
− and X̂k are, respectively, the a priori

nd the current-state estimates. The terms Pk
− and Pk are

he a priori and the current error covariance matrices, re-
pectively; Kk is the Kalman gain matrix, and Ck is the
ovariance matrix of the a priori output error residuals

k�Yk− Ŷk
−, where Ŷk

−�HkX̂k
−. The matrix R is the covari-

nce matrix of the additive noise, H̄ is the mean of the
atrix Hk, �T

2 is the common variance of the input irradi-
nce, Ā0�B̄0� and �A0

2 ��B0

2 � are the mean and variance of
he initial gain (bias), respectively, and, finally, the matrix

is the covariance matrix of the driving noise vector. We
se the notation Ij,j to represent the j� j identity matrix.
The above KF was designed under the assumption that

he system parameters are known. These parameters in-
lude the gain and bias drift parameters, � and �, the
ommon range of input irradiance (i.e., Tmin and Tmax),
nd the means and variances of the initial gain and bias.
owever, in practice, these parameters may not be
nown a priori, or they may be known up to some uncer-
ainty (i.e., they may be known probabilistically). In Sub-
ection 2.B, we derive a technique for the adaptive esti-
ation of the gain and bias that is robust with respect to
ncertainties associated with the system parameters,
hich we represent by the vector �� �� ,� ,Tmin,Tmax, Ā0 ,

�A0

2 , B̄0 ,�B0

2 �. This extension is the main contribution of
his paper.

. Multiple-Model Adaptive Estimator
e now introduce the random version, �, of the system-

arameter vector � described above. We will assume that
assumes its values from a finite set �= 	�1 , . . . ,�N
,

ith true a priori probabilities p�q
�P	�=�q
, q

1, . . . ,N, which are unknown to the user. Throughout,
k q

t
c
m
t
l
Y

w

e assume that we have at our disposal N KFs, one for
ach possible realization of �. In what follows, we develop
recursion to estimate these priors from the data.
According to Sims et al.,18 to develop the MMAE esti-
ator at the kth block, it is required that we first find the

orm of the minimum-mean-square-error estimator of the
tate Xk based on both the measurements Y1 , . . . ,Yk and
he set �. Clearly, this estimator is given by the condi-

ional expectation X̂ˆ k=E�Xk �Y1 , . . . ,Yk�. If we use the
moothing property of conditional expectations, we obtain

X̂ˆ k = E�E�Xk�Y1, . . . ,Yk,���Y1, . . . ,Yk�

= E�X̂k����Y1, . . . ,Yk�

= �
q=1

N

X̂k��q�P	� = �q�Y1 = y1, . . . ,Yk = yk
, �11�

here X̂k��q��E�Xk �Y1 , . . . ,Yk ,�=�q� is the estimate of
k generated by the KF according to the qth model and

ˆ �q�yk
�P	�=�q �Y1=y1 , . . . ,Yk=yk
 is the a posteriori

robability that the qth model is the true model, given
hat we observe data up to time k. Note that X̂k��q� in Eq.
11) is calculated precisely from the KF described in Sub-
ection 2.A with �q taken as the vector comprising the
odel parameters. It can be seen from Eq. (11) that the

stimate X̂ˆ k is a weighted sum of N individual and inde-
endently calculated estimates for each model.
We now describe how to compute p̂�q�yk

iteratively. [In
hat follows, we will use the following notation: if
� �U1 , . . . ,Uk� is a continuous random vector and D is a

iscrete random variable, then by the joint probability
ensity function of U and D, fU1,. . .,Uk,D�u1 , . . . ,uk ,d�, we
ean lim
��1,. . .,�k�
→0P	u1�U1	u1+�1 , . . . ,uk�Uk	uk
�k ,D=d
.] Following the procedure given by Sims et
l.,18 we utilize Bayes’s rule and the law of total probabil-
ty to obtain
p̂�q�yk
=

f�,Y1,. . .,Yk
��q,y1, . . . ,yk�

fY1,. . .,Yk
�y1, . . . ,yk�

=
fYk�Y1,. . .,Yk−1,��yk�y1, . . . ,yk−1,�q�p̂�q�yk−1

fY1,. . .,Yk−1
�y1, . . . ,yk−1�

fYk�Y1,. . .,Yk−1
�yk�y1, . . . ,yk−1�fY1,. . .,Yk−1

�y1, . . . ,yk−1�

=
fYk�Y1,. . .,Yk−1,��yk�y1, . . . ,yk−1,�q�

fYy�Y1,. . .,Yk−1
�Yk�y1, . . . ,yk−1�

p̂�q�yk−1
=

fYk�Y1,. . .,Yk−1,��yk�y1, . . . ,yk−1,�q�

�d=1

N
fYk�Y1,. . .,Yk−1,��yk�y1, . . . ,yk−1,�d�p̂�d�yk−1

p̂�q�yk−1
. �12�
Equation (12) shows that the recursions are a function
f the conditional density function
Yk�Y1,. . .,Yk−1,��yk �y1 , . . . ,yk−1,�q�. In this paper, we use the
quiprobable initial condition p̂�q�y0

�1/N. The conver-
ence of the above recursion is established in Subsection
.C.
The conditional density function fYk�Y1,. . .,Yk−1,�

�yk �y1 , . . . ,yk−1,�q� can be easily found.18 From Eq. (3),
t can be seen that Yk��q� is the sum of two Gaussian ran-
om variables; therefore, Y �� � is also Gaussian. Fur-
hermore, the first- and second-order statistics can be
omputed in terms of the system’s parameters of each
odel and standard formulas for the moments for linear

ransformations of Gaussian random vectors. In particu-
ar, the conditional mean of the vector Yk��q�, given

1, . . ., Yk−1 and �=�q, is18

E�Yk�Y1, . . . ,Yk−1,�q� � Ŷk
−��q� = H̄��q����q�X̂k−1��q�,

hich is the a priori estimate of Ŷ based on the qth
k



m
Y

T

f

i
c
b
=
v
t
g
t
p
b
f
b
e
p

C
I
e
s
e
�
e
m
E
t
t
t
c
t

s
z
t
l

w
t
a
g

3
W
N
T
i

i
s
a
e
f
w

f
d
p
a
i
t
a
M
d
s
w
O
e

m
a
N
m
c
t
t
d
n
e
o
o
a
w
v
t

A
W
M
e
w
N
s
e
o
m

h

Pezoa et al. Vol. 23, No. 6 /June 2006/J. Opt. Soc. Am. A 1285
odel. In addition, the conditional covariance matrix of
k��q� is given by18

E��Yk��q� − Ŷk��q�−��Yk��q� − Ŷk��q�−�T� = Ck��q�.

hus,

Yk�Y1,. . .,Yk−1,��yk�y1, . . . ,yk−1,�q�

=
exp	− 1

2 �yk − Ŷk
−��q��TCk��q�−1�yk − Ŷk

−��q��

�2
�Ck��q��

. �13�

In summary, the MMAE method consists of a bank of N
ndependent KFs running in parallel, where each filter
orresponds to one of the N candidate models. At each kth
lock, the bank produces N different estimates, X̂k��q�, q
1, . . . ,N, of the state vector. Each filter also computes its
ersion of the a posteriori probability density function of
he data given by Eq. (13). The centralized part of the al-
orithm computes the a posteriori conditional probabili-
ies using the iteration (12) and the initial condition
ˆ �q�y0

�1/N. Finally, the estimate of the state at the kth
lock is calculated using Eq. (11). One of the attractive
eatures of the MMAE is that all the quantities required
y Eqs. (12) and (13) are already computed by the normal
xecution of the KFs independently of the conditional
robabilities.

. Convergence
t has been shown that if the output residual error for
ach model, rk��q��Yk− Ŷk��q�, is asymptotically wide-
ense stationarity (WSS), then two key convergence prop-
rties hold.20,21 First, if p�q

=��q,�*, for some �*�� (here
m,n is the Kronecker Dirac), then p̂�*�yk

→1 as k→�, or,
quivalently, p̂�q�yk

→p�q
, which means that the correct

odel is eventually selected as the iteration described by
q. (12) evolves. The second property states that if �*��,

hen p̂�q�yk
→ p̃�q

, as k→�, for some probability mass func-
ion p̃�q

with the property that if �̃=argmaxq=1,. . .,Np̃�q
,

hen ��̃−�*�� ��̃−�q�, for all �q� �̃. This implies that the
andidate model that is closest to the true model receives
he highest weight in the composite estimate.

Indeed, a straightforward (but tedious) calculation
hows that the expected value of the sequence rk��q� is
ero. Moreover, by utilizing the fact that the elements of
he sequence Hk are mutually independent, we can calcu-
ate the autocorrelation function of the sequence as

E�rk��q�rk+n��q�T� = H̄��q�����q�Pn−1��q��T��q� + Q��q�

+ M��q�MT��q��H̄T��q�, �14�

hich is independent of k. Hence, the residual errors of
he filter are actually WSS (which, of course, implies
symptotic WSS), and the convergence of the proposed al-
orithm is established.21

. APPLICATION TO IMAGE SEQUENCES
ITH SIMULATED NONUNIFORMITY
OISE

he MMAE algorithm was tested using blocks of clean IR
mage sequences corrupted by simulated NU noise exhib-
ting drift in the gain and bias. For the purpose of this
tudy, the noiseless IR imagery was obtained by applying
two-point calibration to real IR imagery. Specifically, we

mployed three and four blocks of IR data, each of them
ormed by 500 frames of 128�128 pixels, and every pixel
as quantized to 16 bits.
The simulation of imagery with NU noise was done as

ollows. Initially, i.e., for the first block of frames, a ran-
om gain and bias were generated independently for each
ixel from Gaussian distributions with mean values of 1
nd zero, respectively. The level of NU introduced to the
nitial block is set by varying the variance of the gain and
he bias. In addition, we simulated the drift in the gain
nd the bias from block to block by using the Gauss–
arkov model described in Subsection 2.A with pre-

efined parameters � and �. The temporal noise was
imulated using a zero-mean Gaussian random variable,
hich is uncorrelated with both the gain and the bias.
ur Monte Carlo calculations were based on 100 trials for
ach set of parameters studied.

The performance of the MMAE was evaluated by
eans of the mean square error (MSE) between the true

nd the estimated values of the gain and the bias. The
UC capability was then examined in terms of the root-
ean-square error (RMSE) between the original and the

orrected imagery. (The NUC is performed by subtracting
he estimated biases from the corrupted data and dividing
he outcome by the estimated gains.) Given that �, the
iscrete random parameter vector, includes in its compo-
ents several different parameters that produce different
ffects over the estimates, we will study each component
f � independently. First, we will consider the capability
f the MMAE algorithm to adapt to the drift in the gain
nd bias. Later, we will study the behavior of the MMAE
hen changes occur in the initial condition or the obser-
ation matrix as they correspond to different combina-
ions for the discrete random vector �.

. Estimation of the Drift in the Gain and the Bias
e conducted experiments to test the performance of the
MAE to estimate and track the drift of the NU param-

ters by using a bank of five KFs. In our first experiment
e simulated a constant and low amount of drift in the
U parameters: �k=�k=0.95, k=1,2,3. The KFs were de-

igned considering that all models had the actual param-
ters for Tmin,Tmax, Ā0 ,�A0

2 , B̄0 ,�B0

2 . The different values
f ���q� and ���q�, for each model, used in the experi-
ents are shown in the first column of Table 1. Note that

Table 1. Spatial Average of the a posteriori
Conditional Probabilities p̂�q�yk

for Each Modela

Model
q : ��=�� p̂�q�y1

p̂�q�y2
p̂�q�y3

1: 0.90 0.1999 0.2028 0.1925
2: 0.92 0.1954 0.2173 0.2390
3: 0.88 0.2045 0.1857 0.1545
4: 0.94 0.1910 0.2266 0.2902
5: 0.86 0.2092 0.1676 0.1238

aIn this example the true parameter is not a member of the parameter space �;
owever, the fourth model �� � is closest to the true parameter set.
4
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he fourth model is the closest one to the true model.
The results of the experiment are shown in Table 1. It

an be seen that the fourth model achieves the greatest
robability after the first block. Note that, despite the fact
hat the parameters vary only slightly between models,
he MMAE is able to identify the model that is closest to

Table 2. NUC Performance Parameters
Correspon

Model
��=�� MSEA1

MSEB1
RMSE1 MSEA2

1: 0.90 0.0445 0.3692 0.4463 0.0288
2: 0.92 0.0443 0.3690 0.4462 0.0286
3: 0.88 0.0448 0.3700 0.4466 0.0286
4: 0.94 0.0443 0.3690 0.4461 0.0282
5: 0.86 0.0441 0.3688 0.4456 0.0293

ig. 1. Image frame 500 from the third block �k=3� (a) true im
mage obtained by the first KF of the bank, (d) corrected version
he true model. Also, as shown in Table 2, the KF corre-
ponding to the fourth model performs better than the
ther KFs in estimating the NU parameters. A visual in-
pection of the corrected imagery (see Fig. 1) also shows
hat the levels of residual NU present in the corrected im-
ges shown in Figs. 1(c) and 1(d), obtained by models 1

ined by the MMAE for the Experiment
to Table 1

SEB2
RMSE2 MSEA3

MSEB3
RMSE1

0.2018 0.3742 0.0193 0.1481 0.3428
0.2012 0.3739 0.0192 0.1479 0.3426
0.2022 0.3744 0.0196 0.1492 0.3431
0.2004 0.3737 0.0190 0.1477 0.3425
0.2029 0.3745 0.0197 0.1500 0.3432

b) noisy image, (c) corresponding corrected version of the noisy
noisy image obtained by the fourth KF.
Obta
ding

M

age, (
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nd 4, respectively, are very low compared with the noisy
R image shown in Fig. 1(b). Recall that the estimate of
he MMAE algorithm corresponds to the weighted super-
osition of all the estimates rendered by each KF; there-
ore, in this case, the corrected image achieved by the

MAE looks closer to Fig. 1(d) than Fig. 1(c).
In the second experiment we assign the actual set of

arameters ��=�=0.95� to the second model. Starting
ith p̂�q�y0

=0.2, q=1, . . . ,5, the a posteriori probabilities
f model 2 being selected are p̂�2�y1

=0.2923, p̂�2�y2
0.8638, and p̂�2�y3

=0.9237. This demonstrates that the
MAE is not only able to identify the correct model but

lso converge to it fast.
In the third experiment we used �=�=0.95 in the first

wo blocks and then switched to �=�=0.80 in the third
nd fourth blocks. This scenario models the realistic case
hen the drift is time variant (e.g., when the ambient

emperature of the sensor changes abruptly); it also dem-
nstrates the ability of the MMAE to adapt to changes
nd track the drift in the gain and bias. In Table 3 we
how p̂�q�yk

obtained for each model as a function of the
lock number. The results show that the MMAE selects
he correct (i.e., first) model in the second block and then
t selects the correct model (second) for blocks 3 and 4 in
he fourth block.

. Exploiting Spatial Dependencies
ecall that the only parameters in � that can vary from
etector to detector are the drift parameters, � and �; all
ther parameters, viz., the initial statistics of the gain
nd bias, as well as the irradiance range, are assumed
niform spatially. However, from our experience we have
een that the amount of drift in the gain and bias is more
r less similar for all photodetectors. This observation
uggests that it would be plausible to assume, at least lo-
ally, that the drift parameters exhibit a high level of spa-
ial dependency. In other words, the probability mass
unction of the random vector � may be assumed fixed
ver a certain neighborhood of detectors. Clearly, this fea-
ure can be exploited to enhance the computational effi-
iency of the MMAE by requiring the calculation of the a
osteriori probabilities p̂�q�yk

for only a subsample of de-
ectors.

To do so, the MMAE is first restricted to spatially
ownsampled imagery, and the probabilities p̂�q�yk

are
omputed for the reduced subset of detectors. Next, the a

Table 3. Spatial Average of the a posteriori
Conditional Probabilities, p̂�q�yk

, for Each Model
When the MMAE is Tracking the Artificial NU
Added to a Sequence of Four Blocks of Dataa

Model
��=�� p̂�q�y1

p̂�q�y2
p̂�q�y3

p̂�q�y4

1: 0.95 0.1662 0.5963 0.6030 0.4721
2: 0.80 0.1965 0.3636 0.3647 0.4794
3: 0.35 0.1796 0.0098 0.0097 0.0100
4: 0.55 0.2428 0.0203 0.0128 0.0278
5: 0.40 0.2150 0.0100 0.0097 0.0107

aIn the first two blocks, the actual values are �=�=0.95, and, in the third and
our blocks, �=�=0.80.
osteriori probabilities for the remaining detectors are ap-
roximated by means of spatial interpolation (we used
eroth-order interpolation in our calculations). The gain
nd bias are then estimated for each detector by using the
MAE according to the subsampled or interpolated prob-

bilities. Indeed, Fig. 2 shows that the mean (over all pix-
ls and all frames in one block) RMSE is almost indepen-
ent of the downsampling factor, which justifies our
patial dependency assumption regarding the drift pa-
ameters. The figure also shows the significant reduction
n computing time, which scales with the downsampling
actor. Evidently, the proposed zeroth-order interpolation
ethod is just one simple way of exploiting the spatial de-

endencies. If for some kind of application we need to im-
ose spatial continuity on the sensor, then, for example,
e should consider Markov–random–field-based infer-
nce algorithms that achieve efficient solutions to the
roblem of imposing smoothness across the sensor.22

. APPLICATION TO REAL INFRARED
MAGE SEQUENCES
n this section, the MMAE algorithm is applied to two
ets of raw IR data collected using different IR cameras.
he first set corresponds to five videos of terrestrial mid-
ave IR �3–5 �m� imagery, collected using a 128�128

nSb FPA cooled camera (Amber Model AE-4128). The IR
ideos were collected at different hours of the same day
6:30 a.m., 8 a.m., 9:30 a.m., 11 a.m., and 1 p.m.), each
ideo contained 1000 frames captured at a rate of
0 frames/s (fps), and each pixel was quantized in 16 bit
ntegers. The second set also corresponds to terrestrial
ata, in the range of 8–12 �m, and was collected using an
gCdTe FPA cooled camera (CEDIP Jade Model) that out-
uts frames of 320�240 pixels, quantized in 14 bit inte-
ers. The data were acquired at 30 fps and then sub-
ampled in time by a factor of 10, to obtain four
ubsampled videos with 500 frames per block. Unlike the
nSb camera, the range of the data acquired by the
gCdTe camera is [5961,8934], which is much smaller

han the entire available range. Finally, the blocks of
rame videos were collected at 2 p.m., 2:30 p.m., 2:45 p.m.,
nd 3:05 p.m., all taken in the same day.

ig. 2. Computing time required by the MMAE and its corre-
ponding RMSE obtained versus the subsampling factor used to
alculate the a posteriori conditional probabilities.
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. Uncertainties in the Drift of the Nonuniformity
arameters
ecall that the key objective of the proposed MMAE tech-
ique is to adaptively track the level of drift in the gain,
hich would include identifying the true values of the pa-

ameters � and �. To demonstrate this capability for the
wo sets of IR video sequences, the video sequences were
orted in time, and we set �=� to be 0.50, 0.60, 0.70, 0.8,
nd 0.9 for models 1 to 5, respectively, and for both sets of
R imagery. All the other parameters of the model were
et to be the same for the five KFs.

From Eq. (1), the initial conditions Ā0, B̄0, �A0

2 , and �B0

2

or the gain and the bias must satisfy the relations

Ȳ = Ā0T̄ + B̄0, �15�

�Y
2 = �A0

2 ��T
0 + T̄2� + Ā0

2�T
2 + �B0

2 , �16�

here Ȳ and �Y
2 are, respectively, the empirical mean and

ariance of the readout data (across all detectors and
rames in the first block) and T̄= �Tmax+Tmin� /2 and �2
T

�Tmax−Tmin�2 /12 are, respectively, the theoretical mean
nd variance of the irradiance. Clearly, additional as-
umptions need to be made to determine the four initial
onditions. Our experience indicates that selecting Ā0=1
roduces corrected images in the same dynamic range of
he readout data. Moreover, a reasonable assumption re-
arding the gain NU is that �A0

2 �0.05Ā0
2. Consequently,

n the case of the IR data collected with the InSb FPA, for
hich Tmin=0 and Tmax=65 535, we obtain (after round-

ng) B̄0=−4000 and �B0

2 =3300. Note that the assumptions
mposed on the initial condition are not restrictive but are
ecessary because different IR cameras quantize the im-
ges using different numbers of bits and/or different dy-
amic ranges.
After running the MMAE algorithm with the above ini-

ial conditions, we obtain the following maximum a poste-
iori conditional probabilities (over the five models) at
ach time: p̂�5�y1

=0.6168, p̂�4�y2
=0.7792, p̂�4�y3

=0.9933,
ˆ �4�y4

=0.9997, and p̂�4�y5
=1, which suggest that the cor-

ect model is the fourth one (namely, �=�=0.8). The a
osteriori conditional probabilities show that the amount
ig. 3. (a) Sample raw image of the fifth block �k=5� taken from the InSb data set, (b) corrected version of the raw image obtained by
he first KF, (c) corrected image obtained by the second KF, (d) corrected frame obtained by the fourth KF.
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f drift in the gain and the bias is slow (� and � tend to 1),
hich is in agreement with the MMAE estimates ob-

ained for the gain and the bias: Â1=0.6143, Â2=0.8510,
ˆ

3=0.8200, Â4=0.8127, and Â5=0.8383; B̂1=−9032, B̂2=
3602, B̂3=−2055, B̂4=−1807, and B̂5=−1443.
For the set of data corresponding to the HgCdTe cam-

ra, the MMAE’s initial conditions are given by Ā0=1,
¯

0=−1200, �A0

2 =0.05, �B0

2 =1600, Tmin=5961, and Tmax

8934. The estimated gain and bias for this set are Â1

1.2771, Â2=1.1827, Â3=1.1521, and Â4=1.1458; B̂1=
991, B̂2=−2061, B̂3=−2165, and B̂4=−1691. The results
btained for the highest a posteriori conditional probabili-
ies are p̂�5�y1

=0.3598, p̂�5�y2
=0.3985, p̂�5�y3

=0.5501, and
ˆ �5�y4

=0.5897, which indicate that the model closest to the
orrect model is the fifth model (namely, �=�=0.9).

Figure 3(a) shows a sample raw frame, at k=5, for the
nSb data. Figures 3(b)–3(d) correspond to filtered images
omputed by the first, second, and fourth KFs, respec-
ively (the images corresponding to the other modes are
ot shown). The NUC obtained for the IR sequence was
omehow satisfactory. Further, it can be also seen that the
MAE compensates for the dead pixels that appear in

he real imagery. However, a small amount of ghosting
ppears in the corrected images. Figure 4(a) shows a raw
rame for k=1 taken from the HgCdTe data. Figures
(b)–4(d) are the corresponding filtered versions of Fig.

ig. 4. (a) Sample raw image of the first block �k=1� taken from
y the first KF, (c) corrected frame obtained by the fourth KF, (d
hich has the highest a posteriori probability, offers a slight adv
(a), corrected using the first, the fourth, and the fifth KF
stimators, respectively. In this example, no ghosting ar-
ifacts were observed.

. Uncertainties in the Irradiance Range and the Initial
ondition of the Gauss–Markov Model
e now study the dependence of the MMAE on the mean

nitial gain Ā0 and bias B̄0 while fixing the reaming model
arameters. According to previous results, we set �=�
0.8 for all the models in the InSb data and �=�=0.9 for

he HgCdTe data. Further, we maintain the same values
or Tmin, Tmax, �A0

2 , and �B0

2 as used in Subsection 4.A. We
ropose the following candidate values for the mean gain

¯
0 for both cameras: 0.6, 0.7, 0.8, 0.9, and 1.0 in models 1

o 5, respectively. According to Eq. (15), the corresponding
andidate values for the mean bias become −43 000,
28 000, −16 000, −7800, and 0 for the InSb data and
2409, −1684, −959, −234, and −490 for the HgCdTe data.
ext, we executed the MMAE and found that the maxi-
um (over all models) a posteriori conditional probabili-

ies obtained at each kth time for the InSb data are
ˆ �3�y1

=0.2218, p̂�2�y2
=0.3695, p̂�3�y3

=0.4270,
ˆ �3�y4

=0.4285, and p̂�3�y5
=0.5331. For the HgCdTe data,

he results are p̂�4�y1
=0.2214, p̂�5�y2

=0.3444, p̂�5�y3
0.5332, and p̂�5�y4

=0.7102. The results indicate that the
est choice for the gain (bias) for the InSb and HgCdTe
ameras are 0.8 �−16 000� and 1.0 �−490�, respectively.

gCdTe data set, (b) corrected version of the raw image obtained
cted frame obtained by the fifth KF. Note that the image in (d),
in performing NUC.
the H
) corre
antage
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Finally, we also performed experiments to determine
he best range for the input irradiance while keeping all
ther system parameters fixed. Our results indicate that
he MMAE tends to select the range that is consistent
ith data. More precisely, for a fixed mean gain Ā0 and
ean bias B̄0, the selected range �Tmin,Tmax� would con-

ain the data range after the data are shifted by the bias
nd scaled by the mean gain. This conclusion is consistent
ith the maximum-likelihood estimator of a uniformly
istributed random variable (the irradiance in this case)
rom linearly transformed samples of it.

. Implementation Issues
real-time implementation of the MMAE algorithm has

o consider the following requirements imposed by the al-
orithm: a bank of N KFs, a common input buffer to store
he incoming block of observations, and memory to store
he estimates of the gain and the bias, the a posteriori
robabilities, and the weighting factors. It should be
oted that the bank of KFs is not required to be imple-
ented in parallel. For the case of the input buffer, in
efs. 12 and 13 we showed that at least 500 frames are
eeded to obtain the estimates of the gain and the bias.
he estimates of the gain and the bias, the a posteriori
robabilities, and the weighting factors required saving
�N+1� matrices of floating-point numbers. Finally, the
MAE also required to saving N 2�2 matrices corre-

ponding to the error covariance matrices of each KF.

. CONCLUSIONS
n this paper we developed a scene-based method for es-
imating the gain and bias matrices in infrared focal-
lane arrays that is robust with respect to uncertainties
n the sensor-model parameters. These include uncertain-
ies in the spatial statistics of the fixed-pattern noise
namely, uncertainties in the statistics of the gain and
ias) as well as the uncertainties in the drift in the gain
nd bias. The method is based on the multimodel Kalman
lter, which consists of a bank of our Kalman filters, one

or each set of candidate system parameters, in conjunc-
ion with a iterative algorithm that adaptively weighs
ach output of the bank of filters and computes an aggre-
ate estimator of the gain and bias. Experiments with in-
rared imagery with simulated fixed-pattern noise demon-
trated that the proposed method not only is able to select
he best model from a set of candidate models but is also
ble to adapt to changes in the individual detectors’ gains
nd biases as they drift in time. Our results using real
ideo sequences using InSb and HgCdTe infrared cameras
ave shown that the estimated gains and biases can be
sed to perform effective nonuniformity correction to the
ideo sequences over an extended span of time. It should
e noted that the success of the proposed methods relies
n the constant-statistics assumption,11 whereby the sta-
istics of the irradiance are assumed to be invariant over
ll detectors in the array. Finally, it was demonstrated
hat any spatial dependency in the bias and gain over a
eighborhood of detectors can be exploited to save compu-
ational resources.
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