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Abstract

The statistics of photon coincidence counting in photon-correlated beams is thoroughly investigated considering the effect
of the finite coincidence resolving time. The correlated beams are assumed to be generated using parametric downconver-
sion, and the photon streams in the correlated beams are modeled by two partially correlated Poisson point processes. An
exact expression for the mean rate of coincidence registration is developed using techniques from renewal theory. It is shown
that the use of the traditional approximate rate, in certain situations, leads to the overestimation of the actual rate. The error
between the exact and approximate coincidence rates increases as the coincidence-noise parameter, defined as the mean
number of uncorrelated photons detected per coincidence resolving time, increases. The use of the exact statistics of the
coincidence becomes crucial when the background noise is high or in cases when high precision measurement of
coincidence is required. Such cases arise whenever the coincidence-noise parameter is even slightly in excess of zero. It is
also shown that the probability distribution function of the time between consecutive coincidence registration can be well
approximated by an exponential distribution function. The well-known and experimentally verified Poissonian model of the
coincidence registration process is therefore theoretically justified. The theory is applied to an on-off keying communication
system proposed by Mandel which has been shown to perform well in extremely noisy conditions. It is shown that the

Ž .bit-error rate BER predicted by the approximate coincidence-rate theory can be significantly lower than the actual BER
obtained using the exact theory. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A source of non-classical light that has generated
considerable interest in recent years is photon-corre-
lated beams. The light source takes the form of two
beams, the photons of each arrive randomly, but the
photons of the two beams are, under ideal condi-
tions, perfectly synchronized in time and space. Pho-
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ton correlated beams can be generated, for example,
w xby spontaneous parametric downconversion 1–5 .

This is a nonlinear process in which each of the
photons of a pump interacts with a medium exhibit-
ing a second-order nonlinear effect and creates a
twin pair of photons called signal and idler. Conser-
vation of momentum ensures that if one photon is
observed in one direction, its twin must be present in
one and only one matching direction. If the pump is
in a coherent state, the statistics of the photons in
each of the twin beams obey a Poisson process, but
the two processes are, under ideal conditions, com-
pletely correlated. Since the joint statistics of the
photons of this light source have reduced uncer-

w xtainty, this light source is squeezed 6–9 . Photon-
correlated beams have been proposed for use in a
number of applications including optical communica-
tions, transmittance estimation, imaging, microscopy,
cryptography, tests of the quantum theory of light,

w xand other applications 9–21 .
In some applications, pairs of ‘coincident’ pho-

tons from photon-correlated beams are used as the
information-bearing signal since these coincident
photons can be distinguished from noise photons by
virtue of their temporal coincidence. A common
scheme for the measurement of coincident photons
involves the use of two photodetectors and an elec-

w xtronic timerrcounter 22,23 . The operation of such a
photon coincidence scheme considered in this paper

w xis described as follows 24,25 . The first photodetec-
Ž .tion by the signal-beam detector SD is used to

trigger a timer and the first photodetection by the
Ž .idler-beam detector ID , following the SD detection,

is used to stop the timer. 3 If the time between the
start and the stop of the timer is less than a pre-
scribed threshold, called the coincidence resolving
time, the counter is incremented by one. In this case,
we say that a coincidence event is registered at the
time of the photodetection by ID, and the search for
subsequent coincidences starts afresh thereafter. On
the other hand, if no photons are detected by ID
within the coincidence resolving time, the coinci-
dence-counting mechanism starts afresh thereafter

3 In practice, it may be necessary to compensate for the relative
delay between the detection times of twin photons due to non-

w xidentical signal and idler channel path lengths 11 .

and the timer will be re-triggered as soon as SD
detects a photon, and so on. Note that for this
coincidence-counting mechanism, if only a single
photon is detected by SD within a resolving time and
multiple photons are detected by ID within the same
resolving time, then only one coincidence is regis-

Žtered corresponding to the first photodetection by
.ID following the SD photodetection . In this scheme,

the finite width of the resolving time used to register
coincident photons allows a fraction of the unwanted

Žuncorrelated photons resulting from uncorrelated
.photons to contribute to the process of coincidence

registration. This additional coincidence registration,
which is referred to as accidental coincidence, be-
comes a limiting factor in applications when the
average number of photons per coincidence resolu-
tion time is even slightly greater than zero.

If the photon coincidence property of photon-cor-
related beams is to be capitalized on in suppressing

Žnoise photons as in the case with the down con-
verted light communication scheme proposed in the

w xpioneering work of Mandel 10 which was also
w x.demonstrated by Hong et al. 11 , then knowledge

of the effect of accidental coincidence is critical in
understanding the performance advantage that pho-
ton-correlated beams can offer in comparison to
systems using conventional light. The traditional ex-

Žpression for the rate of coincidence registration the
w x.expression used by Mandel 10 becomes inaccurate

when the mean number of photons per resolving
Ž .time is high e.g., in excess of 0.1 in our examples .

In such cases, our results show that the approxima-
tion leads to overestimating the coincidence rate
considerably. Developing an exact theory of coinci-
dence statistics is therefore needed to understand the
statistics of coincidence counting in cases when the
approximate rate is not accurate. In addition, the
exact knowledge of the coincidence rate will defini-
tively establish the conditions under which the use of
photon-correlated light in various applications can
offer a performance advantage over conventional
light. The photon correlated light in this paper is
assumed to be that generated using spontaneous
parametric downconversion; nonetheless, the theory
is applicable to other photon-correlated-light situa-
tions which can be approximated by our model.

Although the theory is applied to an on-off keying
optical communication system, the results are also
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applicable to other applications such as transmittance
w xestimation 9 , the measurement of quantum effi-

ciency of a detector, microscopy, quantum cryptog-
w xraphy 26 , and to other radiometric measurement. In

addition, the exact theory of coincidence statistics
presented in this paper can also be extended to
alternative coincidence counting schemes. For exam-
ple, in positron emission tomography, a coincidence

Žbetween twin photons traveling in opposite direc-
.tions and resulting from the decay of beta particles

is detected if the difference between the time-of-flight
of the two photons is within a certain time window
w x27–29 . Accidental coincidence resulting from non-
twin photons can be detrimental to the quality of the

w xreconstructed image 27,30–33 . An exact statistical
theory for coincidence can be useful in efforts to
reduce the degrading effects of accidental coinci-
dence.

This paper is organized as follows. In Section 2,
we develop a stochastic model for the photon streams
in the photon-correlated beams and formally define
coincidence events. In Section 3, we develop the
exact statistics of the number of coincident photons
including the mean rate of coincidence and the prob-
ability distribution function of the time between suc-
cessive coincidence events. The results are compared
to the traditional approximate results. In Section 4,
we apply the theory to an on-off communication
system and provide an assessment of the perfor-
mance of the system.

2. Model

2.1. Joint statistics of the signal and idler photons

We adopt a simple stochastic model for which the
photon-correlated light beams are regarded as statis-

w xtically correlated streams of photons 19,20,34,35 .
The flux of photons in each beam can therefore be

w xregarded as a point process 36 , and these two point
processes are statistically correlated. We will assume
that the light in each beam is described by a Poisson
point process. Under ideal conditions, the signal and
idler photons are fully correlated, i.e., the detection
of a signal-beam photon at a specific time and
location dictates the detection of its twin photon at a

prescribed time and location in the idler beam. In
this ideal case, each Poisson process is a copy of the
other. Such ideal conditions are achieved, for exam-
ple, in spontaneous parametric downconversion when
the pump is a monochromatic plane wave, the crystal
dimensions are infinite, the signal and idler beams
are selected by perfectly matched apertures, and
ideal detectors are used. In practice, these conditions
are not met and the collected signal and idler beams
photons are not fully correlated even when matched

w xapertures are used 4,5 . Additionally, the transmis-
sion of the signal and idler beams through optical
elements results in further reduction of the degree of

w xcorrelation 16 .
To account for the partial correlation of the signal

and idler photon numbers, we adopt a simplified
model in which the photon streams of the signal and
idler beams are the superposition of totally correlated

w xcomponents and totally uncorrelated components 9 .
ŽLet l and l denote the total photon flux means i

.number of photons per second of the signal and
idler channel, respectively. A fraction b of thes

signal photons are coincident with a fraction b ofi

the idler photons so that b l sb l . For simplicity,s s i i

we will assume that b sb sb and that l sl ss i s i

l. The downconversion parameter b therefore repre-
sents the fraction of the correlated photons in the
signal and idler beams. We call such signal and idler
photons fully-correlated or twin photons. The case
bs1 corresponds to full correlation. The remaining

Ž .fraction of signal photons, arriving at a rate 1yb l,
are assumed to be totally uncorrelated with all the
other photons. Finally, to capture the effect of stray
light, photodetector dark current, and other sources
of noise, we will assume that the noise photon fluxes
m and m are added to the signal and idler channels,s i

respectively. Unlike the uncorrelated component of
the signal and idler photons the noise photons are

wtypically not utilized to bear information e.g., by
xmodulating the intensity .

2.2. Coincidence counting

Consider the coincidence counting scheme de-
scribed in Section 1, and assume that the quantum
efficiencies of the signal-beam and the idler-beam
detectors are h and h , respectively. It is evidents i
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that coincidence events can occur between twin pho-
tons, uncorrelated signal photons, and noise photons
alike due to the finite resolving time h and the
uncertainty associated with the process of photode-
tection. Since uncorrelated photons and noise pho-
tons contribute to accidental coincidence in similar
ways, we group them together as uncorrelated pho-

Žtons. Based on the type of photons correlated or
.uncorrelated contributing to coincidence registra-

tion, we can categorize the types of coincidence
events as follows:
1. Coincidence between a signal correlated photon

and its twin in the idler beam: This situation
occurs when both of the twin photons are de-
tected. This type of coincidence is the key in
discriminating against background noise.

2. Coincidence registration due to a correlated pho-
ton in the signal beam and a non-twin photon in
the idler beam: This situation occurs when the
signal-channel correlated photon is detected but
its twin in the idler channel is not detected. A
coincidence may occur in this case if any photon
is detected in the idler beam within the resolving
time.

3. Coincidence registration due to an uncorrelated
signal-beam photon and an idler-beam photon: An
uncorrelated signal-beam photon may trigger the
counter and cause the registration of a coinci-
dence event if any photon is detected from the
idler channel within the resolving time.

The coincidence events of types 2 and 3 above are
unwanted coincidence events since they are nonexis-
tent in the ideal case when the detectors are ideal and
the resolving time is infinitesimal.

As a result of the Poissonian statistics of the
photons in the idler and the signal, the times between
consecutive coincidence events are statistically inde-
pendent. Moreover, since the intensities of the signal

Žand idler beams are assumed constant as in fully
.coherent light , the times between successive coinci-

dences have identical statistics.

3. Statistics of photon coincidence

We now proceed to develop an exact theory that
characterizes the mean rate of coincidence registra-
tion. The approach is based on concepts from re-

w xnewal theory 37 . For purposes of comparison, we
first give a brief review of the traditional approxi-

w xmate statistics of coincidence 10,11 . For conve-
nience, we denote the total rate of photodetection in
each of the signal and idler beams, respectively, by

r sh lqm 1Ž . Ž .s s s

and

r sh lqm . 2Ž . Ž .i i i

3.1. Traditional approximate theory of coincidence
statistics

The rationale of the traditional approach for find-
ing the rate of coincidence can be stated as follows.
The total rate of coincidence has two components: A

Ž .contribution from twin photons true coincidence
and a contribution from all other non-twin photons
Ž .accidental coincidence , including noise photons,
uncorrelated signal and idler photons, and twin pho-
tons that are not detected by both detectors. Clearly,
the contribution from detected twin photons occur at
a rate h h bl. The total rate of photodetection froms i

the signal beam, less the detection rate of twin
photons, is therefore r yh h bl. Similarly, the to-s s i

tal photodetection rate of photons in the idler beam,
less the detection rate of twin photons, is r yi

h h bl. The rate of accidental coincidence registra-s i

tions can be approximately calculated by taking the
product of these reduced rates times the coincidence
resolving time h. The approximate total rate of coin-
cidence r is thereforec,approx

r sh h blq r yh h bl r yh h bl h.Ž . Ž .c ,approx s i s s i i s i

3Ž .
Ž .Clearly, the first term in 3 is due to type 1 coinci-

dence events as described in Section 2. The second
term is due to accidental coincidence and it com-
bines coincidence events of types 2 and 3. Using the

Ž .mean rate formula in 3 , we can obtain the mean
² Ž .:number of coincidence events, N t , in an interval

w x0,t by simply taking the product of the rate and the
length of the interval:

² :N t sr t . 4Ž . Ž .c ,approx

Ž .The coincidence counting process N t is assumed
w xto have Poisson statistics 10,6 .
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Ž .The approximate expression in 3 is accurate
only if the mean number of photons per coincidence
resolving time is much less than unity. To under-
stand its limitations, consider the following scenario:
Suppose that the signal-beam photon flux rate is
moderately high so that it is likely to have more than
one photon detection per resolving time. Now sup-
pose that a photon triggers the coincidence counter,
and further assume that other signal photons are
detected within the resolving time following the
triggering, then these additional signal photons will
not contribute to coincidence events since the counter
is not responsive to them during the resolving time.

Ž .The approximate rate Eq. 3 does not take this
factor into account and therefore overestimates the
actual coincidence rate. However, if the resolving
time is sufficiently small, so that the likelihood of
detecting more than one photon is negligible, then
the above situation will not have a significant impact
and the approximation becomes accurate. The exact
theory, developed in the next subsection, will pro-
vide a simple exact formula for the coincidence rate
for any h.

3.2. Exact rate of coincidence registration: A re-
newal-theory approach

In this subsection, we develop an exact expression
for the mean rate of coincidence registrations. To our
knowledge, this is the first time that this exact rate is
reported. We first determine the average time be-
tween consecutive coincidence registration events
and then take its reciprocal to obtain the desired
coincidence rate.

Ž .We now derive a set of renewal or recurrence
equations for the mean of the first coincidence ran-
dom variable C. The mean rate of coincidence is

² :then 1r C . Without loss of generality, assume that
the coincidence counter starts at time ts0 and that
the first photon detection by SD occurs at time j .
Since the photon arrival in each channel is modeled
by a Poisson process, the random time, X, to the
first photon detection by SD is an exponentially-dis-

w xtributed random variable with mean 1rr 36 . Thus,s

the probability density function of the random vari-
able X is

f j sr eyr s j , jG0. 5Ž . Ž .X s

Further, given that a photon is detected by SD at
time j , the conditional probability that it is actually
one of twin photons is simply the ratio between the
detection rate of correlated photons by SD to the
total detection rate by SD. This conditional probabil-
ity is therefore

bl
,

lqms

and the conditional probability that the photon is not
one of the correlated photons is of course

bl 1yb lqmŽ . s
1y s .

lqm lqms s

In addition, we will later use the fact that the proba-
bility that a photon is detected by ID in any time

w x yr i jincrement j ,jqdj is r e dj .i

Given the condition that the first photon detection
by SD occurs at time j , the events that follow can be
decomposed, in a mutually exclusive way, into cer-
tain useful events that will facilitate the derivation of

² :the expected length C . These mutually exclusive
events are described below.
1. Define A as the event that the first photodetec-1

Ž .tion by SD at time j is indeed a correlated
photon and that its twin is also detected by ID.
Observe that if A occurs, then a coincidence1

registration occurs at time j . Note that

blhi
P A s .Ž .1

lqms

2. Define A as the event that the first photodetec-2
Ž .tion by SD at time j is a correlated photon, that

its twin is not detected by ID, and that a photon
w xis detected by ID in the interval t ,tqdt within

h units of time following j . Here, a coincidence
registration occurs at time jqt if the event A2

occurs. Note that

bl 1yhŽ .i yr tiP A s r e dt .Ž .2 i
lqms

3. Define A as the event that the first photodetec-3
Ž .tion by SD at time j is a correlated photon, that

its twin is not detected by ID, and that no
wphotons are detected by ID in the interval j ,jq
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xh . The occurrence of A implies that no coinci-3

dence event has been registered up to time jqh,
and that the counter will therefore start afresh
thereafter in search of coincidence events. Using
the time jqh as a starting point, the time to the
first coincidence registration is a random variable
C̃ that has an identical probability distribution as
that of C. Since the probability of not detecting

Ž . w xany photons by ID in the interval j ,jqh is
1yH hr eyr itdt , the probability of the event A0 i 3

is

bl 1yhŽ .i yr hiP A s e .Ž .3
lqms

4. Define A as the event that the first photodetec-4
Ž .tion by SD at time j is not a correlated photon

and that a photon is detected by ID in the interval
w xt ,tqdt within h units of time following j . In
this case, a coincidence is registered at time tqdt

if the event A occurs. Note that the probability4

of the event A is4

bl
yr tiP A s 1y 1yh r e dt .Ž . Ž .4 i iž /lqms

5. Define A as the event that the first photodetec-5
Ž .tion by SD at time j is not a correlated photon

and that no photon is detected by ID in the
w xinterval j ,jqh . Similarly to A , the occur-3

rence of A implies that no coincidence event is5

registered up to time jqh, and that the counter
will therefore start afresh in search of coincidence
events at time tsjqh. Using the time jqh as
a starting point, the time to the first coincidence

˜registration is a random variable C that has an
identical probability distribution as that of C. In
this case,

bl
yr hiP A s 1y 1yh e .Ž . Ž .5 iž /lqms

We now use the above events to observe that
under the condition that the first photon detection by
SD occurs at time j , the random variable C can be
analyzed as follows:

j , if event A occurs,1

j qt , if either event A or event A occur,Cs 62 4 Ž .½ ˜j q hqC if either event A or event A occur.3 5

By averaging C over the mutually exclusive events
˜² : ² :A through A , and by using the fact that C s C ,1 5

we obtain an expression for the conditional mean of
the time to the first coincidence registration given
that the first photon detection by SD is at j . This
conditional mean can be shown to be

<w xE C Xsj

bl
yr hi² :s h jq 1yh C qjqh eŽ . Ž .i i½lqms

h yr tiq 1yh jqt r e dtŽ . Ž .H i i 5
0

1yb lqmŽ . s yr hi² :q C qjqh eŽ .½lqms

h yr tiq jqt r e dt . 7Ž . Ž .H i 5
0

² :Finally, to obtain the mean C , we remove the
w < xconditioning in E C Xsj by averaging over all

possible X, i.e.,

`

² : <w xC s E C Xsj f j dj . 8Ž . Ž .H X
0

Ž . Ž . Ž .Upon substituting 7 and 5 in 8 and carrying out
the algebra, we obtain an expression for the mean

² :rate of coincidence, r s1r C , given byc

h bliyr hi1ye 1yž /lqms
r s . 9Ž .c 1 1 h bliyr hiq 1ye 1yŽ . ž /r r lqms i s

Ž .The rate equation 9 can be expressed in terms of a
ŽŽ . .key parameter r s 1yb lqm h h, called thec i i

coincidence-noise parameter, which represents the
mean number of detected uncorrelated photons per
coincidence resolving time in the idler beam. Using
this parameter, we obtain

h bliyŽh lb hqr .i c1ye 1yž /lqms
r s .c 1 1 h bliyŽh lb hqr .i cq 1ye 1yŽ . ž /r r lqms i s

10Ž .
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As expected, in the case of ideal coincidence count-
Ž .ing i.e., hs0 and in which case r s0 , the for-c

mula for r reduces to h h bl which is simply thec s i

rate of the simultaneous detection of fully correlated
Ž .photons. Furthermore, an expansion of 9 in terms

of the parameter h shows that the traditional formula
Ž .given in 3 is a first-order approximation of the

Ž .exact rate. Eq. 10 reveals exactly how the rate is
dependent on the two factors that govern accidental
coincidence, i.e., the accidental noise parameter rc

Žand the coincidence resolving time h. Note that
varying h alone has a different effect on r thanc

.varying r while holding h fixed.c

3.3. Probability distribution function of the time
between coincidence eÕents

The knowledge of the mean rate of coincidence
alone is not sufficient to describe the statistics of the
number of coincidence events in a given time inter-
val. What is required is knowledge of the probability
density function of the random time C between
successive coincidence counts. If this probability
density function is exponential, then the coincidence

w x Žregistration process is Poissonian 35,36 i.e., the
number of coincidence registrations in any time in-
terval is a Poisson random variable with a mean
value which can be determined by taking the product
of the time interval and the coincidence rate given in
Ž ..9 . We will show that the probability density func-
tion of the time between successive coincidence
registrations is not exactly exponential but can be
approximated accurately by an exponential probabil-
ity density function.

To derive an expression for the probability distri-
Ž . Ž . � 4bution function PDF , F t , defined as P CF t ,C

Ž .we follow the same technique used to derive 7 and
Ž .8 . In particular, we first evaluate the conditional
PDF under the occurrence of each of the events A1

to A , and then we take the average over these5

events. We omit the details of the derivation and
only present the final result. For tFh,

Ž .r yr ts ir e yrs iyr tsF t s1ye , 11Ž . Ž .C ž /r yrs i

and for t)h,

F tŽ .C

blh blhi iyr tss 1ye q 1yŽ . ž /lqm lqms s

= Ž .yr h yr tyhi s1ye 1yeŽ . Ž .½
rs Ž .yr t r h r yr hs s s iqe e y1y e y1Ž .

r yrs i

tyhyr h yr si sqe r e F tysyh ds ,Ž .H s C 5
0

Ž . Ž .where r and r are given by 1 and 2 , respec-s i

tively. The above integral equation is solved numeri-
Žcally using numerical integration and the initial

Ž ..values given in 11 and the results are presented in
the next subsection.

3.4. Comparison between the exact and approximate
statistics of coincidence

The discrepancy between the exact results and the
traditional approximation becomes insignificant when
the quantity r h is very small. This condition occursi

when either the coincidence-noise parameter r orc

the quantity h lb h are not ‘close’ to zero. Thei

results obtained from our examples indicate that if
r )0.1, a noticeable error is observed in the ap-c

proximation. In our examples, we assume that hs
0.1 ns and that the downconversion parameter b is

w x0.5 10 . We illustrate the effect of the parameter rc

by plotting the rate of coincidence as a function of
r in two cases of high and low signal-to-noise ratioc
Ž .SNR . We take the signal and idler photon fluxes as

8 wls1.8=10 photonsrs i.e., light in the ten pico
xWatt range , and the quantum efficiencies h and hs i

both assume the value 0.1. For the high SNR case, as
depicted in Fig. 1, the background-noise flux is
varied so that the coincidence-noise parameter r isc

Žincreased to 0.2 in this case, the minimum value for
.lrm is 1r10 . For the low SNR case, the back-s

ground-noise flux is varied so that the coincidence-
Žnoise parameter r is increases up to 0.4 the mini-c

.mum value for lrm is 1r20 . It is seen from Fig. 1s
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Fig. 1. The rate of coincidence registration as a function of the
accidental noise parameter r . Solid and dashed lines representc

the exact and approximate results, respectively. The following set
of parameters are used: h sh s0.1, b s0.5, hs1 ns, ands i

ls1.8=108 photonsrs. The noise flux is varied so that the
parameter r ranges from 0 to 0.2.c

that the error in the coincidence rate ranges from
being negligible in the case r s0 to approximatelyc

12% for the case r s0.1, and up to 32% whenc

r s0.2. The error becomes much larger as the noisec
Ž .parameter increases as seen from Fig. 2 reaching a

value of 64% when r s0.4. Our results also indi-c

cate that the error in the approximation is negligible

Fig. 2. Same as Fig. 1 but in this case the noise flux is varied so
that the parameter r ranges from 0 to 0.4.c

Fig. 3. The rate of coincidence registration as a function of the
coincidence resolving time h. Solid and dashed lines represent the
exact and approximate results, respectively. The following set of
parameters are used: h sh s0.1, b s0.5, ls1.8=108 pho-s i

tonsrs and m sm s2=109 photonrs.s i

Žif the noise parameter is below 0.04 corresponding
.to an error of 2% .

The dependence of the mean coincidence rate on
the resolving time is depicted in Figs. 3 and 4. Fig. 3
corresponds to resolving times in the range 0;0.5
ns, and the noise levels m and m are both lr2s5s i

=107 photonsrs. All the other parameters are as

Fig. 4. Same as Fig. 3 but in this case the coincidence resolving
time h ranges from 0 to 4 ns.
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before. The exact rate of coincidence reveals that the
accidental coincidence rate is a nonlinear function of
the resolving time h. The nonlinearity becomes more
severe as h increases, as seen from Fig. 4. We
emphasize that the traditional approximate rate of
coincidence yields the well-known linear dependence
of the accidental coincidence on h. The knowledge
of such nonlinear dependence of the accidental coin-
cidence can be very useful in applications which are
known to have a high level of such undesired acci-

w xdental coincidence 27–33 .
The discrepancy between exact and approximate

results is also manifested in the probability distribu-
tion function of the random time between successive
coincidence registrations. Figs. 5 and 6 show a com-
parison between the exact and approximate PDF of
the time between coincidence registrations for the
cases r s0.1 and r s0.2, respectively, where thec c

correlated signal photon flux is taken as ls1.8=
8 Ž .10 photonsrs. It is clear from 11 that the PDF of

C is not an exponential PDF in the initial phase of
the distribution where tFh. The intuitive reason for
this behavior is that when a finite coincidence count-
ing resolving time is used, the process of registering
coincident events is no longer memoryless. For ex-
ample, it is impossible to register two consecutive
coincidences within a counting time h, and this is a
manifestation of ‘memory.’ The plots of the exact

Fig. 5. The probability distribution function, as a function of the
normalized time trh, of the time between successive coincidence
events. Solid and dashed lines represent the exact and approximate
results, respectively. The following set of parameters are used:
h sh s0.1, b s0.5, hs1 ns, and ls1.8=108 photonsrs.s i

The noise parameter r is 0.1.c

Fig. 6. Same as Fig. 5 but the coincidence parameter is increased
to 0.2.

PDF indicate, nonetheless, that for values of the
normalized time trh in excess of unity, the PDF of
C can be well approximated by an exponential PDF.
This observation justifies approximating the number
of coincidence events in a given interval by a Pois-
son random variable which has been verified experi-

w xmentally 6 . Equivalently, the coincidence registra-
tion, as a point process, can be approximated by a
Poisson process. The key issue here is that the exact
theory presented here enables us to predict the cor-
rect rate of this approximately Poisson process.

4. Application: Performance of an on-off keying
communication system using Photon Correlated
Beams

We now consider the optical communication sys-
w xtem first proposed by Mandel 10 as shown

schematically in Fig. 7. When the message ‘1’ is
Ž .transmitted hypothesis H , the photon fluxes of the1

signal and idler beams are lqm and lqm , re-s i

spectively, and when the message ‘0’ is transmitted
Ž .hypothesis H , the signal and idler photon fluxes0

are respectively m and m . The coincidence counters i

counts coincident photons in a bit of duration T , and
this coincidence count is used to determine the trans-
mitted message. Let N and N denote the number0 1

of coincident photons in per bit under hypotheses H0

and H , respectively. Using the Poisson-process1
Žmodel for the coincidence registration processes as

.justified in 3.4 , the measured quantities N and N0 1
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Fig. 7. Schematic diagram of an on-off keying communication system using correlated-photons beams.

are modeled by Poisson random variables with means
which can be computed using the theory of Section
3. These average registration counts can be com-

Ž . Ž .puted exactly using 9 or approximately using 3
with the appropriate photon fluxes under each hy-
pothesis. In particular, the exact averages are

1yeyr i0 h

² :N s T , 12Ž .exact0 1 1
yr hi0q 1yeŽ .

r rs0 i0

and

² :N sr T , 13Ž .exact1 c

where r sh m , r sh m , and r is given bys0 s s i0 i i c
Ž .9 . On the other hand, the approximate mean coinci-
dence counts are

² :N sh h m m hT 14Ž .approx0 s i s i

and

² :N sr T , 15Ž .approx1 c ,approx

Ž .where r is given by 3 .c,approx

We employ a threshold decision rule which an-
nounces H if the observed coincidence registration0

count is below the prescribed threshold, and an-
nounces of H otherwise. From standard decision1

w xtheory 38 , the optimal threshold for the decision
Ž .rule, which will minimize the bit error rate BER ,

can be computed from the Poissonian distributions of

N and N . The optimal threshold rule is computed0 1

by selecting the threshold u as the point of intersec-
tion of the conditional probability mass functions of
N and N , and can be shown to be0 1

² : ² :N y N1 0
us .² : ² :log N y log N1 0

We now compare the performance of the commu-
nication system when the exact and approximate

Ž .Fig. 8. The bit-error rate BER as a function of the coincidence-
noise parameter r . Solid and dashed lines represent the exact andc

approximate results, respectively. The following set of parameters
are used: h sh s0.1, b s0.5, hs1 ns, and ls1.8=108

s i

photonsrs. The coincidence parameter is varied by changing the
background noise flux m .i
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coincidence statistics are used. Fig. 8 shows the BER
as a function of the noise-parameter r . The coinci-c

dence parameter is varied by changing the back-
ground-noise photon flux m . First, this curve showss

the range of values of the accidental coincidence
noise parameter r where exact and approximatec

results are similar. In particular, the exact and ap-
proximate BER are almost equal for values of rc

below 0.05 photons. However, the exact BER be-
comes higher than the approximate BER by a factor
of 200 when r reaches 0.25. For noise parametersc

greater than 0.25, the BER obtained using the exact
coincidence theory is greater than the ones obtained
using the approximate theory by a factor ranging
from 200 to 103. For example, when r s0.25c

photons, the approximate BER is 8.72=10y9 while
the exact BER is 2.28=10y6. The performance is
therefore more sensitive to r than what had beenc

w xoriginally predicted and reported in 10 . The depen-
dence of the BER on the bit duration T is depicted in
Fig. 9. It is seen that the BER computed using the
exact theory is significantly greater than the results
obtained from the approximate theory.

Another factor that governs the performance of
the system is the duration of the coincidence resolv-
ing window h. It is interesting to note that both the
exact and approximate BER decrease as h increases,
as seen from Fig. 10. However, the exact BER
decreases with h at slower rate than the approximate

Ž .Fig. 9. The bit-error rate BER as a function of the bit duration T.
Solid and dashed lines represent represent exact and approximate
results, respectively. The following set of parameters are used:
h sh s0.1, b s0.5, m s2.0=109 photonsrs, and ls1.8=s i i

108 photonsrs.

Ž .Fig. 10. The bit-error rate BER as a function of the coincidence
resolving time h. Solid and dashed lines represent results obtained
using the exact and approximate expressions, respectively, for the
rate of coincidence. The following set of parameters are used:
h sh s0.1, b s0.5, m s2.0=109 photonsrs, and ls1.8=s i i

108 photonsrs. The coincidence-noise parameter r is varied byc

changing coincidence resolving time h.

BER, and more importantly, the exact BER eventu-
ally increases, as seen in Fig. 11. For the parameters
used in our example, the exact BER decrease for h
in the range 0.4 ns ; 5 ns, and it increase for values
of h in excess of 8 ns. For h in the range 6 ns ; 7
ns, the exact BER is almost constant. This behavior
of the BER cannot be predicted at all within the
confines of the approximate theory of coincidence

Ž .Fig. 11. Exact bit-error rate BER as a function of the coinci-
dence resolving time h. Other parametrs are the same as those
corresponding to Fig. 10.
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which yields an exponential decay of the BER as a
function of h.

5. Conclusion

We have developed an exact theory for the statis-
tics of coincidence in photon-correlated beams of
coherent light taking into account the finite width of
the coincidence resolving time. Our results extend
the traditional approximate model for the rate of
coincidence to cases when the mean number of
detected photons per coincidence resolving time is
not negligibly small. For example, it is seen from the
cases considered that if the mean number of detected
photons per coincidence resolving time is 0.1, the
exact coincidence rate is approximately 12% lower
than the approximate rate. It is shown that the depen-
dence of the rate of coincidence on the coincidence
resolving time is nonlinear, and the rate becomes
progressively less than the traditional approximate
prediction as the coincidence resolving time in-
creases. Furthermore, an exact evaluation of the
probability distribution function of the time between
successive coincidence registrations is carried out
providing a theoretical justification for the experi-
mentally verified Poissonian statistics of the coinci-
dence registration process. As an application to the
theory, we considered the two-channel on-off com-

w xmunication scheme proposed by Mandel 10 and
showed that the traditional approximation leads to
overemphasizing the advantage of the communica-
tion scheme in situations when the background noise
level is high. The theory presented can also be of
benefit in efforts to reduce the degrading effect of
accidental coincidence in positron emission tomogra-

w xphy 33 . The derived expression for the exact rate of
coincidence is simple and the technique can be mod-
ified and extended to the case of partially coherent
light where the photon flux is no longer determinis-
tic. This can be done by first conditioning on a
specific realization of the random photon flux and
applying the current theory to determine the condi-
tional rate of coincidence. We then could average the
conditional rate over all possible realizations of the
random photon flux to obtain the average rate of
coincidence. The renewal-theory technique presented
in this paper can also be modified to generalize the

conventional photon correlation theory reported in
w x23 to cases when photon-correlated beams are used
in place of conventional light.
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